
MQTT Essentials: Part 1 – Introducing MQTT

Welcome to the first part of MQTT Essentials. A blog series about the core features and
concepts in the MQTT protocol. This post introduces the MQTT Essentials series and what we’ll
cover on the blog in 2015. Also it will give an introduction to MQTT and some general information
and background on the protocol.

Announcing the MQTT Monday!
The beginning of a year is always great to start new things, so in that motivational spirit, we want to
change our blogging concept and feature more posts about MQTT in general. We have a lot of
different topics in mind from the now starting essentials series to an in-depth look on security or
client libraries. So if you are interested in MQTT you should definitely check our blog regularly or
sign up for our newsletter to get new posts directly to your inbox, when they are published.

Together with this first post, we will also introduce the MQTT Monday. Every Monday we
will publish a new blog post regarding MQTT. So you can expect a new part of the Essentials
series each upcoming Monday. We hope that the content of these post will help MQTT users of any
knowledge level to quickly understand and implement MQTT in their projects and use cases.

MQTT Essentials: Why and what we are going to cover?
Before covering today’s topic, we want to explain why we have decided to write the series, who is it
for and what topics will be covered. We are working with MQTT for a long time, over 3 years now,
and we have answered basic questions about the core concepts like publish/subscribe, quality of
services and many others a lot on different platforms (customers, conferences, online). So with the
MQTT Essentials we like to cover the main pillars as a reference guide for users of all kind.
MQTT is an open protocol and therefore the information on how to use it should also be open and
accessible to anybody, who’s interested.
We are very excited about this and hope you’ll find this content useful.

http://eepurl.com/bbdnWP
https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/

Now what will be in the MQTT Essentials and what won’t? At first we will cover basic
concepts of MQTT (publish/subscribe, client/broker) and basic functionality (Connect, Publish,
Subscribe). After that we will look at features like Quality of Service, Retained Messages,
Persistent Session, Last Will and Testament and SYS Topics one by one. The whole series will
be around 10 individual posts. What we explicitly excluded in the Essentials is security. We know
that this is a very important topic and shouldn’t be neglected. That’s why we plan a separate series
just about MQTT and Security sometime after the Essentials.

Introducing MQTT
MQTT is a Client Server publish/subscribe messaging transport protocol. It is light
weight, open, simple, and designed so as to be easy to implement. These characteristics
make it ideal for use in many situations, including constrained environments such as for
communication in Machine to Machine (M2M) and Internet of Things (IoT) contexts
where a small code footprint is required and/or network bandwidth is at a premium.

Citation from the official MQTT 3.1.1 specification

The abstract of the MQTT specification does a good job in describing what MQTT is all about. It is
very light weight and binary protocol, which excels when transferring data over the wire in
comparison to protocols like HTTP, because it has only a minimal packet overhead. Another
important aspect is that MQTT is extremely easy to implement on the client side. This fits perfectly
for constrained devices with limited resources. Actually this was one of the goals when MQTT was
invented in the first place.

A little bit of history
MQTT was invented by Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom, now Cirrus Link)
back in 1999, when their use case was to create a protocol for minimal battery loss and minimal
bandwidth connecting oil pipelines over satellite connection. They specified the following goals,
which the future protocol should have:

• Simple to implement

• Provide a Quality of Service Data Delivery

• Lightweight and Bandwidth Efficient

• Data Agnostic

• Continuous Session Awareness

These goals are still the core of MQTT, while the focus has changed from proprietary embedded
systems to open Internet of Things use cases. Another thing that is often confused about MQTT is
the appropriate meaning of the abbreviation MQTT. It’s a long story, the short answer is that
MQTT officially does not have an acronym anymore, it’s just MQTT.

The long story is that the former acronym stood for:

MQ Telemetry Transport

https://groups.google.com/d/topic/mqtt/F0JlXXiUA_M
http://www.ibm.com/podcasts/software/websphere/connectivity/piper_diaz_nipper_mq_tt_11182011.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.hivemq.com/mqtt-essentials-part-7-persistent-session-queuing-messages/
https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe/
https://www.hivemq.com/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe/
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/

While MQ is referencing to MQ Series, a product developed by IBM which supports MQTT and
the protocol was named after, when it was invented 1999. Often MQTT is incorrectly named as
message queue protocol, but this is not true. There are no queues as in traditional message queuing
solutions. However, it is possible to queue message in certain cases, but this will be discussed in
detail in a later post. So after MQTT had been used by IBM internally for quite some times, version
3.1 was released royalty free in 2010. From there on everybody could implement and use it. We
were introduced to it in 2012 and build the first version of HiveMQ in the same year, before
releasing it to the public in 2013. But not only the protocol specification was released also various
client implementation were contributed to the newly founded Paho project underneath the Eclipse
Foundation. This was definitely a big thing for the protocol, because there is little chance for wide
adoption when there is no ecosystem around it.

OASIS Standard and current version
Around 3 years after the initial publication, it was announced that MQTT should be standardized
under the wings of OASIS, an open organization with the purpose of advancing standards. AMQP,
SAML, DocBook are only a few of the already released standards. The standardization process took
around 1 year and on October 29th 2014 MQTT was officially approved as OASIS Standard.
MQTT 3.1.1 is now the newest version of the protocol. The minor version change from 3.1 to 3.1.1
symbolizes that there were only little changes made to the previous version. The primary goal was
to deliver a standard as soon as possible and improve MQTT from there on. For detailed
information about the changes, see our blog post about why it’s worth to upgrade to 3.1.1.

We would definitely recommend to use MQTT 3.1.1.

So that’s already the end of part 1 in our multi-part series of MQTT Essentials. We hope you did
enjoy it and learned something new about MQTT. If you have any feedback or questions we should
answer, while covering future topics in the next posts, let us know in the comments. By the way the
topic of next week will be a introduction into the publish and subscribe pattern as well as explaining
the difference between MQTT and a message queue.

https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/6-facts-why-its-worth-upgrading-to-mqtt-3-1-1/
https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard

MQTT Essentials Part 2: Publish & Subscribe

Welcome to the second part of the MQTT Essentials. A blog series about the core features and
concepts in the MQTT protocol. In this second post, we’ll discuss the Publish/Subscribe pattern.
First we look at the general characteristics of Publish/Subscribe itself and then we’ll be
focusing on MQTT. We’ll also explain how MQTT is different from traditional message queuing
protocols.

In the first post, we introduced MQTT, explained its origin and history. If you haven’t already read
it, you should definitely check it out.

The publish/subscribe pattern
The publish/subscribe pattern (pub/sub) is an alternative to the traditional client-server model,
where a client communicates directly with an endpoint. However, Pub/Sub decouples a client,
who is sending a particular message (called publisher) from another client (or more clients),
who is receiving the message (called subscriber). This means that the publisher and subscriber
don’t know about the existence of one another. There is a third component, called broker, which is
known by both the publisher and subscriber, which filters all incoming messages and distributes
them accordingly. So let’s dive into a little bit more details about the just mentioned aspects.
Remember this is still the basic part about pub/sub in general, we’ll talk about MQTT specifics in
just a minute.

https://www.hivemq.com/mqtt-essentials-part-1-introducing-mqtt/

MQTT Publish / Subscribe

As already mentioned the main aspect in pub/sub is the decoupling of publisher and receiver, which
can be differentiated in more dimensions:

• Space decoupling: Publisher and subscriber do not need to know each other (by ip address

and port for example)

• Time decoupling: Publisher and subscriber do not need to run at the same time.

