Esame di Matematica del Continuo – 19/01/2010

1. ABILITÀ DI CALCOLO – TEMPO 2 ORE SOGLIA AMMISSIONE ORALE: 9 PUNTI

Esercizio 1 (2 punti) Determinare la forma algebrica delle soluzioni complesse dell'equazione $iz^3 = 8$.

Esercizio 2 (2 punti) Stabilire per quali valori del parametro reale α risulta $n2^{-\alpha n}=O(n^2)$ quando $n\to +\infty.$

Esercizio 3 (3 punti) Determinare gli estremi relativi ed assoluti della funzione $f(x) = (x^2 - 1)e^x$

Esercizio 4 (3 punti) Determinare lo sviluppo asintotico per $n \to +\infty$ della successione $a_n = \frac{1}{2n+n^3}$ in potenze di 1/n ed all'ordine $o(n^{-7})$.

Esercizio 5 (4 punti) Usando il confronto integrale, determinare la rapidità di divergenza della serie $\sum_{n=1}^{\infty}\frac{1}{n+\sqrt{n}}$

Esercizio 6 (4 punti) Usando le funzioni generatrici, risolvere l'equazione di ricorrenza

$$\left\{ \begin{array}{ll} a_{n+1} = -a_n + 2^n & (n \ge 0) \\ a_0 = 0 \end{array} \right.$$

precisando il comportamento asintotico della soluzione.

Esame di Matematica del Continuo - 19/01/2010

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (3 punti) Definire l'insieme A^* dei maggioranti di un sottoinsieme A dei reali. Quindi, utilizzando solo la definizione, stabilire se $8 \in \left\{ \frac{x}{1+\sqrt{x}} : x \geq 0 \right\}^*$.

Argomento 2 (3 punti) Data una successione a_n , definire cosa significa $a_n \to 0$. Quindi, utilizzando solo la definizione, verificare che $\frac{n}{n^2+1} \to 0$.

Argomento 3 (2 punti) Dare la definizione di derivata di una funzione f(x) in un suo punto. Quindi, utilizzando solo la definizione (niente regole di derivazione!), calcolare la derivata della funzione $f(x) = 1/x^2$ nel punto x = 1.

Argomento 4 (2 punti) Dopo aver introdotto la nozione di serie, dando la definizione corrispondente alla scrittura $\sum_{n=0}^{+\infty} a_n$, fornire un controesempio alla seguente affermazione: se una serie non è convergente allora è divergente.

Argomento 5 (2 punti) Stabilire se l'uguaglianza $\sum_{k=0}^{n}a_{2n-k}=\sum_{k=0}^{2n}a_k-\sum_{k=1}^{n}a_{k-1}$ vale indipendentemente dalla scelta della successione a_n .

Esame di Matematica del Continuo – 02/02/2010

1. ABILITÀ DI CALCOLO – TEMPO 2 ORE SOGLIA AMMISSIONE ORALE: 9 PUNTI

Esercizio 1 (2 punti) Decomporre il polinomio $x^4 + 4$ in fattori irriducibili reali.

Esercizio 2 (3 punti) Calcolare lo sviluppo di Taylor in x = 0 dell'espressione $\frac{1+x+O(x^2)}{1-x+x^2}$ al più alto ordine consentito dalla presenza del termine $O(x^2)$.

Esercizio 3 (4 punti) Tracciare un grafico qualitativo (a meno della concavità) della funzione $f(x)=\frac{x}{x^2-8x+12}$ precisando gli eventuali estremi relativi ed assoluti.

Esercizio 4 (2 punti) Calcolare $\int \frac{dx}{x^2 + x^4}$.

Esercizio 5 (2 punti) Stabilire il carattere della serie $\sum_{n=0}^{\infty} \frac{n! \, 2^n}{n^n}.$

Esercizio 6 (5 punti) Usando le funzioni generatrici, risolvere l'equazione di ricorrenza

$$\begin{cases} a_{n+2} = a_n + 4 & n \ge 0 \\ a_0 = 1 & a_1 = 3 \end{cases}$$

e precisare il comportamento asintotico della soluzione.

Esame di Matematica del Continuo – 02/02/2010

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente alla scrittura $a_n = \Theta(b_n)$ per $n \to +\infty$. Quindi, utilizzando solo la definizione, stabilire se $2n(3 - \cos n) = \Theta(n)$.

Argomento 2 (3 punti) Dare la definizione corrispondente alla scrittura inf A=1 per un generico e non vuoto $A\subset\mathbb{R}$. Quindi, utilizzando solo la definizione, dimostrare che

$$\inf\left\{\frac{x+2}{x+1} : x \in \mathbb{R}, \ x \ge 10\right\} = 1$$

Argomento 3 (3 punti) Dopo aver dato la definizione di punto di minimo relativo per una funzione $\mathbb{R} \to \mathbb{R}$, fornire un esempio di polinomio P(x) che:

- abbia un punto di minimo relativo in x=0
- soddisfi la condizione $P(x) \sim -x^4$ per $x \to +\infty$

Argomento 4 (2 punti) Definire $\sum_{n=0}^{+\infty} a_n$ ed illustrare, in tale contesto, le conseguenze dell'ipotesi: $a_n \geq 0$ per ogni $n \geq 27$.

Argomento 5 (2 punti) Definire e calcolare l'integrale improprio $\int_0^1 \ln x \, dx$.

- $\boxed{\mathbf{2}} \quad \text{Sviluppare} \quad \left(2\sqrt{x} + \frac{1}{x}\right)^3$
- 3 Calcolare il minimo comunue multiplo tra i numeri 8, 10 e 12
- 4 Stabilire il prezzo iniziale di un capo che, dopo un sconto del 15%, viene venduto a 51 euro
- 5 Stabilire se l'equazione x |x| = 1 ammetta o meno soluzioni
- **6** Risolvere l'equazione $2^x 3^{x+1} = 4/3$
- 7 Risolvere la disequazione x(x-1)(x-2) < 0
- 8 Risolvere la disequazione $\log_2(x^2) + \log_{1/2}(x) > 2$
- $\boxed{\mathbf{9}} \quad \text{Risolvere la disequazione} \quad \sqrt{x} > x 2$
- **10** Tracciare il grafico di y = |x 1| e posizionare il punto P = (-1, 2) rispetto al grafico

Esame di Matematica del Continuo – 24/01/2017

1. ABILITÀ DI CALCOLO – TEMPO 2 ORE SOGLIA AMMISSIONE ORALE: 9 PUNTI

Esercizio 1 (4 punti) Decomporre il polinomio $(x+2)^3+1$ in fattori irriducibili in campo reale

Esercizio 2 (3 punti) Calcolare
$$\int_0^1 \frac{x}{4x^2 - 4x + 5} dx$$

Esercizio 3 (2 punti) Sviluppare la funzione $f(x) = \sqrt{1 + 2x^2 - x^3}$ in x = 0 e con una precisione $o(x^7)$

Esercizio 4 (2 punti) Stabilire per quali $\alpha \in \mathbb{R}$ sia abbia: $e^x \geq 2x + \alpha$ per ogni $x \in \mathbb{R}$

Esercizio 5 (3 punti) Usando il confronto integrale, stimare la rapidità di divergenza della serie $\sum_{k=1}^{\infty} k\sqrt{k}$

Esercizio 6 (4 punti) Usare il metodo delle funzioni generatrici per risolvere l'equazione di ricorrenza:

$$\begin{cases} a_{n+2} = 2a_{n+1} - a_n + 1 & (n \ge 0) \\ a_0 = 0 & a_1 = 1 \end{cases}$$

Esame di Matematica del Continuo – 24/01/2017

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n \to 1^-$ e quindi utilizzarla per dimostrare che:

$$\frac{n}{n+4} \to 1^-$$

Argomento 2 (2 punti) Stabilire se esistano o meno delle successioni a_n positive, contemporaneamente soddisfacenti le due seguenti condizioni:

$$a_n = O(2^n) a_n - 2^n \to +\infty$$

Argomento 3 (2 punti) Nell'ambito delle successioni dimostrare che:

$$\begin{cases} a_n \sim b_n \\ b_n \to +\infty \end{cases} \Rightarrow \ln(a_n) \sim \ln(b_n)$$

Argomento 4 (2 punti) Definire e calcolare $\int_0^{+\infty} x e^{-x} dx$

Argomento 5 (2 punti) Usando delle opportune serie geometriche, trovare una frazione che generi $0, \overline{37}$

Argomento 6 (2 punti) Determinare un'equazione di ricorrenza per il numero di stringhe binarie di lunghezza n che non hanno zeri consecutivi

- **2** Ricavare x in funzione di y dall'espressione $y + 3^{xy} = 1$
- 3 Aumentando del 50% il lato di un quadrato, l'area aumenta di più o meno del 100%?
- $\boxed{\mathbf{4}} \quad \text{Calcolare} \quad \log_{1/2} \left(\frac{\sqrt[4]{4}}{8} \right)$
- $\boxed{\mathbf{5}} \quad \text{Risolvere l'equazione} \quad 2^x + 2^{x+1} = 1$
- **6** Risolvere l'equazione $\sqrt{1-x^2} = x$
- $\boxed{7}$ Risolvere la disequazione $2x^3 < x$
- 8 Risolvere la disequazione $\log_2(x^2 + x) 1 < 0$
- $\boxed{\mathbf{9}} \quad \text{Risolvere la disequazione} \quad \sqrt[3]{2+x} + 1 > 0$
- $\fbox{\bf 10}$ Dati nel piano gli insiemi $A=\{(x,y):\ y\geq x^2-2\}$ e $B=\{(x,y):\ y\leq x\},$ disegnare l'insieme $A\cap B$ e calcolarne i vertici

Esame di Matematica del Continuo – 07/02/2017

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (3 punti) Tracciare il grafico qualitativo della funzione $f(x) = \frac{2x+3}{x^2+x-2}$ precisando gli eventuali estremi relativi ed assoluti

Esercizio 2 (3 punti) Determinare la forma algebrica delle soluzioni complesse dell'equazione $iz^4\overline{z}+1=0$

Esercizio 3 (3 punti) Determinare lo sviluppo asintotico, per $x \to +\infty$ e con la miglior precisione possibile, dell'espressione:

$$\frac{1}{x^4 - x^2 + 2x + 1 + o(1)}$$

Esercizio 4 (3 punti) Calcolare $\int_0^1 \frac{1}{x+2\sqrt{x+3}} \, dx$

Esercizio 5 (3 punti) Usando il confronto integrale, stimare per difetto e per eccesso la successione $c_n = \sum_{k=n}^{n^2} \frac{1}{k}$ ed utilizzare tali stime per calcolare il limite di c_n e la velocità di approssimazione del limite

Esercizio 6 (3 punti) Detta f(x) la funzione generatrice della successione a_n ($n \ge 0$), determinare la funzione generatrice della successione:

$$b_n = 1 + n \sum_{k=0}^{n} k a_k$$

Esame di Matematica del Continuo – 07/02/2017

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Dare la definizione corrispondente a sup $A = +\infty$ e stabilire (senza utilizzare il calcolo dei limiti) se tale definizione sia o meno soddisfatta quando:

$$A = \left\{ \frac{2}{x-1} : x > 1 \right\}$$

Argomento 2 (2 punti) Determinare un polinomio a coefficienti reali (e non identicamente nullo) tale che:

$$P(1+i) = P(i-2) = 0$$

Argomento 3 (2 punti) Nell'ambito delle successioni, stabilire se la seguente proposizione sia vera oppure falsa, dimostrandola se vera o trovando un controsempio se falsa: "se $a_n = o(n \ln n)$ allora $a_n = O(n)$ "

Argomento 4 (2 punti) Dopo aver dato la definizione di derivata di una funzione f(x) un punto x_0 , utilizzare tale definizione per calcolare (senza usare regole di derivazione) la derivata f'(1) quando:

$$f(x) = \frac{x}{x^2 + 1}$$

Argomento 5 (2 punti) Determinare un'equazione di ricorrenza per il numero di stringhe ternarie di lunghezza n che contengono un numero pari di zeri

Argomento 6 (2 punti) Dimostrare che per ogni $n \in \mathbb{N}$ vale:

$$\sum_{k=0}^{n} x^{k} = \begin{cases} n+1 & x=1\\ \frac{x^{n+1}-1}{x-1} & x \neq 1 \end{cases}$$

e dedurre da tale formula il carattere della serie geometrica di ragione x

Esame di Matematica del Continuo -06/02/2018

- 2 Mettere in ordine crescente i seguenti numeri: $1 \frac{\sqrt{3}}{2} \frac{\sqrt{7}}{3}$
- 3 Al prezzo di vendita di un capo viene prima applicato uno sconto del 50% e poi un sconto ulteriore del 25% al prezzo rimanente. A quanto ammonta la percentuale di sconto complessiva?
- $\boxed{\mathbf{4}} \quad \text{Calcolare} \quad \log_{1/3} \left(\frac{\sqrt[5]{27}}{3} \right)$
- **5** Risolvere l'equazione $2^x + 2^{x+1} = 3$
- **6** Risolvere la disequazione 2x < x
- $\boxed{\textbf{7}} \quad \text{Risolvere la disequazione} \quad \sqrt{1-x^2} < x$
- 8 Risolvere la disequazione $\log_2(x) + 2\log_2(\sqrt{x}) < 8$
- $\boxed{\mathbf{10}} \quad \text{Disegnare il grafico della funzione } y = 2^{-|x|} \text{ e posizionare il punto } P = \left(1, \frac{2}{3}\right) \quad \text{rispetto a tale grafico}$

Esame di Matematica del Continuo – 06/02/2018

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (3 punti) Utilizzando il confronto integrale, stimare la velocità di convergenza della serie:

$$\sum_{k=1}^{+\infty} ke^{-k}$$

Esercizio 2 (3 punti) Tramite la forma trigonometrica, determinare la forma algebrica delle soluzioni complesse dell'equazione:

$$iz^4 + \frac{1}{\overline{z}} = 0$$

Esercizio 3 (3 punti) Determinare il numero esatto delle soluzioni dell'equazione:

$$\ln(x+1) = \arctan x$$

Esercizio 4 (4 punti) Calcolare $\int \frac{x-1}{9x^2+6x+10} dx$

Esercizio 5 (2 punti) Determinare lo sviluppo asintotico per $x \to 0$ dell'espressione $\frac{1}{1 - x^2 + 2x^3 + x^4 + O(x^5)}$ al massimo ordine consentito dall'imprecisione ivi presente

Esercizio 6 (3 punti) Usare il metodo delle funzioni generatrici per risolvere l'equazione di ricorrenza:

$$\begin{cases} a_{n+1} = 1 + \sum_{k=0}^{n} 2^k a_{n-k} & (n \ge 0) \\ a_0 = 1 & \end{cases}$$

e determinare il comportamento asintotico della soluzione

Esame di Matematica del Continuo – 06/02/2018

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Dare la definizione corrispondente ad $\inf A = 0$ e stabilire (senza utilizzare il calcolo dei limiti) se tale definizione sia o meno soddisfatta quando:

$$A = \left\{ \frac{2n}{n^2 - 10} : n \in \mathbb{N}, n \ge 4 \right\}$$

Argomento 2 (2 punti) Determinare un polinomio P(x) non identicamente nullo a coefficienti reali tale che:

$$P(1-i) = P(i) = 0$$

Argomento 3 (2 punti) Stabilire se esistano o meno successioni che soddisfino contemporaneamente le seguenti condizioni:

$$a_n \sim \sqrt{n}$$
 $a_n - \sqrt{n} \sim n$

Argomento 4 (2 punti) Dare la definizione corrispondente ad $a_n = \Theta(b_n)$ ed utilizzarla per stabilire se:

$$(-3)^n + 3^{n+1} = \Theta(3^n)$$

Argomento 5 (2 punti) Determinare un'equazione di ricorrenza per il numero di stringhe binarie di lunghezza n che non contengano due o più zeri consecutivi

Argomento 6 (2 punti) Dare la definizione di somma della serie numerica:

$$\sum_{n=0}^{+\infty} a_n$$

e dimostrare che, se converge assolutamente, allora converge anche la serie:

$$\sum_{n=0}^{+\infty} (a_n)^2$$

Esame di Matematica del Continuo – 12/06/2018

0. Verifica prerequisiti – tempo 30 minuti soglia ammissione scritto: 8 risposte corrette

$$\boxed{\mathbf{1}} \quad \text{Dato l'insieme } T = \left\{ (x,y): \quad x + |y| > 1, \ x^2 - x < 1 \right\} \text{ stabilire se} \quad \left(\frac{1}{2},\frac{1}{3}\right) \in T$$

2 Mettere in ordine decrescente i seguenti numeri:
$$1 \frac{\sqrt{2}}{3} \frac{\sqrt{7}}{8}$$

3 Trovare il massimo comun divisore tra 225, 125 e 60.

$$\boxed{\mathbf{4}} \quad \text{Calcolare} \quad \log_{1/5} \left(\frac{\sqrt[3]{25}}{5} \right)$$