• Synchronization decoupling: Operations on both components are not halted during publish

or receiving

In summary publish/subscribe decouples publisher and receiver of a message, through filtering of
the messages it is possible that only certain clients receive certain messages. The decoupling has
three dimensions: Space, Time, Synchronization.

Scalability

Pub/Sub also provides a greater scalability than the traditional client-server approach. This is
because operations on the broker can be highly parallelized and processed event-driven. Also often
message caching and intelligent routing of messages is decisive for improving the scalability. But it
is definitely a challenge to scale publish/subscribe to millions of connections. This can be achieved
using clustered broker nodes in order to distribute the load over more individual servers with load
balancers. (We will discuss this in detail in a separate post, this would go beyond the scope).

Message Filtering

So what’s interesting is, how does the broker filter all messages, so each subscriber only gets the
messages it is interested in?

Option 1: Subject-based filtering

The filtering is based on a subject or topic, which is part of each message. The receiving client
subscribes on the topics it is interested in with the broker and from there on it gets all message

based on the subscribed topics. Topics are in general strings with an hierarchical structure, that
allow filtering based on a limited number of expression.

Option 2: Content-based filtering

Content-based filtering is as the name already implies, when the broker filters the message based on
a specific content filter-language. Therefore clients subscribe to filter queries of messages they are
interested in. A big downside to this is, that the content of the message must be known beforehand
and can not be encrypted or changed easily.

Option 3: Type-based filtering

When using object-oriented languages it is a common practice to filter based on the type/class of the
message (event). In this case a subscriber could listen to all messages, which are from type
Exception or any subtype of it.

Of course publish/subscribe is not a silver bullet and there are some things to consider, before
using it. The decoupling of publisher and subscriber, which is the key in pub/sub, brings a few
challenges with it. You have to be aware of the structuring of the published data beforehand. In case
of subject-based filtering, both publisher and subscriber need to know about the right topics to use.
Another aspect is the delivery of message and that a publisher can’t assume that somebody is
listening to the messages he sends. Therefore it could be the case that a message is not read by any
subscriber.

MQTT
So now we have learned a lot about publish/subscribe in general, but what about MQTT in specific.
MQTT embodies all of the mentioned aspects, depending on what you want to achieve with it.
MQTT decouples the space of publisher and subscriber. So they just have to know hostname/ip and
port of the broker in order to publish/subscribe to messages. It also decouples from time, but often
this is just a fall-back behavior, because the use case mostly is to delivery message in near-realtime.
Of course the broker is able to store messages for clients that are not online. (This requires two
conditions: client has connected once and its session is persistent and it has subscribed to a topic
with Quality of Service greater than 0). MQTT is also able to decouple the synchronization, because
most client libraries are working asynchronously and are based on callbacks or similar model. So it
won’t block other tasks while waiting for a message or publishing a message. But there are certain
use cases where synchronization is desirable and also possible. Therefore some libraries have
synchronous APIs in order to wait for a certain message. But usually the flow is asynchronous.
Another thing that should be mentioned is that MQTT is especially easy to use on the client-side.
Most pub/sub systems have the most logic on the broker-side, but MQTT is really the essence of
pub/sub when using a client library and that makes it a light-weight protocol for small and
constrained devices.

MQTT uses subject-based filtering of messages. So each message contains a topic, which the
broker uses to find out, if a subscribing client will receive the message or not. More details about
topics are explained in Part 5 of the MQTT Essentials. It would also be possible to do content-based
filtering with the HiveMQ MQTT broker and its custom plugin system.

https://www.hivemq.com/docs/plugins/latest/
https://www.hivemq.com/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/

In order to handle the challenges of a pub/sub system in general, MQTT has the quality of service
(QoS) levels. It is easily possible to specify that a message gets successfully delivered from the
client to the broker or from the broker to a client. But still there is the chance that nobody subscribes
to the particular topic. If this is a problem, it depends on the broker how to handles such cases. For
example, the HiveMQ MQTT broker has a plugin system, which is capable of identifying such
cases and take action or just log every message into a database for historical analytics. In order to
mitigate the inflexibility of topics, it is important to design the topic tree very carefully and leave
room for extension for use cases in the future. If you follow these strategies, MQTT is perfect for
production setups.

Distinction from Message Queues

So there are many confusions about MQTT, its name and if it is implemented as a message queue or
not. We will try to bring light into the dark and explain the differences. In our last post we already
pointed out that the name MQTT comes from an IBM product called MQseries and has nothing to
do with “message queue“. But regardless of the name, what are the differences between MQTT and
a traditional message queue?

A message queue stores message until they are consumed
When using message queues, each incoming message will be stored on that queue until it is picked
up by any client (often called consumer). Otherwise the message will just be stuck in the queue and
waits for getting consumed. It is not possible that message are not processed by any client, like it is
in MQTT if nobody subscribes to a topic.

A message will only be consumed by one client
Another big difference is the fact that in a traditional queue a message is processed by only one
consumer. So that the load can be distributed between all consumers for a particular queue. In
MQTT it is quite the opposite, every subscriber gets the message, if they subscribed to the topic.

Queues are named and must be created explicitly
A queue is far more inflexible than a topic. Before using a queue it has to be created explicitly with
a separate command. Only after that it is possible to publish or consume messages. In MQTT topics
are extremely flexible and can be created on the fly.

https://www.hivemq.com/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/docs/plugins/latest/

MQTT Essentials Part 3: Client, Broker and
Connection Establishment

Welcome to the third part of the MQTT Essentials. A blog series about the core features and
concepts in the MQTT protocol. In this post, we’ll discuss the role of MQTT client and broker
and the parameters and options available, when connecting to a broker.

In the last post, we explained how the publish/subscribe pattern works and how it is applied in
MQTT. The following is a quick recap of the essence: Publish/Subscribe decouples a client,
which is sending a particular message (called publisher) from another client (or more clients),
which is receiving the message (called subscriber). In order to determine, which message gets to
which client, MQTT uses topics. A topic is a hierarchical structured string, which is used for
message filtering and routing (More details).

The last post was really more academical nature as we examined what publish/subscribe is about
and how it can be differentiated from a message queuing approach. This post will be way more
practical and stuffed with basic knowledge about MQTT. Some topics we discuss are definition
of MQTT client & broker, basics of an MQTT connection, the Connect Message with its parameters
and the establishing of the connection by the acknowledgement of the broker.

Introduction
As we have seen MQTT decouples publisher and subscriber, so a connection of any client is always
with the broker. Before we start diving into the connection details, let’s make clear what we mean
by client and broker.

Client

When talking about a client it almost always means an MQTT client. This includes publisher or
subscribers, both of them label an MQTT client that is only doing publishing or subscribing. (In
general a MQTT client can be both a publisher & subscriber at the same time). A MQTT client is
any device from a micro controller up to a full fledged server, that has a MQTT library

https://www.hivemq.com/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/

running and is connecting to an MQTT broker over any kind of network. This could be a really
small and resource constrained device, that is connected over a wireless network and has a library
strapped to the minimum or a typical computer running a graphical MQTT client for testing
purposes, basically any device that has a TCP/IP stack and speaks MQTT over it. The client
implementation of the MQTT protocol is very straight-forward and really reduced to the essence.
That’s one aspect, why MQTT is ideally suitable for small devices. MQTT client libraries are
available for a huge variety of programming languages, for example Android, Arduino, C, C+
+, C#, Go, iOS, Java, JavaScript, .NET. A complete list can be found on the MQTT wiki.

Broker

The counterpart to a MQTT client is the MQTT broker, which is the heart of any publish/subscribe
protocol. Depending on the concrete implementation, a broker can handle up to thousands of
concurrently connected MQTT clients. The broker is primarily responsible for receiving all
messages, filtering them, decide who is interested in it and then sending the message to all
subscribed clients. It also holds the session of all persisted clients including subscriptions and
missed messages (More details). Another responsibility of the broker is the authentication and
authorization of clients. And at most of the times a broker is also extensible, which allows to easily
integrate custom authentication, authorization and integration into backend systems. Especially the
integration is an important aspect, because often the broker is the component, which is directly
exposed on the internet and handles a lot of clients and then passes messages along to downstream
analyzing and processing systems. As we described in one of our early blog post subscribing to all
message is not really an option. All in all the broker is the central hub, which every message needs
to pass. Therefore it is important, that it is highly scalable, integratable into backend systems,
easy to monitor and of course failure-resistant. For example HiveMQ solves this challenges by
using state-of-the-art event driven network processing, an open plugin system and standard
providers for monitoring.

MQTT Connection
The MQTT protocol is based on top of TCP/IP and both client and broker need to have a TCP/IP
stack.

https://www.hivemq.com/mqtt-sql-database/
https://www.hivemq.com/mqtt-essentials-part-7-persistent-session-queuing-messages/
https://github.com/mqtt/mqtt.github.io/wiki/libraries

The MQTT connection itself is always between one client and the broker, no client is connected to
another client directly. The connection is initiated through a client sending a CONNECT
message to the broker. The broker response with a CONNACK and a status code. Once the
connection is established, the broker will keep it open as long as the client doesn’t send a disconnect
command or it looses the connection.

MQTT connection through a NAT

It is a common use case that MQTT clients are behind routers, which are using network address
translation (NAT) in order to translate from a private network address (like 192.168.x.x, 10.0.x.x) to
a public facing one. As already mentioned the MQTT client is doing the first step by sending a
CONNECT message. So there is no problem at all with clients behind a NAT, because the broker
has a public address and the connection will be kept open to allow sending and receiving message
bidirectional after the initial CONNECT.

Client initiates connection with the CONNECT message

So let’s look at the MQTT CONNECT command message. As already mentioned this is sent from
the client to the broker to initiate a connection. If the CONNECT message is malformed (according
to the MQTT spec) or it takes too long from opening a network socket to sending it, the broker will
close the connection. This is a reasonable behavior to avoid that malicious clients can slow down
the broker.
A good-natured client will send a connect message with the following content among other
things:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028

Additionally there are other informations included in a CONNECT message, which are more a
concern to the implementer of a MQTT library than to the user of a library. If you are interested in
the details have a look at the MQTT 3.1.1 specification.
So let’s go through all these options one by one:

ClientId

The client identifier (short ClientId) is an identifier of each MQTT client connecting to a MQTT
broker. As the word identifier already suggests, it should be unique per broker. The broker uses it
for identifying the client and the current state of the client. If you don’t need a state to be hold by
the broker, in MQTT 3.1.1 (current standard) it is also possible to send an empty ClientId, which
results in a connection without any state. A condition is that clean session is true, otherwise the
connection will be rejected.

Clean Session

The clean session flag indicates the broker, whether the client wants to establish a persistent
session or not. A persistent session (CleanSession is false) means, that the broker will store all
subscriptions for the client and also all missed messages, when subscribing with Quality of Service
(QoS) 1 or 2. If clean session is set to true, the broker won’t store anything for the client and will
also purge all information from a previous persistent session.

Username/Password

MQTT allows to send a username and password for authenticating the client and also
authorization. However, the password is sent in plaintext, if it isn’t encrypted or hashed by
implementation or TLS is used underneath. We highly recommend to use username and password
together with a secure transport of it. In brokers like HiveMQ it is also possible to authenticate
clients with an SSL certificate, so no username and password is needed.

https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Will Message

The will message is part of the last will and testament feature of MQTT. It allows to notify other
clients, when a client disconnects ungracefully. A connecting client will provide his will in form
of an MQTT message and topic in the CONNECT message. If this clients gets disconnected
ungracefully, the broker sends this message on behalf of the client. We will talk about this in detail
in an individual post.

KeepAlive

The keep alive is a time interval, the clients commits to by sending regular PING Request messages
to the broker. The broker response with PING Response and this mechanism will allow both sides
to determine if the other one is still alive and reachable. We’ll talk about this in detail in a future
post.

That are basically all information that are necessary to connect to a MQTT broker from a MQTT
client. Often each individual library will have additional options, which can be configured. They are
most likely regarding the specific implementation, for example how should queued message be
stored.

Broker responds with the CONNACK message

When a broker obtains a CONNECT message, it is obligated to respond with a CONNACK
message. The CONNACK contains only two data entries: session present flag, connect return code.

Session Present flag

The session present flag indicate, whether the broker already has a persistent session of the
client from previous interactions. If a client connects and has set CleanSession to true, this flag is
always false, because there is no session available. If the client has set CleanSession to false, the
flag is depending on, if there are session information available for the ClientId. If stored session
information exist, then the flag is true and otherwise it is false. This flag was added newly in MQTT
3.1.1 and helps the client to determine, whether it has to subscribe to topics or if these are still
stored in his session.

Connect acknowledge flag

The second flag in the CONNACK is the connect acknowledge flag. It signals the client, if the
connection attempt was successful and otherwise what the issue is.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718033

In the following table you see all return codes at a glance.

Return Code Return Code Response
0 Connection Accepted
1 Connection Refused, unacceptable protocol version
2 Connection Refused, identifier rejected
3 Connection Refused, Server unavailable
4 Connection Refused, bad user name or password
5 Connection Refused, not authorized
A more detailed explanation of each of these can be found in the MQTT specification.

Loose ends

You maybe ask, how MQTT keeps the connection open, even when there are no messages send? Or
how to know when a connection is lost? You have to be patient, but we will devote a whole blog
inside of the essentials series to that topic later on.

So that’s the end of part three in our MQTT Essentials series. We hope you learned at least one new
thing about MQTT and looking forward to the next post about how publishing, subscribing and
unsubscribing works in MQTT.

https://www.hivemq.com/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe
https://www.hivemq.com/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718035

MQTT Essentials Part 4: MQTT Publish, Subscribe &
Unsubscribe

Welcome to the fourth part of the MQTT Essentials, a blog series about the core features and
concepts in the MQTT protocol. In this post, we’ll focus on publish, subscribe and unsubscribe
in MQTT. In contrast to the second part, which was about publish/subscribe basics, this post will
explain the specifics of publish and subscribe in the MQTT protocol. If you haven’t read part 2
about the basics of the publish/subscribe pattern, we strongly encourage you to read it first.