5 Risolvere l'equazione
$$(3^x)^2 + 2 \cdot 9^x = 1$$

$$\boxed{\mathbf{6}} \quad \text{Risolvere la disequazione} \quad \frac{1}{x} + \frac{1}{x+2} \ < \ 1$$

$$7$$
 Risolvere la disequazione $\sqrt[3]{x^2 - 1} < 2$

8 Risolvere la disequazione
$$\log_{\sqrt{3}} x + 5\log_3 x < 2$$

$$\boxed{\textbf{10}} \quad \text{Disegnare il grafico della funzione } y = |x^2 - 2x| + 2 \text{ e posizionare il punto } P = \left(1, \frac{1}{3}\right) \quad \text{rispetto a tale grafico}$$

Esame di Matematica del Continuo – 12/06/2018

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (3 punti) Usando il criterio del rapporto o quello della radice (eventualmente preceduto da opportuni confronti asintotici) stabilire il carattere della seguente serie e stimare la rapidità di approssimazione della relativa somma:

$$\sum_{k=0}^{\infty} \frac{2^k + k!}{2^{k^2} + (k!)^2}$$

Esercizio 2 (3 punti) Sapendo che che il polinomio $P(x) = x^4 + x^3 + 5x^2 + 4x + 4$ ammette x = 2i come radice:

- a) calcolare la forma algebrica di tutte le radici complesse di P(x)
- b) decomporre P(x) in fattori irriducibili reali

Esercizio 3 (2 punti) Scrivere lo sviluppo al secondo ordine in x = 1 di una funzione due volte derivabile f(x) soddisfacente:

$$f(1) = 1 f'(x) = 2f(x)^2 \quad \forall x$$

Esercizio 4 (4 punti) Calcolare $\int \frac{2x+1}{4x^2-4x+1} \, dx$

Esercizio 5 (3 punti) Stabilire la natura del punto x=0 per la funzione $f(x)=e^{-2x}-\sqrt{1-4x-2x^2}-5x^2$

Esercizio 6 (3 punti) Supposta nota la funzione generatrice f(x) della successione a_n ($n \ge 0$), determinare la funzione generatrice della seguente successione:

$$(n+1)2^n a_n \quad (n \ge 0)$$

Esame di Matematica del Continuo – 12/06/2018

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n \to -\infty$ e quindi utilizzarla per stabilire se la seguente affermazione è vera oppure falsa:

$$\log_{1/2}(n^2-2n)\to -\infty$$

Argomento 2 (2 punti) Stabilire per quali $\alpha \in \mathbb{R}$ risulta $n \ln n = O(n^{\alpha})$

Argomento 3 (2 punti) Dimostrare che la funzione $f = x^6 + 5x - 1 + \sin x$ ammette almeno due zeri, uno positivo ed uno negativo

Argomento 4 (2 punti) Nell'ambito delle successioni, dare la definizione corrisponndente ad $a_n = \Omega(b_n)$ e quindi fornire un esempio di successione che soddisfi contemporaneamente le seguenti proprietà:

$$a_n = \Omega(n)$$
 $a_n \notin \Omega(n \ln n)$

Argomento 5 (2 punti) Determinare un'equazione di ricorrenza per il numero di stringhe binarie di lunghezza n che non contengano due o più uni consecutivi.

Argomento 6 (2 punti) Dare la definizione di primitiva di una funzione f(x). Quindi stabilire per quali valori di α la funzione $f(x) = (2 \ln x - \alpha)x^2$ è una primitiva della funzione $f(x) = 4x \ln x$.

- $\boxed{\mathbf{1}}$ Scrivere la negazione della seguente affermazione: per ogni numero reale x esiste un numero intero n>x
- 2 Raddoppiando l'altezza di un triangolo equilatero ma mantenendo il fatto che sia equilatero, come cambia la sua area?
- 3 Esplicitare b_2 nella formula $\frac{2A}{b_1 + b_2} = h$
- 4 Risolvere l'equazione $\log_2(\log_3 x) = 1$
- 5 Un capo che prima costava 200 euro ora ne cosa 230: determinare l'aumento percentuale di prezzo
- **6** Risolvere la disequazione $(x+1)x(x-1) \le 0$
- $\boxed{7}$ Risolvere la disequazione $\sqrt{x+1} > -1$
- 8 Risolvere la disequazione $3^{-x+1} \frac{1}{3^x} > 1$.
- $\boxed{\mathbf{9}} \quad \text{Risolvere la disequazione} \quad \log_{1/7} x < \sqrt{2}$
- $\boxed{\textbf{10}} \quad \text{Disegnare l'insieme } R = \{(x,y): \ y > x^2 2x + 1, \ y < -x + 2\} \text{ e stabilire se } Q = (2,3) \text{ appartiene ad } R$

Esame di Matematica del Continuo – 26/06/2018

1. ABILITÀ DI CALCOLO – TEMPO 2 ORE SOGLIA AMMISSIONE ORALE: 9 PUNTI

Esercizio 1 (3 punti) Studiare la funzione
$$f(x) = \frac{x^3(x-1)}{x+1}$$
 e tracciarne il grafico qualitativo

Esercizio 2 (3 punti) Determinare le soluzioni complesse dell'equazione $(z-2)^3 + i = 0$

Esercizio 3 (3 punti) Usando il confronto integrale trovare un maggiorante ed un minorante per $a_n = \sum_{k=3n}^{\infty} \frac{1}{k \ln^3 k}$ e determinarne il comportamento asintotico

Esercizio 4 (3 punti) Calcolare
$$\int x^2 \ln(x+1) dx$$

Esercizio 5 (3 punti) Sviluppare per $x \to 0$ ed al massimo ordine possibile l'espressione $e^{x^2-2x^3+x^4+O(x^8)}$

Esercizio 6 (3 punti) Usando le funzioni generatrici, risolvere la seguente equazione di ricorrenza:

$$\begin{cases} a_n = a_{n-1} + n & (n \ge 1) \\ a_0 = 0 \end{cases}$$

Esame di Matematica del Continuo – 26/06/2018

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Enunciare il Teorema Fondamentale del Calcolo Integrale ed utilizzarlo per calcolare la derivata della funzione:

$$G(x) = \int_{x}^{0} t^{15} \arctan(t^7) dt$$

Argomento 2 (2 punti) Trovare un'equazione di ricorrenza, completa di dati iniziali, per la successione:

$$a_n = n^2 + 4^n \quad (n \ge 0)$$

Argomento 3 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n \sim b_n$ e quindi stabilire se è vero oppure falso che:

$$\lim a_n = \lim b_n \qquad \Longrightarrow \qquad a_n \sim b_n$$

Argomento 4 (2 punti) Definire l'insieme A^* dei maggioranti di un insieme $A \subseteq \mathbb{R}$ e stabilire se la seguente affermazione è vera oppure falsa, dimostrandola se vera ed esibendo un controesempio se falsa: $se\ 3 \in A \cap A^*$ allora A ammette massimo ed inoltre max A=3

Argomento 5 (2 punti) Stabilire se sia vero oppure falso che, comunque scelta la successione a_n :

$$\sum_{j=0}^{n} a_{j+2} - \sum_{j=1}^{n} a_{j} = a_{n+2} - a_{n+1}$$

Argomento 6 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente a $\lim_{n\to\infty} a_n = 2$ e quindi utilizzarla per stabilire se la seguente affermazione è vera oppure falsa:

$$\lim_{n \to +\infty} \frac{2n}{n-2} = 2$$

- $\fbox{1}$ Calcolare il minimo comunue multiplo tra i seguenti numeri: 12,72 e 30
- $\boxed{\mathbf{2}} \quad \text{Stabilire se } \frac{\sqrt{5}}{4} \ \in \ \{x: \ 3x+1>2\}$
- 3 Stabilire se la sequente espressione è vera oppure falsa: per ogni x < 0 si ha che $x^2 > x$
- 4 Calcolare il prezzo iniziale di un capo che, dopo uno sconto del 10%, viene venduto a 99 euro
- **5** Risolvere l'equazione |x| = 2 3x
- **6** Risolvere l'equazione $2^x + 2^{x-1} = 4$
- 8 Risolvere la disequazione $\sqrt{x^2 1} < x$
- $\boxed{\mathbf{9}} \quad \text{Risolvere il sistema} \quad \left\{ \begin{array}{l} 4^x > 0.5 \\ |x 1| < 2 \end{array} \right.$
- Disegnare l'insieme $A = \{(x, r) \in \mathbb{R}^2 : x^2 + 4x + y^2 \ge 0\}$ e stabilire la posizione relativa del punto P = (-1, 2)

Esame di Matematica del Continuo – 04/09/2018

1. ABILITÀ DI CALCOLO – TEMPO 2 ORE SOGLIA AMMISSIONE ORALE: 9 PUNTI

Esercizio 1 (3 punti) Calcolare in forma algebrica le radici complesse del polinomio $P(x) = x^6 - 64$ ed utilizzarle per decomporre il polinomio in fattori irriducibili in campo reale