Last week we looked at establishing a connection between MQTT client and broker. So this week’s
post ties on to this and we’ll talk about sending and receiving messages.

Publish
After a MQTT client is connected to a broker, it can publish messages. MQTT has a topic-based
filtering of the messages on the broker (check part 2 for more details on that), so each message
must contain a topic, which will be used by the broker to forward the message to interested
clients. Each message typically has a payload which contains the actual data to transmit in
byte format. MQTT is data-agnostic and it totally depends on the use case how the payload is
structured. It’s completely up to the sender if it wants to send binary data, textual data or even full-
fledged XML or JSON. A MQTT publish message also has some more attributes, which we’re
going discuss in detail:

https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/

Topic Name
A simple string, which is hierarchically structured with forward slashes as delimiters. An example
would be “myhome/livingroom/temperature” or “Germany/Munich/Octoberfest/people”. More
details about topics can be found in part 5 of the MQTT Essentials.

QoS
A Quality of Service Level (QoS) for this message. The level (0,1 or 2) determines the guarantee of
a message reaching the other end (client or broker). More details about QoS can be found in part 6
of the MQTT Essentials.

Retain-Flag
This flag determines if the message will be saved by the broker for the specified topic as last known
good value. New clients that subscribe to that topic will receive the last retained message on that
topic instantly after subscribing. More on retained messages and best practices in one of the next
posts.

Payload
This is the actual content of the message. MQTT is totally data-agnostic, it’s possible to send
images, texts in any encoding, encrypted data and virtually every data in binary.

Packet Identifier
The packet identifier is a unique identifier between client and broker to identify a message in a
message flow. This is only relevant for QoS greater than zero. Setting this MQTT internal identifier
is the responsibility of the client library and/or the broker.

DUP flag
The duplicate flag indicates, that this message is a duplicate and is resent because the other end
didn’t acknowledge the original message. This is only relevant for QoS greater than 0 and more
details are in part 6, which is about QoS levels. This resend/duplicate mechanism is typically
handled by the MQTT client library or the broker as an implementation detail.

So when a client sends a publish to a MQTT broker, the broker will read the publish,
acknowledge the publish if needed (according to the QoS Level) and then process it.

https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part-5-mqtt-topics-best-practices/

Processing includes determining which clients have subscribed on that topic and then sending out
the message to the selected clients which subscribe to that topic.

The client, who initially published the message is only concerned about delivering the publish
message to the broker. From there on it is the responsibility of the broker to deliver the message to
all subscribers. The publishing client doesn’t get any feedback, if someone was interested in this
published message and how many clients received the message by the broker.

Subscribe
Publishing messages doesn’t make sense if no one ever receives the message, or, in other words, if
there are no clients subscribing to any topic. A client needs to send a SUBSCRIBE message to the
MQTT broker in order to receive relevant messages. A subscribe message is pretty simple, it just
contains a unique packet identifier and a list of subscriptions.

Packet Identifier
The packet identifier is a unique identifier between client and broker to identify a message in a
message flow. Setting this MQTT internal identifier is the responsibility of the client library and/or
the broker.

List of Subscriptions
A SUBSCRIBE message can contain an arbitrary number of subscriptions for a client. Each

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718063

subscription is a pair of a topic topic and QoS level. The topic in the subscribe message can also
contain wildcards, which makes it possible to subscribe to certain topic patterns. If there are
overlapping subscriptions for one client, the highest QoS level for that topic wins and will be used
by the broker for delivering the message.

Suback
Each subscription will be confirmed by the broker through sending an acknowledgment to the client
in form of the SUBACK message. This message contains the same packet identifier as the original
Subscribe message (in order to identify the message) and a list of return codes.

Packet Identifier
The packet identifier is a unique identifier used to identify a message. It is the same as in the
SUBSCRIBE message.

Return Code
The broker sends one return code for each topic/QoS-pair it received in the SUBSCRIBE message.
So if the SUBSCRIBE message had 5 subscriptions, there will be 5 return codes to acknowledge
each topic with the QoS level granted by the broker. If the subscription was prohibited by the broker
(e.g. if the client was not allowed to subscribe to this topic due to insufficient permission or if the
topic was malformed), the broker will respond with a failure return code for that specific topic.

Return Code Return Code Response
0 Success – Maximum QoS 0
1 Success – Maximum QoS 1
2 Success – Maximum QoS 2
128 Failure

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718068

After a client successfully sent the SUBSCRIBE message and received the SUBACK message, it
will receive every published message matching the topic of the subscription.

Unsubscribe
The counterpart of the SUBSCRIBE message is the UNSUBSCRIBE message which deletes
existing subscriptions of a client on the broker. The UNSUBSCRIBE message is similar to the
SUBSCRIBE message and also has a packet identifier and a list of topics.

Packet Identifier
The packet identifier is a unique identifier used to identify a message. The acknowledgement of an
UNSUBSCRIBE message will contain the same identifier.

List of Topic
The list of topics contains an arbitrary number of topics, the client wishes to unsubscribe from. It is
only necessary to send the topic as string (without QoS), the topic will be unsubscribed regardless
of the QoS level it was initially subscribed with.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718072

Unsuback
The broker will acknowledge the request to unsubscribe with the UNSUBACK message. This
message only contains a packet identifier.

Packet Identifier
The packet identifier is a unique identifier used to identify a message. It is the same as in the
UNSUBSCRIBE message.

After receiving the UNSUBACK from the broker, the client can assume the subscriptions in the
UNSUBSCRIBE message are deleted.

So that’s the end of part four in our MQTT Essentials series. We hope you enjoyed it. In the next
post we will dig deeper into the usage of MQTT topics. We’ll explain the basics as well as the usage
of wildcards and a lot of practical examples.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718077

MQTT Essentials Part 5: MQTT Topics & Best Practices

Welcome to the fifth part of the MQTT Essentials, a blog series about the core features and
concepts in the MQTT protocol. In this post we’ll focus on MQTT topics and best practices. As
we have already mentioned, topics are used to decide on the MQTT broker which client receive
which message. We will also discuss SYS-topics, which are special ones that reveal broker internal
information. So let’s get started.

Topics
A topic is a UTF-8 string, which is used by the broker to filter messages for each connected client.
A topic consists of one or more topic levels. Each topic level is separated by a forward slash (topic
level separator).

In comparison to a message queue a topic is very lightweight. There is no need for a client to create
the desired topic before publishing or subscribing to it, because a broker accepts each valid topic
without any prior initialization.

Here are a few example topics:

myhome/groundfloor/livingroom/temperature
USA/California/San Francisco/Silicon Valley
5ff4a2ce-e485-40f4-826c-b1a5d81be9b6/status
Germany/Bavaria/car/2382340923453/latitude

https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/

Noticeable is that each topic must have at least 1 character to be valid and it can also contain
spaces. Also a topic is case-sensitive, which makes myhome/temperature and
MyHome/Temperature two individual topics. Additionally the forward slash alone is a valid topic,
too.