Esercizio 2 (3 punti) Sviluppare la funzione $f(x) = \frac{1}{x - 2 + x^{-1} + o(x^{-1})}$ per $x \to +\infty$ ed al massimo ordine possibile

Esercizio 3 (3 punti) Stabilire se l'equazione $\sqrt[4]{x} = \ln x$ ammette soluzioni

Esercizio 4 (3 punti) Calcolare $\int \frac{1-x}{2-\sqrt{x}} dx$

Esercizio 5 (2 punti) Determinare il carattere della serie $\sum_{n=1}^{+\infty} \frac{3^n (n!)^2}{2^{n^2}}$

Esercizio 6 (4 punti) Usare il metodo delle funzioni generatrici per risolvere l'equazione di ricorrenza:

$$\begin{cases} a_n + a_{n-1} = 2a_{n-2} & (n \ge 2) \\ a_0 = 0 & a_1 = 1 \end{cases}$$

Esame di Matematica del Continuo - 04/09/2018

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n \to 1$ e quindi utilizzarla per dimostrare che:

$$\frac{2^n}{2^n+5} \to 1$$

Argomento 2 (2 punti) Nell'ambito delle successioni, stabilire se la seguente implicazione è vera oppure falsa:

$$a_n \to +\infty$$
 \Longrightarrow $a_{n+1} \sim a_n$

Argomento 3 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n = \Theta(n)$. Quindi stabilire se tale definizione è soddisfatta quando:

$$a_n = \begin{cases} 3n & n \text{ pari} \\ 7-n & n \text{ dispari} \end{cases}$$

Argomento 4 (2 punti) Definire f'(1) e calcolarlo usando solo la definizione, quando $f(x) = \frac{1}{2+x}$

Argomento 5 (2 punti) Dare la definizione di somma di una serie numerica ed utilizzarla per stabilire se la seguente affermazione è vera oppure falsa:

$$a_n \to 1$$
 \Longrightarrow $\sum_{n=1}^{+\infty} \{a_n - a_{n-1}\} = 1$

Argomento 6 (2 punti) Enunciare il Teorema della Media Integrale ed applicarlo alla funzione $f(x) = x^2$ nell'intervallo [0, 1], determinando esplicitamente il punto al quale l'enunciato si riferisce

- $\boxed{\mathbf{1}} \quad \text{Scrivere il numero} \quad \left(\frac{1}{5} \times \frac{7}{3}\right) + \left(\frac{3}{2} : \frac{5}{2}\right) \quad \text{come rapporto di interi}$
- $\boxed{\mathbf{2}} \quad \text{Stabilire se } \pi \in \{3x+1 : x \ge 1\}$
- 4 Se il lato di un quadrato aumenta del 50%, di quanto aumenta percentualmente la sua area?
- **5** Risolvere l'equazione x(x+2) = 1
- **6** Risolvere la disequazione $\log_2(x^3) + \log_{1/2} x < 1$
- $\boxed{7}$ Risolvere la disequazione $9^x \le 3^x + 1$
- 8 Risolvere la disequazione $\sqrt{|x|} \le x 1$
- $\boxed{ \textbf{9} } \quad \text{Risolvere il sistema di equazioni } \quad \left\{ \begin{array}{l} a-b^2=0 \\ a+2b=3 \end{array} \right.$
- $\boxed{f 10}$ Disegnare il grafico di f(x)=2-|x-1| e posizionare il punto $P=\left(2,rac{3}{2}
 ight)$ rispetto al grafico

Esame di Matematica del Continuo – 21/09/2018

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (4 punti) Tracciare il grafico qualitativo della funzione $f(x) = e^x \sqrt[3]{x^2 + x - 1}$ e determinare gli eventuali estremi relativi e/o assoluti (non è richiesto lo studio della derivata seconda)

Esercizio 2 (2 punti) Determinare la forma algebrica delle soluzioni complesse dell'equazione $z^3\overline{z} + 2 = 2i\sqrt{3}$

Esercizio 3 (4 punti) Stabilire la natura del punto x = 0 per la funzione $f(x) = e^{-2x} - \sqrt{1 - 4x - 2x^2} - 5x^2$

Esercizio 4 (2 punti) Calcolare $\int (x-1)\arctan(x) dx$

Esercizio 5 (3 punti) Detta f(x) la funzione generatrice della successione a_n ($n \ge 0$), determinare la funzione generatrice della successione:

$$b_n = (n+1) 3^n a_n \qquad (n \ge 0)$$

Esercizio 6 (3 punti) Usando il criterio integrale, fornire dapprima delle stime per eccesso e per difetto della successione:

$$a_n = \sum_{j=n}^{3n} \frac{1}{j}$$

e quindi utilizzare tali stime per calcolare il limite di a_n

Esame di Matematica del Continuo - 21/09/2018

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n \to +\infty$ ed usando la sola definizione stabilire se la seguente affermazione è vera oppure falsa:

$$\frac{n^2}{10} - 10n \to +\infty$$

Argomento 2 (2 punti) Dare la definizione di maggiorante di un insieme non vuoto $A \subseteq \mathbb{R}$ ed utilizzarla per stabilire se 1 sia o meno un maggiorante per l'insieme:

$$A = \{x^2 - 2x : 0 \le x \le 2\}$$

Argomento 3 (2 punti) Enunciare il criterio del rapporto per le successioni ed usarlo per provare che $2^n = o(n!)$

Argomento 4 (2 punti) Nell'ambito dei limiti di successioni, spiegare perché $\infty \cdot 0$ venga considerato un caso di indecisione, illustrando la spiegazione con gli esempi necessari

Argomento 5 (2 punti) Scrivere un'equazione di ricorrenza, completa di dati iniziali, per la successione:

$$a_n = n^2 - 2n \qquad (n \ge 1)$$

Argomento 6 (2 punti) Dare la definizione di somma di una serie numerica $\sum_{n=1}^{+\infty} a_n$ ed utilizzarla per stabilire se la somma è ben definita quando:

$$a_n = \begin{cases} n & n \text{ pari} \\ 1-n & n \text{ dispari} \end{cases}$$

Esame di Matematica del Continuo – 22/01/2019

- 2 Determinare il polinomio risultante dalla divisione $\frac{x^3 3x^2 2x + 4}{x 1}$
- $\boxed{\mathbf{3}} \quad \text{Stabilire se } 2 \in \left\{2x x^2 : x \in \mathbb{R}\right\}$
- 4 Uno studente ha una media di 18,75 nei primi quattro esami. Stabilire che voto deve prendere nel quinto esame per portare la sua media a 20,20.
- $\boxed{\mathbf{5}} \quad \text{Risolvere l'equazione} \quad \sqrt{2-|x|} = x$
- $\boxed{\mathbf{6}}$ Risolvere la disequazione $2^{x+1} + 2^x \ge 1$
- $\boxed{\mathbf{7}} \quad \text{Risolvere la disequazione} \quad \frac{1}{3x+1} \ge 1$
- 8 Risolvere la disequazione $\log_3(x-2) + 3 < 0$
- **10** Tratteggiare il grafico della funzione $y = |x^2 x|$ e posizionare rispetto al grafico il punto P = (1/3, 1/3)

Esame di Matematica del Continuo – 22/01/2019

1. ABILITÀ DI CALCOLO – TEMPO 2 ORE SOGLIA AMMISSIONE ORALE: 9 PUNTI

Esercizio 1 (3 punti) Usando il criterio integrale, stimare per difetto e per eccesso le somme parziali della serie:

$$\sum_{k=1}^{+\infty} k e^{k^2}$$

e quindi stabilire la sua velocità di divergenza.

Esercizio 2 (3 punti) Determinare la forma algebrica delle soluzioni complesse dell'equazione $iz^2 = 2\bar{z}$

Esercizio 3 (3 punti) Sviluppare la funzione $f(x) = \sqrt{1 + \sin(2x^2)}$ per $x \to 0$ e con precisione $o(x^6)$

Esercizio 4 (3 punti) Calcolare $\int \frac{x}{x^2 - 2x + 5} dx$

Esercizio 5 (2 punti) Dimostrare che $e^x > 2x$ per ogni $x \in \mathbb{R}$

Esercizio 6 (4 punti) Usare il metodo delle funzioni generatrici per risolvere l'equazione di ricorrenza:

$$\begin{cases} a_{n+2} = 1 + a_n & (n \ge 0) \\ a_0 = 1 & a_1 = 1 \end{cases}$$

Esame di Matematica del Continuo – 22/01/2019

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n \to 2^+$ e quindi utilizzarla per verificare (senza usare le regole di calcolo dei limiti) che:

$$\frac{2n+3}{n+1} \to 2^+$$

Argomento 2 (2 punti) Nell'ambito delle successioni, definire il simbolo di Landau Ω e stabilire se la seguente affermazione è vera oppure falsa: $a_n = \Omega(a_n^2)$ per ogni successione a_n strettamente positiva

Argomento 3 (2 punti) Nell'ambito delle successioni, stabilire per quali $\alpha \in \mathbb{R}$ risulta $\frac{n^{1+\alpha}}{1+n^{\alpha}} \sim \sqrt{n}$

Argomento 4 (2 punti) Dare la definizione relativa ad f'(1) e calcolare tale derivata tramire la sola definizione (ovvero senza utilizzare le regole di calcolo delle derivate) quando:

$$f(x) = \frac{1}{1+x^2}$$

Argomento 5 (2 punti) Dare la definizione corrispondente a $\sum_{k=1}^{+\infty} a_k$ e quindi usare la definizione per calcolare tale somma quando per ogni $k \ge 1$:

$$a_k = b_{k+1} - b_k$$
 con $b_k = \frac{k+1}{2k+1}$

Argomento 6 (2 punti) Determinare un'equazione di ricorrenza per il numero s_n di stringhe decimali di lunghezza n che contengono un numeri dispari di zeri

- **2** Tradurre in m/s la velocità di 45 km/h
- 3 Esplicitare R nella formula $\frac{A}{R+L} = B+1$
- 4 Determinare il massimo comun divisore tra i numeri 216, 324, 540
- 5 Stabilire il prezzo iniziale di un capo che, dopo uno sconto del 15%, viene venduto a 51 euro
- **6** Risolvere la disequazione $\log_{\frac{1}{2}}(x-3) \ge 1$
- $\boxed{\textbf{7}} \quad \text{Risolvere la disequazione} \quad x + \sqrt{x} < 1$
- 8 Risolvere la disequazione x + |x| > 1
- $\boxed{\mathbf{9}} \quad \text{Risolvere la disequazione} \quad e^{2x} 4e^x < 0$
- 10 Nel piano xy disegnare la curva $x^2 4x + y^2 + 2y = -1$ e posizionare ripsetto ad essa il punto P = (2,3)

Esame di Matematica del Continuo -05/02/2019

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (3 punti) Determinare la forma algebrica delle soluzioni complesse dell'equazione $z^5 + \frac{1}{z} = 0$

Esercizio 2 (3 punti) Tracciare un grafico qualitativo della funzione $f(x) = (x-5)e^{\frac{1+x}{1-x}}$ (non sono richiesti il calcolo della derivata seconda e lo studio degli eventuali asintoti obliqui)

Esercizio 3 (3 punti) Sviluppare l'espressione $\sqrt[3]{x^3 - 3x^2 + 2x + o(x)}$ per $x \to -\infty$ ed al massimo ordine consentito dall'imprecisione presente

Esercizio 4 (3 punti) Usare il confronto integrale per stimare dal basso e dall'alto la successione $\sum_{k=2n}^{3n} \frac{1}{k}$ e quindi calcolarne il limite

Esercizio 5 (3 punti) Calcolare $\int \frac{x+1}{x+\sqrt{x}} dx$

Esercizio 6 (3 punti) Usando il metodo delle funzioni generatrici, risolvere l'equazione per ricorrenza:

$$\begin{cases} a_{n+1} = 2a_n + n2^n & (n \ge 0) \\ a_0 = 0 \end{cases}$$

Esame di Matematica del Continuo – 05/02/2019

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Dare la definizione corrispondente a $2 = \sup A$ e verificare che tale definizione è soddisfatta quando:

$$A = \left\{ \frac{2n}{n+2} : n \in \mathbb{N} \right\}$$

Argomento 2 (2 punti) Usando le serie geometriche, scrivere il numero decimale periodico $1, 2\overline{09}$ come rapporto di numeri naturali

Argomento 3 (2 punti) Usare l'induzione per dimostrare la seguente affermazione $(n \in \mathbb{N})$

$$n < 2^n$$
 per ogni n ≥ 1

Argomento 4 (2 punti) Stabilire per quali valori di $\alpha, \beta \in \mathbb{R}$ la funzione $F(x) = \ln(\alpha x) + e^{-x}(\beta x + 1)$ è una primitiva della funzione $f(x) = \frac{1}{x} - x e^{-x}$ sull'intervallo $(0, +\infty)$

Argomento 5 (2 punti) Nell'ambito delle successioni positive, trovare un controesempio alla seguente proposizione: se $a_n \sim b_n$ allora $\ln(a_n) \sim \ln(b_n)$

Argomento 6 (2 punti) Dopo aver dato la definizione corrispondente al seguente integrale generalizzato:

$$\int_0^{+\infty} (2\sin x - 1) \, dx$$

stabilire se tale integrale esiste ed in tal caso calcolarlo

- 1 Stabilire se $-1 \in A$ dove $A = \{x^2 + x : x \in \mathbb{R}\}$
- $\fbox{\bf 2}$ Riscrivere l'ottava parte di $(16)^8$ come potenza di 2
- **3** Esplicitare q in funzione di $p \in (0,1)$ dalla formula $p^{-2/q} + p = 1$
- $\boxed{\textbf{4}} \quad \text{Stabilire quali polinomi di primo grado } P(x), R(x) \text{ rendono vera} \quad \frac{x^3 x^2}{x^2 + 1} = P(x) + \frac{R(x)}{x^2 + 1} \quad \text{per ogni } x$
- 5 Dopo aver scontato un importo del 40%, si applichi un ulteriore 80% all'importo residuo. Calcolare lo sconto complessivo sull'importo iniziale.
- **6** Risolvere la disequazione $\log_2(x-\pi) \le 1$
- 8 Risolvere la disequazione (x-1)(x+1)(x+2) < 0
- $\boxed{\mathbf{9}}$ Risolvere la disequazione $2^{x+1} + 2^x > 1$
- $\boxed{\textbf{10}} \quad \text{Disegnare l'insieme} \quad A = \{(x,y) \in \mathbb{R}^2 : x \leq y \leq |x|\} \text{ e stabilire se il punto } P = (2,2) \text{ vi appartenga o meno}$

Esame di Matematica del Continuo – 18/06/2019

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (4 punti) Determinare un minorante ed un maggiorante per la successione $a_n = \sum_{k=2}^n \frac{1}{k + \sqrt{k}}$ tramite il confronto integrale, utilizzandoli poi per calcolare il limite di $b_n = a_n / \ln n$

Esercizio 2 (5 punti) Data la funzione $f(x) = \frac{x^3 + x + 1}{x^2 - x - 2}$ calcolare dapprima:

- a) il dominio di f(x) ed i suoi limiti agli estremi del dominio
- b) gli sviluppi asintotici di f(x) per $x \to \pm \infty$ e con precisione o(1/x)

e quindi tracciarne un grafico che sia compatibile con le informazioni ottenute (non è richiesto il calcolo di derivate)

Esercizio 3 (2 punti) Determinare il numero esatto delle soluzioni reali dell'equazione $x^5 - 5x = 1$

Esercizio 4 (3 punti) Trovare le soluzioni complesse dell'equazione $(z-2)^3 + i = 0$

Esercizio 5 (4 punti) Usando il metodo delle funzioni generatrici, risolvere l'equazione di ricorrenza:

$$\begin{cases} a_{n+1} = (-1)^n + \sum_{k=0}^n a_k & (n \ge 0) \\ a_0 = -1 & \end{cases}$$

e precisare il comportamento asintotico della soluzione.