Wildcards
When a client subscribes to a topic it can use the exact topic the message was published to or it can
subscribe to more topics at once by using wildcards. A wildcard can only be used when subscribing
to topics and is not permitted when publishing a message. In the following we will look at the two
different kinds one by one: single level and multi level wildcards.

Single Level: +

As the name already suggests, a single level wildcard is a substitute for one topic level. The plus
symbol represents a single level wildcard in the topic.

Any topic matches to a topic including the single level wildcard if it contains an arbitrary string
instead of the wildcard. For example a subscription to myhome/groundfloor/+/temperature would
match or not match the following topics:

Multi Level: #

While the single level wildcard only covers one topic level, the multi level wildcard covers an
arbitrary number of topic levels. In order to determine the matching topics it is required that the
multi level wildcard is always the last character in the topic and it is preceded by a forward slash.

A client subscribing to a topic with a multi level wildcard is receiving all messages, which start with
the pattern before the wildcard character, no matter how long or deep the topics will get. If you only
specify the multilevel wildcard as a topic (#), it means that you will get every message sent over the
MQTT broker. If you expect high throughput this is an anti pattern, see the best practices below.

Topics beginning with $
In general you are totally free in naming your topics, but there is one exception. Each topic, which
starts with a $-symbol will be treated specially and is for example not part of the subscription
when subscribing to #. These topics are reserved for internal statistics of the MQTT broker.
Therefore it is not possible for clients to publish messages to these topics. At the moment there is no
clear official standardization of topics that must be published by the broker. It is common practice
to use $SYS/ for all these information and a lot of brokers implement these, but in different formats.
One suggestion on $SYS-topics is in the MQTT GitHub wiki and here are some examples:

$SYS/broker/clients/connected
$SYS/broker/clients/disconnected
$SYS/broker/clients/total
$SYS/broker/messages/sent
$SYS/broker/uptime

Summary
So these were the basics about MQTT message topics. As you can see, MQTT topics are
dynamically and give great flexibility to its creator. But when using these in real world applications
there are some challenges you should be aware of. We collected our best practices, we learned the
last year with excessively using MQTT in various projects. We are open to other suggestions or a
discussion about these in the comments, so let us know your best practices or if you disagree with
one of our best practices!

Best practices

Don’t use a leading forward slash

It is allowed to use a leading forward slash in MQTT, for example
/myhome/groundfloor/livingroom. But that introduces a unnecessary topic level with a zero
character at the front. That should be avoided, because it doesn’t provide any benefit and often leads
to confusion.

https://github.com/mqtt/mqtt.github.io/wiki/SYS-Topics

Don’t use spaces in a topic

A space is the natural enemy of each programmer, they often make it much harder to read and
debug topics, when things are not going the way, they should be. So similar to the first one, only
because something is allowed doesn’t mean it should be used. UTF-8 knows many different white
space types, it’s pretty obvious that such uncommon characters should be avoided.

Keep the topic short and concise

Each topic will be included in every message it is used in, so you should think about making them
short and concise. When it comes to small devices, each byte counts and makes really a difference.

Use only ASCII characters, avoid non printable characters

Using non-ASCII UTF-8 character makes it really hard to find typos or issues related to the
character set, because often they can not be displayed correctly. Unless it is really necessary we
recommend avoid using non ASCII character in a topic.

Embed a unique identifier or the ClientId into the topic

In some cases it is very helpful, when the topic contains a unique identifier of the client the publish
is coming from. This helps identifying, who send the message. Another advantage is the
enforcement of authorization, so that only a client with the same ClientId as contained in the topic is
allowed to publish to that topic. So a client with the id client1 is allowed to publish to client1/status,
but not permitted to publish to client2/status.

Don’t subscribe to #

Sometimes it is necessary to subscribe to all messages, which are transferred over the broker, for
example when persisting all of them into a database. This should not be done by using a MQTT
client and subscribing to the multi level wildcard. The reason is that often the subscribing client
is not able to process the load of messages that is coming its way. Especially if you have a massive
throughput. Our recommended solution is to implement an extension in the MQTT broker, for
example the plugin system of HiveMQ allows you to hook into the behavior of HiveMQ and add a
asynchronous routine to process each incoming message and persist it to a database.

Don’t forget extensibility

Topics are a flexible concept and there is no need to preallocate them in any kind of way, regardless
both the publisher and subscriber need to be aware of the topic. So it is important to think about
how they can be extended in case you are adding new features to your product. For example when
your smart home solution is extended by some new sensors, it should be possible to add these to
your topic tree without changing the whole topic hierarchy.

Use specific topics, instead of general ones

When naming topics it is important not to use them like a queue, for example using only one topic
for all messages is a anti pattern. You should use as specific topics as possible. So if you have three
sensors in your living room, you should use topics myhome/livingroom/temperature,
myhome/livingroom/brightness and myhome/livingroom/humidity, instead of sending all values over

https://www.hivemq.com/documentations/getting-started-plugins/
http://www.cs.tut.fi/~jkorpela/chars/spaces.html
http://www.cs.tut.fi/~jkorpela/chars/spaces.html

myhome/livingroom. Also this enables you to use other MQTT features like retained messages,
which we cover in one of the next posts.

So that’s the end of part five in our MQTT Essentials series. We hope you enjoyed it. In the next
post we cover the often mention Quality of Service (QoS) in MQTT. We’ll explain why this is an
essential feature and how you can leverage it.

MQTT Essentials Part 6: Quality of Service 0, 1 & 2

Welcome to the sixth part of the MQTT Essentials, a blog series about the core features and
concepts in the MQTT protocol. In this post we’ll focus on the different Quality of Service levels
within MQTT. We already stumbled upon the term ‘quality of service’ a few times in some of the
previous posts, so now is the time to explain what’s behind it.

Quality of Service

What is Quality of Service?

The Quality of Service (QoS) level is an agreement between sender and receiver of a message
regarding the guarantees of delivering a message. There are 3 QoS levels in MQTT:

• At most once (0)

• At least once (1)

• Exactly once (2).

When talking about QoS there are always two different parts of delivering a message: publishing
client to broker and broker to subscribing client. We need to look at them separately since there are
subtle differences. The QoS level for publishing client to broker is depending on the QoS level the
client sets for the particular message. When the broker transfers a message to a subscribing client it
uses the QoS of the subscription made by the client earlier. That means, QoS guarantees can get
downgraded for a particular receiving client if subscribed with a lower QoS.

Why is Quality of Service important?

QoS is a major feature of MQTT, it makes communication in unreliable networks a lot easier
because the protocol handles retransmission and guarantees the delivery of the message, regardless
how unreliable the underlying transport is. Also it empowers a client to choose the QoS level
depending on its network reliability and application logic.

How does it work?

So how is the quality of service implemented in the MQTT protocol ? We will look at each level
one by one and explain the functionality.

QoS 0 – at most once

The minimal level is zero and it guarantees a best effort delivery. A message won’t be
acknowledged by the receiver or stored and redelivered by the sender. This is often called “fire and
forget” and provides the same guarantee as the underlying TCP protocol.

QoS 1 – at least once

When using QoS level 1, it is guaranteed that a message will be delivered at least once to the
receiver. But the message can also be delivered more than once.

The sender will store the message until it gets an acknowledgement in form of a PUBACK
command message from the receiver.

The association of PUBLISH and PUBACK is done by comparing the packet identifier in each
packet. If the PUBACK isn’t received in a reasonable amount of time the sender will resend the
PUBLISH message. If a receiver gets a message with QoS 1, it can process it immediately, for
example sending it to all subscribing clients in case of a broker and then replying with the
PUBACK.
The duplicate (DUP) flag, which is set in the case a PUBLISH is redelivered, is only for internal
purposes and won’t be processed by broker or client in the case of QoS 1. The receiver will send a
PUBACK regardless of the DUP flag.

QoS 2

The highest QoS is 2, it guarantees that each message is received only once by the counterpart. It is
the safest and also the slowest quality of service level. The guarantee is provided by two flows there
and back between sender and receiver.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718043

If a receiver gets a QoS 2 PUBLISH it will process the publish message accordingly and
acknowledge it to the sender with a PUBREC message.

The receiver will store a reference to the packet identifier until it has send the PUBCOMP. This is
important for avoid processing the message a second time. When the sender receives the PUBREC
it can safely discard the initial publish, because it knows that the counter part has successfully
received the message. It will store the PUBREC and respond with a PUBREL.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718053
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718048

After the receiver gets the PUBREL it can discard every stored state and answer with a PUBCOMP.
The same is true when the sender receives the PUBCOMP.

When the flow is completed both parties can be sure that the message has been delivered and the
sender also knows about it.

Whenever a packet gets lost on the way, the sender is responsible for resending the last message
after a reasonable amount of time. This is true when the sender is a MQTT client and also when a
MQTT broker sends a message. The receiver has the responsibility to respond to each command
message accordingly.

Good to know

There are a few things you should have in mind when using QoS. These are not obvious or clear on
first sight.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718058

Downgrade of QoS

As already said, the QoS flows between a publishing and subscribing client are two different things
as well as the QoS can be different. That means the QoS level can be different from client A, who
publishes a message, and client B, who receives the published message. Between the sender and the
broker the QoS is defined by the sender. When the broker sends out the message to all subscribers,
the QoS of the subscription from client B is used. If client B has subscribed to the broker with QoS
1 and client A sends a QoS 2 message, it will be received by client B with QoS 1. And of course it
could be delivered more than once to client B, because QoS 1 only guarantees to deliver the
message at least once.

Packet identifiers are unique per client

Also important to know is that each packet identifier (used for QoS 1 and QoS 2) is unique between
one client and a broker and not between all clients. If a flow is completed the same packet identifier
can be reused anytime. That’s also the reason why the packet identifier doesn’t need to be bigger
than 65535, because it is unrealistic that a client sends a such large number of message, without
completing the flow.

Best Practice

We are often asked, when to choose which QoS level. The following should provide you some
guidance if you are also confronted with this decision. Often this is heavily depending on your use
case.

Use QoS 0 when …

• You have a complete or almost stable connection between sender and receiver. A classic use

case is when connecting a test client or a front end application to a MQTT broker over a
wired connection.

• You don’t care if one or more messages are lost once a while. That is sometimes the case if

the data is not that important or will be send at short intervals, where it is okay that messages
might get lost.

• You don’t need any message queuing. Messages are only queued for disconnected clients if

they have QoS 1 or 2 and a persistent session.

Use QoS 1 when …

• You need to get every message and your use case can handle duplicates. The most often used

QoS is level 1, because it guarantees the message arrives at least once. Of course your
application must be tolerating duplicates and process them accordingly.

• You can’t bear the overhead of QoS 2. Of course QoS 1 is a lot faster in delivering messages

without the guarantee of level 2.

Use QoS 2 when …

• It is critical to your application to receive all messages exactly once. This is often the case if

a duplicate delivery would do harm to application users or subscribing clients. You should be
aware of the overhead and that it takes a bit longer to complete the QoS 2 flow.

https://www.hivemq.com/mqtt-essentials-part-7-persistent-session-queuing-messages/

Queuing of QoS 1 and 2 messages

All messages sent with QoS 1 and 2 will also be queued for offline clients, until they are available
again. But queuing is only happening, if the client has a persistent session.

So that’s the end of part six in our MQTT Essentials series. We hope you enjoyed it. In the next post
we’ll cover persistent sessions in MQTT, which are tied up closely with Quality of Service levels.

https://www.hivemq.com/mqtt-essentials-part-7-persistent-session-queuing-messages/

MQTT Essentials Part 7: Persistent Session and Queuing
Messages

Welcome to the seventh part of the MQTT Essentials, a blog series about the core features and
concepts in the MQTT protocol. In this post we talk about persistent sessions and message queueing
in MQTT. Although MQTT is not a message queue per se, it is possible to queue messages for
clients.

Persistent Session
When a client connects to a MQTT broker, it needs to create subscriptions for all topics that it is
interested in in order to receive messages from the broker. On a reconnect these topics are lost and
the client needs to subscribe again. This is the normal behavior with no persistent session. But for
constrained clients with limited resources it would be a burden to subscribe again each time they
lose the connection. So a persistent session saves all information relevant for the client on the
broker. The session is identified by the clientId provided by the client on connection establishment
(more details).

So what will be stored in the session?

• Existence of a session, even if there are no subscriptions

• All subscriptions

• All messages in a Quality of Service (QoS) 1 or 2 flow, which are not confirmed by the

client
• All new QoS 1 or 2 messages, which the client missed while it was offlne

• All received QoS 2 messages, which are not yet confirmed to the client

That means even if the client is offline all the above will be stored by the broker and are available
right after the client reconnects.

https://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/mqtt-essentials-part2-publish-subscribe/

How to start/end a persistent session?

A persistent session can be requested by the client on connection establishment with the broker. The
client can control, if the broker stores the session using the cleanSession flag (see MQTT Essentials
part 3 for more information on the connection establishment between client and broker). If the clean
session is set to true then the client does not have a persistent session and all information are lost
when the client disconnects for any reason. When clean session is set to false, a persistent session is
created and it will be preserved until the client requests a clean session again. If there is already a
session available then it is used and queued messages will be delivered to the client if available.

How does the client know if there is already a session stored?

Since MQTT 3.1.1, the CONNACK message from the broker contains the session present flag,
which indicates to the client if there is a session available on the broker. For detailed information on
the connection establishment see part 3 of the MQTT Essentials.

Persistent session on the client side

Similar to the broker, each MQTT client must store a persistent session too. So when a client
requests the server to hold session data, it also has the responsibility to hold some information by
itself:

• All messages in a QoS 1 or 2 flow, which are not confirmed by the broker

• All received QoS 2 messages, which are not yet confirmed to the broker

Best practices
When you should use a persistent session and when a clean session?

Persistent Session

• A client must get all messages from a certain topic, even if it is offline. The broker should

queue the messages for the client and deliver them as soon as the client is online again.

• A client has limited resources and the broker should hold its subscription, so the

communication can be restored quickly after it got interrupted.

• The client should resume all QoS 1 and 2 publish messages after a reconnect.

Clean session

• A client is not subscribing, but only publishing messages to topics. It doesn’t need any

session information to be stored on the broker and publishing messages with QoS 1 and 2
should not be retried.