Esame di Matematica del Continuo – 18/06/2019

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Tramite l'induzione matematica, dimostrare che per ogni naturale $n \ge 1$ vale la seguente uguaglianza:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Argomento 2 (2 punti) Dire cosa significa che una proposizione P(n) è definitivamente vera, dove $n \in \mathbb{N}$. Quindi, usando solo tale definizione, stabilire se la seguente proposizione è o meno definitivamente vera:

$$n^2 + (-1)^n n > 10$$

Argomento 3 (2 punti) Nell'ambito delle successioni positive, definire $a_{n+1} = \Omega((a_n)^2)$ fornendo poi un esempio di successione che soddisfi tale definizione

Argomento 4 (2 punti) Stabilire per quali $a, b, c \in \mathbb{R}$ il polinomio $P(x) = ax^2 + bx + c$ soddisfi contemporaneamente le due seguenti condizioni:

a)
$$P(x) = O(x) \text{ per } x \to 0^+$$

b)
$$P(x) = o(x^2) \text{ per } x \to +\infty$$

Argomento 5 (2 punti) Al variare di $\alpha \in \mathbb{R}$, stabilire il carattere della serie $\sum_{n=0}^{+\infty} \frac{n^{\alpha}}{1+n^{\alpha}}$

Argomento 6 (2 punti) Dare la definizione corrispondente all'integrale generalizzato $\int_0^{1/2} \frac{dx}{\sqrt{1-2x}}$ calcolandone poi il valore

Esame di Matematica del Continuo -02/07/2019

- 1 Stabilire se le due equazioni $x^3 + x = 1$ ed $(x + 1)(x^3 + x) = x + 1$ hanno o meno le stesse soluzioni
- 2 Se un capo costa 60 euro dopo uno sconto del 20%, quanto costava all'inizio?
- 3 Esplicitare R nella formula $PV = \log_{\alpha}(RT)$
- 4 Trovare il massimo comun divisore tra i numeri 135,180 e 540
- $\boxed{\mathbf{5}} \quad \text{Risolvere l'equazione} \quad (\log_{1/2} x)^2 + \log_{1/2} x = 2$
- $\boxed{\mathbf{6}}$ Calcolare $25^{-\log_5 7}$
- $\boxed{7}$ Risolvere la seguente disequazione $\sqrt{x+1} > x$
- 8 Risolvere la disequazione x + |x| < 5
- $\boxed{\mathbf{9}} \quad \text{Risolvere la disequazione} \quad \frac{2+x}{1-2x} < 1$
- 10 Disegnare il grafico di f(x) = |x+1| e posizionare il punto P = (1,2) rispetto a tale grafico

Esame di Matematica del Continuo – 02/07/2019

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (4 punti) Studiare la funzione $f(x) = \sqrt{\frac{x^2 - 1}{x + 2}}$ e tracciarne il grafico qualitativo (non è richiesto lo studio della derivata seconda)

Esercizio 2 (3 punti) Determinare, nel modo più preciso possibile, il comportamento asintotico della seguente espressione per $x \to 0$ $e^{2x+6x^2+O(x^4)}$

Esercizio 3 (3 punti) Calcolare $\int \frac{e^{3t} + e^{2t}}{e^t - 2} dt$

Esercizio 4 (2 punti) Calcolare il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} \binom{2n}{n} x^n$

Esercizio 5 (3 punti) Calcolare la forma algebrica delle radici complesse del polinomio $z^4 - 4z^2 + 16$

Esercizio 6 (3 punti) Usando il metodo delle funzioni generatrici, risolvere l'equazione di ricorrenza:

$$\begin{cases} a_n = a_{n-1} + 2n & (n \ge 1) \\ a_0 = 0 \end{cases}$$

Esame di Matematica del Continuo – 02/07/2019

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Dopo aver definito l'estremo inferiore di un insieme $A \subseteq \mathbb{R}$ limitato inferiormente, usare la definizione per dimostrare che $2 = \inf A$ quando:

$$A = \left\{ \frac{2n+3}{n+1} : \ n \in \mathbb{N} \right\}$$

Argomento 2 (2 punti) Nell'ambito delle successioni, dare la definizione corrispondente ad $a_n = o(a_{n^2})$ e stabilire se è o meno soddisfatta da ogni successione $a_n \to +\infty$

Argomento 3 (2 punti) Stabilire per quali $n \in \mathbb{N}$ risulta $(1+i)^n \in \mathbb{R}$

Argomento 4 (2 punti) Dare la definizione di somma di una serie numerica ed applicarla al caso di $\sum_{k=0}^{+\infty} (-1)^k$

Argomento 5 (2 punti) Tradurre in un'equazione di ricorrenza, corredata di condizioni iniziali, il problema di conteggio del numero di stringhe binarie di lunghezza n che non contengono due o più 0 consecutivi

Argomento 6 (2 punti) Dopo aver enunciato il teorema della media integrale, stabilire se la seguente affermazione è vera oppure falsa: per ogni funzione continua $f: [-2,2] \to \mathbb{R}$, se vale

$$\frac{1}{2} \int_{-2}^{2} f(x) dx = 2$$

allora esiste almeno un valore $c \in [-2, 2]$ tale che f(c) = 1

0. Verifica prerequisiti – tempo 30 minuti soglia ammissione scritto: 8 risposte corrette

- $\boxed{\mathbf{2}} \quad \text{Dato l'insieme } A = \left\{ \frac{1-2x}{x+1} \ : \ x>1 \right\} \text{ stabilire se } 1 \in A$
- $\fbox{\bf 3}$ Calcolare il prezzo di vendita di un capo da 180 euro, dopo uno sconto del 35%
- $\boxed{\mathbf{4}} \quad \text{Calcolare} \quad \log_{1/2}(2\sqrt[3]{4})$
- **5** Risolvere l'equazione 2x + |x| = 1
- **6** Risolvere l'equazione $2^x + 2^{x-1} = 2$
- $\boxed{\textbf{7}} \quad \text{Risolvere la disequazione} \quad \sqrt[3]{x-2} + 1 \le 0$
- **8** Al variare di $c \in \mathbb{R}$, risolvere la disequazione $cx \leq 1$
- 10 Disegnare il grafico qualitativo di y = |x(x-1)| e posizionare il punto P = (-1,1) rispetto al grafico

Esame di Matematica del Continuo – 03/09/2019

1. Abilità di calcolo – tempo 2 ore soglia ammissione orale: 9 punti

Esercizio 1 (3 punti) Tramite il confronto integrale, stimare per difetto e per eccesso la successione $a_n = \sum_{k=n}^{+\infty} \frac{1}{k^3}$ e quindi stabilirne il comportamento asintotico

Esercizio 2 (3 punti) Determinare la forma algebrica delle soluzioni complesse di $iz^2 + \bar{z} = 0$

Esercizio 3 (2 punti) Calcolare $\int \sin(\sqrt{x}) dx$

Esercizio 4 (3 punti) Dimostrare che l'equazione $x + \frac{1}{2} = 2 \arctan x$ ammette esattamente due soluzioni positive

Esercizio 5 (3 punti) Determinare lo sviluppo asintotico per $x \to 0$ dell'espressione:

$$\sqrt{1+x+x^2-2x^3+O(x^4)}$$

in potenze di x ed al massimo ordine consentito dall'imprecisione presente nella stessa

Esercizio 6 (4 punti) Usando il metodo delle funzioni generatrici, risolvere l'equazione di ricorrenza:

$$\begin{cases} a_n = 1 + a_{n-2} & (n \ge 2) \\ a_0 = 1 & a_1 = 1 \end{cases}$$

Esame di Matematica del Continuo – 03/09/2019

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Nell'ambito della successioni dare la definizione corrispondente ad $a_n \to 1/2$ ed usarla per verificare che:

$$\frac{n}{2n+1} \to \frac{1}{2}$$

Argomento 2 (2 punti) Dare un esempio di polinomio P(z) a coefficienti reali che soddifi P(2+i) = P(1) = 0 e che non sia identicamente nullo

Argomento 3 (2 punti) Nell'ambito delle successioni, definire $a_n = \Omega(b_n)$ e quindi usare la sola definizione per stabilire se la seguente affermazione è vera oppure falsa:

$$\frac{n}{n+2} \ = \ \Omega(1)$$

Argomento 4 (2 punti) Nell'ambito dei limiti di successioni, spiegare perché $[\infty - \infty]$ venga considerata una forma di indecisione, corredando la spiegazione degli esempi ritenuti necessari

Argomento 5 (2 punti) Definire f'(1) ed usare la sola definizione (ovvero senza le regole di calcolo della derivata) per calcolare f'(1) quando $f(x) = x^3$ per ogni $x \in \mathbb{R}$

Argomento 6 (2 punti) Usare le serie geometriche per determinare una frazione generatrice per $0,0\overline{31}$

0. Verifica prerequisiti – tempo 30 minuti SOGLIA AMMISSIONE SCRITTO: 8 RISPOSTE CORRETTE

 $\boxed{\mathbf{1}} \quad \text{Scrivere} \quad \left(\frac{2}{5} - \frac{5}{2}\right) \cdot \left(\frac{1}{3} - 2\right)^{-1} \quad \text{come rapporto tra interi}$

Stabilire se $1 \in \{x + 2\sqrt{x} : x \ge 0\}$

Calcolare il prezzo originario di un articolo che, dopo uno sconto del 15%, viene venduto a 51 euro

Risolvere l'equazione (x-1)(x-2) = 1

Risolvere l'equazione $3^x + 3^{-x} = 1$

 $\boxed{\textbf{6}} \quad \text{Risolvere la disequazione} \quad \sqrt{2-x} \le x$

 $\boxed{\textbf{7}} \quad \text{Risolvere la disequazione} \quad \frac{1}{x} + \frac{1}{x} \ \geq \ \frac{1}{2}$