• A client should explicitly not get messages for the time it is offline.

How long are messages stored on the broker ?

A often asked question is how long is a session stored on the broker. The easy answer is until the
clients comes back online and receives the message. But what happens if a client does not come

https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/

online for a long time? The constraint for storing messages is often the memory limit of the
operating system. There is no standard way on what to do in this scenario. It totally depends on the
use case. In HiveMQ we will provide a possibility to manipulate queued message and purge them.

So that’s the end of part seven in our MQTT Essentials series. We hope you enjoyed it. In the next
post we’ll cover Retained Messages. If you already tried out MQTT, you surely noticed the retained
flag, when sending a message. Next week we’ll cover what Retained Messages are and how they
work.

MQTT Essentials Part 8: Retained Messages

Welcome to the eighth part of the MQTT Essentials, a blog series about the core features and
concepts in the MQTT protocol. In this post we will introduce retained messages.

When publishing MQTT messages, a publishing client has no guarantee that a message is actually
received by a subscribing client. It can only make sure its message gets delivered safely to the
broker. The same is true for a subscribing client. If a client is connecting and subscribing to topics it
is interested in, there is no guarantee when the subscriber will get the first message, because this
totally depends on a publisher on that topic. It can take a few seconds, minutes or hours until the
publisher sends a new message on that topic. Until then the subscribing client is totally in the dark
about the current status. This is where retained messages come into play.

Retained Messages
A retained message is a normal MQTT message with the retained flag set to true. The broker
will store the last retained message and the corresponding QoS for that topic Each client that
subscribes to a topic pattern, which matches the topic of the retained message, will receive the
message immediately after subscribing. For each topic only one retained message will be stored by
the broker.

The subscribing client doesn’t have to match the exact topic, it will also receive a retained message
if it subscribes to a topic pattern including wildcards. For example client A publishes a retained
message to myhome/livingroom/temperature and client B subscribes to myhome/# later on, client B
will receive this retained message directly after subscribing. Also the subscribing client can identify
if a received message was a retained message or not, because the broker sends out retained
messages with the retained flag still set to true. A client can then decide on how to process the
message.

So retained messages can help newly subscribed clients to get a status update immediately
after subscribing to a topic and don’t have to wait until a publishing clients send the next
update.

In other words a retained message on a topic is the last known good value, because it doesn’t have
to be the last value, but it certainly is the last message with the retained flag set to true.

It is important to understand that a retained message has nothing to do with a persistent session of
any client, which we covered in the last episode. Once a retained message is stored by the broker,
the only way to remove it is explained below.

Send a retained message

Sending a retained message from the perspective of a developer is quite simple and straight-
forward. You just need to set the retained flag of a MQTT publish message to true. Each client
library typically provides an easy way to do that.

Delete a retained message

There is also a very simple way for deleting a retained message on a topic: Just send a retained
message with a zero byte payload on that topic where the previous retained message should be
deleted. The broker deletes the retained message and all new subscribers won’t get a retained
message for that topic anymore. Often deleting is not necessary, because each new retained message
will overwrite the last one.

Why and when you should use Retained Messages ?
A retained message makes sense, when newly connected subscribers should receive messages
immediately and shouldn’t have to wait until a publishing client sends the next message. This
is extremely helpful when for status updates of components or devices on individual topics. For
example the status of device1 is on the topic myhome/devices/device1/status, a new subscriber to
the topic will get the status (online/offline) of the device immediately after subscribing when
retained messages are used. The same is true for clients, which send data in intervals, temperature,
GPS coordinates and other data. Without retained messages new subscribers are kept in the
dark between publish intervals. So using retained messages helps to provide the last good value
to a connecting client immediately.

So that’s the end of part eight in our MQTT Essentials series. We hope you enjoyed it. In the next
post we’ll cover a feature called Last Will and Testament. It makes it possible to send a last
message, when a client is disconnected abruptly.

https://www.hivemq.com/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe/
https://www.hivemq.com/mqtt-essentials-part-7-persistent-session-queuing-messages/
https://www.hivemq.com/mqtt-essentials-part-7-persistent-session-queuing-messages/

MQTT Essentials Part 9: Last Will and Testament

Welcome to the ninth part of the MQTT Essentials, a blog series about the core features and
concepts in the MQTT protocol. In this post we will cover the Last Will and Testament feature of
MQTT.

MQTT is often used in scenarios were unreliable networks are very common. Therefore it is
assumed that some clients will disconnect ungracefully from time to time, because they lost the
connection, the battery is empty or any other imaginable case. Therefore it would be good to know,
if a connected client has disconnected gracefully (which means with a MQTT DISCONNECT
message) or not, in order to take appropriate action. The Last Will and Testament feature provides a
way for clients to do exactly that.

Last Will and Testament
The Last Will and Testament (LWT) feature is used in MQTT to notify other clients about an
ungracefully disconnected client. Each client can specify its last will message (a normal MQTT
message with topic, retained flag, QoS and payload) when connecting to a broker. The broker will
store the message until it detects that the client has disconnected ungracefully. If the client
disconnect abruptly, the broker sends the message to all subscribed clients on the topic, which was
specified in the last will message. The stored LWT message will be discarded if a client disconnects
gracefully by sending a DISCONNECT message.

LWT helps to implement strategies when the connection of a client drops or at least to inform other
clients about the offline status.

How to specify a LWT message for a client?

The LWT message can be specified by each client as part of the CONNECT message, which serves
as connection initiation between client and broker.

More details about establishing a connection between client and broker can be found in part 3 of the
MQTT Essentials series.

When will a broker send the LWT message?

According to the MQTT 3.1.1 specification the broker will distribute the LWT of a client in the
following cases:

• An I/O error or network failure is detected by the server.

• The client fails to communicate within the Keep Alive time.

• The client closes the network connection without sending a DISCONNECT packet first.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/

• The server closes the network connection because of a protocol error.

We will hear more about the Keep Alive time in the next post.

Best Practices – When should you use LWT?

LWT is ideal for notifying other interested clients about the connection loss. In real world scenarios
LWT is often used together with retained messages, in order to store the state of a client on a
specific topic. For example after a client has connected to a broker, it will send a retained message
to the topic client1/status with the payload “online“. When connecting to the broker, the client sets
the LWT message on the same topic to the payload “offline” and marks this LWT message as a
retained message. If the client now disconnects ungracefully, the broker will publish the retained
message with the content “offline“. This pattern allows for other clients to observe the status of the
client on a single topic and due to the retained message even newly connected client now
immediately the current status.

So that’s the end of part nine in our MQTT Essentials series. We hope you enjoyed it. In the next
and last post we’ll cover the MQTT heartbeat mechanism and how the broker knows a client is
online or offline.

https://www.hivemq.com/mqtt-essentials-part-10-alive-client-take-over/
https://www.hivemq.com/mqtt-essentials-part-10-alive-client-take-over/
https://www.hivemq.com/blog/www.hivemq.com/mqtt-essentials-part-8-retained-messages/
https://www.hivemq.com/mqtt-essentials-part-10-alive-client-take-over/

MQTT Essentials Part 10: Keep Alive and Client Take-Over

Welcome to the tenth part of the MQTT Essentials, a blog series about the core features and
concepts in the MQTT protocol. In this post we will cover the Keep Alive feature of MQTT and
why it is especially important for mobile networks.

Problem of half-open TCP connections
As we already know MQTT is based on TCP and that includes a certain guarantee that packets over
the internet are transferred “reliable, ordered and error-checked”. Nevertheless it can happen that
one of the communicating parties gets out of sync with the other, often due to a crash of one side or
because of transmission errors. This state is called a half-open connection. The important point is
that the still functioning end is not notified about the failure of the other side and is still trying to
send messages and wait for acknowledgements.

The problems with half-open connection increase in mobile networks as the following citation from
Andy Stanford-Clark, inventor of the MQTT protocol, explains:

Although TCP/IP in theory notifies you when a socket breaks, in practice, particularly
on things like mobile and satellite links, which often “fake” TCP over the air and put
headers back on at each end, it’s quite possible for a TCP session to “black hole”, i.e. it
appears to be open still, but in fact is just dumping anything you write to it onto the
floor.

Andy Stanford-Clark on the topic “Why is the keep-alive needed?“ (Source)

MQTT Keep Alive
In order to work around this issue of half-open connection or at least give a possibility to access if
the connection is still open, MQTT provides the keep alive functionality.

The keep alive functionality assures that the connection is still open and both broker and
client are connected to one another. Therefore the client specifies a time interval in seconds and

https://groups.google.com/forum/#!msg/mqtt/zRqd8JbY4oM/XrMwlQ5TU0EJ
http://en.wikipedia.org/wiki/TCP_half-open
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.hivemq.com/mqtt-essentials-part-3-client-broker-connection-establishment/

communicates it to the broker during the establishment of the connection. The interval is the longest
possible period of time, which broker and client can endure without sending a message.

The MQTT specification says the following:

It is the responsibility of the Client to ensure that the interval between Control Packets
being sent does not exceed the Keep Alive value. In the absence of sending any other
Control Packets, the Client MUST send a PINGREQ Packet.

That means as long as messages are exchanged frequently and the keep alive interval is not
exceeded, there is no need to send an extra message to ensure that the connection is still open.

But if the client doesn’t send any messages during the period of the keep alive it must send a
PINGREQ packet to the broker to confirm its availability and also make sure the broker is still
available.

The broker must disconnect a client, which doesn’t send PINGREQ or any other message in
one and a half times of the keep alive interval. Likewise should the client close the connection if
the response from the broker isn’t received in a reasonable amount of time.

Keep Alive Flow

Let’s have a look at the keep alive messages in detail. There are two messages involved in the keep
alive functionality.

PINGREQ

The PINGREQ is sent by the client and indicates to the broker that the client is still alive, even if it
hasn’t send any other packets (PUBLISH, SUBSCRIBE, etc..). The client can send a PINGREQ at
any time to make sure the network connection is still alive. The PINGREQ packet doesn’t have any
payload.

PINGRESP

When receiving a PINGREQ the broker must reply with a PINGRESP packet to indicate its
availability to the client. Similar to the PINGREQ the packet doesn’t contain any payload.

Good to Know

• If the broker doesn’t receive a PINGREQ or any other packet from a particular client, it will

close the connection and send out the last will and testament message (if the client had
specified one).

• The MQTT client is responsible of setting the right keep alive value. For example, it can

adapt the interval to its current signal strength.
• The maximum keep alive is 18h 12min 15 sec.

• If the keep alive interval is set to 0, the keep alive mechanism is deactivated.

Client Take-Over
A disconnected client will most likely try to connect again. It could be the case that the broker still
has an half-open connection for the same client. In this scenario the MQTT will perform a so-called
client take-over. The broker will close the previous connection to the same client (determined
by the same client identifier) and establishes the connection with the newly connected client.
This behavior makes sure that half-open connection won’t stand in the way of a new connection
establishment of the same client.

So that’s the end of part ten in our MQTT Essentials series. We hope you enjoyed the whole series.
This was the last official post, but we have planned a MQTT Essential Special for next week, which
will be about MQTT over Websockets. And we have already a lot of great ideas for topics we will
cover in the future, so stay tuned for more helpful content about MQTT and HiveMQ

https://www.hivemq.com/mqtt-essentials-part-9-last-will-and-testament/

	MQTT Essentials: Part 1 – Introducing MQTT
	Announcing the MQTT Monday!
	MQTT Essentials: Why and what we are going to cover?
	Introducing MQTT
	A little bit of history
	OASIS Standard and current version

	MQTT Essentials Part 2: Publish & Subscribe
	The publish/subscribe pattern
	Scalability
	Message Filtering
	Option 1: Subject-based filtering
	Option 2: Content-based filtering
	Option 3: Type-based filtering

	MQTT
	Distinction from Message Queues

	MQTT Essentials Part 3: Client, Broker and Connection Establishment
	Introduction
	Client
	Broker

	MQTT Connection
	MQTT connection through a NAT
	Client initiates connection with the CONNECT message
	ClientId
	Clean Session
	Username/Password
	Will Message
	KeepAlive

	Broker responds with the CONNACK message
	Session Present flag
	Connect acknowledge flag

	Loose ends

	MQTT Essentials Part 4: MQTT Publish, Subscribe & Unsubscribe
	Publish
	Subscribe
	Suback
	Unsubscribe
	Unsuback

	MQTT Essentials Part 5: MQTT Topics & Best Practices
	Topics
	Wildcards
	Single Level: +
	Multi Level: #

	Topics beginning with $
	Summary
	Best practices
	Don’t use a leading forward slash
	Don’t use spaces in a topic
	Keep the topic short and concise
	Use only ASCII characters, avoid non printable characters
	Embed a unique identifier or the ClientId into the topic
	Don’t subscribe to #
	Don’t forget extensibility
	Use specific topics, instead of general ones

	MQTT Essentials Part 6: Quality of Service 0, 1 & 2
	Quality of Service
	What is Quality of Service?
	Why is Quality of Service important?
	How does it work?
	QoS 0 – at most once
	QoS 1 – at least once
	QoS 2

	Good to know
	Downgrade of QoS
	Packet identifiers are unique per client

	Best Practice
	Use QoS 0 when …
	Use QoS 1 when …
	Use QoS 2 when …

	Queuing of QoS 1 and 2 messages

	MQTT Essentials Part 7: Persistent Session and Queuing Messages
	Persistent Session
	So what will be stored in the session?
	How to start/end a persistent session?
	How does the client know if there is already a session stored?
	Persistent session on the client side

	Best practices
	Persistent Session
	Clean session
	How long are messages stored on the broker ?

	MQTT Essentials Part 8: Retained Messages
	Retained Messages
	Send a retained message
	Delete a retained message

	Why and when you should use Retained Messages ?

	MQTT Essentials Part 9: Last Will and Testament
	Last Will and Testament
	How to specify a LWT message for a client?
	When will a broker send the LWT message?
	Best Practices – When should you use LWT?

	MQTT Essentials Part 10: Keep Alive and Client Take-Over
	Problem of half-open TCP connections
	MQTT Keep Alive
	Keep Alive Flow
	PINGREQ
	PINGRESP

	Good to Know

	Client Take-Over