 $\boxed{\bf 8} \quad \text{Risolvere la disequazione} \quad \log_{1/2} x \, > \, 3$

9 Risolvere il sistema di equazioni $\begin{cases} 2x + y = 1 \\ y(1+x) = 0 \end{cases}$

 $\boxed{\textbf{10}} \quad \text{Disegnare la regione piana} \quad A = \{(x,y): x+1 \leq y \leq 2x\} \quad \text{e posizionare il punto} \quad P = (2,3) \quad \text{rispetto ad } A$

COGNOME	NOME	MATR
	Esame di Matematica del Cont	m tinuo - 17/09/2019
	1. Abilità di calcolo – soglia ammissione oral	

Autorizzo pubblicazione esiti appello sul portale Ariel - FIRMA

Esercizio 1 (3 punti) Tracciare un grafico qualitativo della funzione $f(x) = \frac{x-3}{x^2-x-2}$ completo di dominio, segno, limiti agli estremi del dominio, monotonia ed eventuali punti di massimo e minimo

Esercizio 2 (3 punti)	Determinare la forma algebrica delle soluzioni complesse dell'equazio	ne $iz^3 + 1 = 0$
Esercizio 3 (3 punti)	Sviluppare per $x \to 0$ e nel modo più preciso possibile l'espressione	$\frac{1+x}{x+2x^2-x^3+o(x^3)}$



Esercizio 5 (3 punti) Detta f(x) la funzione generatrice di a_n $(n \ge 0)$, esprimere in termini di f(x) la funzione generatrice di: $1 + n \sum_{k=0}^{n} a_k \qquad (n \ge 0)$

$$1 + n \sum_{k=0}^{n} a_k \qquad (n \ge 0)$$

Esercizio 6 (3 punti) Usando il confronto integrale, stimare la velocità di divergenza della serie $\sum_{k=1}^{+\infty} ke^k$

COCKOME	NOME	MATE
しょしょしょういしょういいしょう	NONE.	WAIR

Esame di Matematica del Continuo – 17/09/2019

2. Comprensione della teoria – tempo 1 ora soglia ammissione orale: 6 punti

Argomento 1 (2 punti) Dato $A \subseteq \mathbb{R}$ non vuoto, dare la definizione corrispondente ad $1 = \sup A$ e dimostrare che tale definizione è soddisfatta quando:

$$A = \left\{ \frac{n}{n+10} : n \in \mathbb{N} \right\}$$

Argomento 5 (2 punti) Definire e calcolare l'integrale generalizzato $\int_0^{+\infty} \left(\sin x + \frac{1}{2}\right) dx$

Argomento 6 (2 punti) contengono due o più zeri c	Determinare un onsecutivi	equazione di	ricorrenza	per il nu	mero s_n di	stringhe l	oinarie di lu	n che

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 22.01.21

Corso di Laurea in Informatica - a.a. 2020/21 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 risposte su 5

1. Le soluzioni dell'equazione $2^x + 4^x = 2$ sono

a)
$$x = \frac{1}{3}$$

b)
$$x = -2 e x = 1$$

b)
$$x = -2 e x = 1$$
 c) $x = 0 e x = -1$ d) $x = 0$

d)
$$x = 0$$

2. Sia $B \subseteq \mathbb{R}$ tale che $B = \{ \log_2(-x) \mid -1 < x < 0 \}$, allora

a)
$$-2 \in B$$
 b) $B = \emptyset$ c) $0 \in B$ d) $2 \in B$

b)
$$B = \emptyset$$

c)
$$0 \in B$$

d)
$$2 \in E$$

3. Le soluzioni della disequazione $\sqrt{x} > x - 2$ sono

a)
$$x < 4$$

b)
$$0 < x < 4$$

a)
$$x < 4$$
 b) $0 \le x < 4$ c) $0 \le x < 2$ d) $x > 0$

d)
$$x > 0$$

4. Calcolare il valore di $\log_{\frac{1}{2}} \left(2\sqrt[3]{4}\right)$

a)
$$\frac{3}{5}$$

a)
$$\frac{3}{5}$$
 b) $\frac{1}{2\sqrt[3]{4}}$ c) $-2^{\frac{5}{3}}$ d) $-\frac{5}{3}$

c)
$$-2^{\frac{5}{3}}$$

5. Quale di queste espressioni ha senso

a)
$$\log(\cos 2\pi - 1)$$

b)
$$\sqrt{\sin 1}$$

a)
$$\log(\cos 2\pi - 1)$$
 b) $\sqrt{\sin 1}$ c) $\arcsin \pi$ d) $\frac{1}{\arctan 1 - \frac{\pi}{4}}$

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Scegliere la proposizione corretta

a) Sia f continua su [a, b] con f(a) > 0 e f(b) > 0. Allora $f(x) > 0, \forall x \in [a, b]$

b) Sia f continua su [a, b] con f(a)f(b) > 0. Allora esiste $x_0 \in (a, b)$ tale che $f(x_0) = 0$

c) Sia f continua su [a,b] con f(a)f(b) < 0. Allora esiste $x_0 \in (a,b)$ tale che $f(x_0) = 0$

d) Sia f continua su [a, b]. Allora f assume tutti i valori compresi tra $a \in b$

2. (PUNTI 1) Scegliere la definizione corretta di $\lim_{x \to +\infty} f(x) = 3$

a) $\exists M > 0$ tale che $\forall x > M$ si ha f(x) = 3

b) $\forall \varepsilon > 0$ si ha $3 - \varepsilon < f(x) < 3 + \varepsilon$

c) $\forall M > 0 \; \exists \; \varepsilon > 0 \; \text{tale che} \; \; \forall x > M \; \text{si ha} \; 3 - \varepsilon < f(x) < 3 + \varepsilon$

d) $\forall \varepsilon > 0 \; \exists \; M > 0 \; \text{tale che} \; \; \forall x > M \; \text{si ha} \; 3 - \varepsilon < f(x) < 3 + \varepsilon$

3. (PUNTI 1) Sia f continua e derivabile su [a, b]. Sia $x_0 \in [a, b]$.

a) Se $f'(x_0) = 0$ allora x_0 è un punto estremante

b) Se x_0 è un punto estremante allora $f'(x_0) = 0$

c) Se x_0 è punto di massimo assoluto allora $x_0 \in (a, b)$

d) Se x_0 è punto di massimo e di minimo assoluto allora $f(x) = f(x_0), \forall x \in [a, b]$

- 4. (PUNTI 1) Sia f continua su \mathbb{R} e sia $F(x) = \int_0^x f(t) dt$. Allora
 - a) F è crescente su \mathbb{R}
 - b) F è positiva su \mathbb{R}
 - c) F'(x) = f(x) f(0)
 - d) F è derivabile su \mathbb{R}
- 5. (PUNTI 1) Si consideri un insieme $A \subseteq \mathbb{R}$. Allora
 - a) il $\sup A$ esiste ed è unico
 - b) il sup A è unico e appartiene a \mathbb{R}
 - c) il $\sup A$ potrebbe non esistere
 - d) se il sup $A \in \mathbb{R}$ allora il sup A coincide con il massimo di A

- 6. (PUNTI 3) Utilizzando la definizione, dimostrare che $\lim_{n\to+\infty} \left(\frac{n}{n^2+2}\right) = 0$
- 7. (**PUNTI 3**) Trovare le soluzioni in forma algebrica dell'equazione $iz^4\overline{z} + 1 = 0$
- 8. (PUNTI 3) Calcolare la formula di Taylor arrestata al secondo ordine e centrata in $x_0 = 1$ della funzione $f(x) = \sqrt{x+3} \log x$
- 9. (PUNTI 3) Calcolare l'integrale $\int_0^1 \frac{1}{x + 2\sqrt{x+3}} dx$
- 10. (PUNTI 3) Calcolare il raggio di convergenza della serie di potenze

$$\sum_{n=0}^{\infty} {2n \choose n} x^n, \quad \text{dove } {2n \choose n} \text{ è il coefficiente binomiale}$$

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(**PUNTI 10**) Data la funzione
$$f(x) = \frac{2x+3}{x^2+x-2}$$
 determinare:

- 1) l'insieme di definizione; il segno di f; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); segno di f'(x); eventuali punti di massimo o minimo
- 2) Disegnare il grafico di \boldsymbol{f}
- 3) Disegnare il grafico di g(x) = |f(x)|
- 4) Disegnare il grafico di h(x) = f(|x|)

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 10.02.21

Corso di Laurea in Informatica - a.a. 2020/21 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1. Le soluzioni dell'equazione $\cos^2 x - \sin^2 x = 1$ sono

a)
$$x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

b)
$$x = 1 e x = -1$$

c)
$$x = 2k\pi, k \in \mathbb{Z}$$

d)
$$x = k\pi, k \in \mathbb{Z}$$

2. Sia $B \subseteq \mathbb{R}$ tale che $B = \{2x - x^2 \mid 0 < x < 2\}$, allora

a)
$$0 \in B$$

b)
$$B = (0, 2)$$
 c) $1 \in B$ d) $2 \in B$

c)
$$1 \in B$$

d)
$$2 \in B$$

3. Le soluzioni della disequazione $\log_{\frac{1}{2}}(x+1)+1<0$ sono

a)
$$x > -1$$

a)
$$x > -1$$
 b) $-1 < x < 1$ c) $x < 1$ d) $x > 1$

c)
$$x < 1$$

d)
$$x > 1$$

4. La metà di 8^5 è uguale a a) $8^{\frac{5}{2}}$ b) 4^5 c) 2^{14}

a)
$$8^{\frac{5}{2}}$$

c)
$$2^{14}$$

d)
$$4^{\frac{5}{2}}$$

5. Le soluzioni dell'equazione $2^{1-x^2} = 4$ sono

a)
$$x = 1 e x = -1$$
 b) $x = \sqrt{2}$

b)
$$x = \sqrt{2}$$

d)
$$x = 2$$

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia $a_n = o(b_n)$ con $a_n \neq 0, b_n \neq 0$ e $n \in \mathbb{N}$. Allora

a)
$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 0$$

b)
$$\lim_{n \to +\infty} \frac{b_n}{a_n} = 0$$

c) se a_n è infinitesima anche b_n è infinitesima

d) a_n è asintotica a b_n

2. (PUNTI 1) Sia f definita in un intorno di x=2. Allora $\lim_{x\to 2} f(x)=-\infty$ se

a) esistono M>0 e $\delta>0$ tali che $f(x)<-M,\,\forall\,x\in(2-\delta,2+\delta)$ con $x\neq2$

b) $\forall M > 0$ esiste un $\delta > 0$ tale che $f(x) < -M, \forall x \in (2 - \delta, 2 + \delta)$ con $x \neq 2$

c) $\forall \delta > 0$ esiste un M > 0 tale che $f(x) < -M, \forall x \in (2 - \delta, 2 + \delta)$ con $x \neq 2$

d) $\forall M > 0$ esiste un $\delta > 0$ tale che $2 - \delta < f(x) < 2 + \delta, \, \forall x < -M$

- 3. (PUNTI 1) Sia f definita su [a, b], derivabile su (a, b) e tale che f(a) = f(b). Allora
 - a) esiste un punto $x_0 \in (a, b)$ tale che x_0 è un punto estremante
 - b) esiste un punto $x_0 \in (a, b)$ tale che $f'(x_0) = 0$
 - c) esistono $\max_{x \in [a,b]} f(x)$ e $\min_{x \in [a,b]} f(x)$
 - d) f è continua in (a, b)
- 4. (PUNTI 1) Sia a_n una successione infinitesima. Allora
 - a) $|a_n|$ è infinitesima
 - b) $\sum_{n=0}^{\infty} a_n$ converge
 - c) $\sum_{n=0}^{\infty} (-1)^n a_n$ converge
 - d) $\sum_{n=0}^{\infty} a_n x^n$ ha raggio di convergenza $+\infty$
- 5. (PUNTI 1) Sia $A \subseteq \mathbb{R}$ inferiormente limitato. Allora
 - a) $\inf A = \min A$
 - b) inf A è un minorante di A
 - c) inf A è il più piccolo dei minoranti
 - d) inf $A + \varepsilon$ è un minorante di A, per $\varepsilon > 0$ sufficientemente piccolo

- 6. (PUNTI 3) Calcolare con la **definizione** la derivata di $f(x) = \frac{1}{1+x^2}$ in $x_0 = 1$
- 7. (PUNTI 3) Trovare le soluzioni in forma algebrica dell'equazione |z|=i-2z
- 8. (PUNTI 3) Calcolare la formula di Taylor arrestata al secondo ordine e centrata in $x_0 = 0$, con resto in forma di Peano, della funzione $f(x) = x^2 2x + 2\log(\sin x + 1)$ e determinare la natura del punto x_0
- 9. (PUNTI 3) Calcolare l'integrale $\int_{1}^{+\infty} \frac{e^{x}}{e^{2x} 2e^{x} + 1} dx$
- 10. (PUNTI 2) Determinare il carattere della serie $\sum_{n=0}^{\infty} \frac{2^n + 3^n}{n^4 + e^n}$

11. (PUNTI 3) Determinare in forma esplicita l'espressione della funzione

$$F(x) = \int_{1}^{x} f(t)dt \text{ dove } f(x) = \begin{cases} 2x + 1 & x < 0\\ \frac{1}{1 + x^{2}} & x \ge 0 \end{cases}$$

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(PUNTI 8) Si consideri la funzione $f(x) = \log x - \arctan(x-1)$.

- 1) Determinare: l'insieme di definizione; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo
- 2) Tracciare il grafico di f
- 3) Quanti sono gli zeri della funzione?

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 24.02.21

Corso di Laurea in Informatica - a.a. 2020/21 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1. Le soluzioni dell'equazione $\log(x^2) - 1 = 0$ sono

a)
$$x = \pm e$$

b)
$$x = \pm 1$$

c)
$$x = \pm \sqrt{e}$$

a)
$$x = \pm e$$
 b) $x = \pm 1$ c) $x = \pm \sqrt{e}$ d) $x = e, x = \frac{1}{e}$

2. Sia $B\subseteq \mathbb{R}$ così definito $\,B=\{2-|x|\,$ tale che $\,|x|\leq 1\}$. Allora

a)
$$B = [1, 2]$$

b)
$$B = (-\infty, 2]$$

c)
$$B = (-\infty, 1]$$

d)
$$B = [-1, 1]$$

a) B=[1,2] b) $B=(-\infty,2]$ c) $B=(-\infty,1]$ d) B=[-1,1] 3. Le soluzioni della disequazione $1+x+\frac{1}{x}\geq 0$ sono

a)
$$\forall x \in \mathbb{R}$$

a) $\forall x \in \mathbb{R}$ b) nessuna soluzione c) x > 0 d) $x \ge 0$

c)
$$x > 0$$

$$d) x \ge 0$$

a)
$$-\frac{13}{6}$$

b)
$$\frac{6}{13}$$

c)
$$-\frac{1}{3}$$

4. Calcolare $\log_{\frac{1}{3}}(9\sqrt[6]{3})$ a) $-\frac{13}{6}$ b) $\frac{6}{13}$ c) $-\frac{1}{3}$ d) 3

5. Le soluzioni dell'equazione $2^{x+1}3^x = 4$ sono
a) $x = \log_2 6$ b) $x = \log_6 2$ c) $x = 2\log_3 2$ d) $x = \frac{\log_6 4 - 1}{2}$

a)
$$x = \log_2 6$$

b)
$$x = \log_6 2$$

c)
$$x = 2\log_3 2$$

d)
$$x = \frac{\log_6 4 - 1}{2}$$

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. **(PUNTI 1)** Sia $F(x) = \int_0^x f(t)dt$, con f continua su \mathbb{R} . Allora a) F'(0) = f'(0) b) F(0) = f(0) c) F(0) = 0 d) F'(0) = 0

a)
$$F'(0) = f'(0)$$

b)
$$F(0) = f(0)$$

c)
$$F(0) = 0$$

d)
$$F'(0) = 0$$

2. (PUNTI 1) Sia f una funzione definita su \mathbb{R} , 2π – periodica e continua a tratti. Sia

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 la serie di Fourier associata.

a) Se
$$f$$
 è pari allora $a_n = 0$ per $n = 0, 1, 2...$

b) Se
$$f$$
 è dispari allora $a_n = 0$ per $n = 0, 1, 2...$

c) La serie di Fourier converge a
$$f(x)$$
 per ogni $x \in \mathbb{R}$

d) La serie di Fourier converge solo per i valori x in cui f è continua

- 3. (PUNTI 1) Sia f continua su \mathbb{R} .
 - a) Se f è monotona su $\mathbb R$ allora esiste $\lim_{x\to -\infty} f(x)$
 - b) Se f è monotona su \mathbb{R} allora $\lim_{x\to +\infty} f(x) = +\infty$
 - c) f ammette massimo e minimo assoluto su \mathbb{R}
 - d) f è invertibile su \mathbb{R}
- 4. (PUNTI 1) Siano a_n e b_n due successioni tali che $0 \le a_n \le b_n$, $n \in \mathbb{N}$.
 - a) $a_n = o(b_n)$
 - b) $a_n \sim b_n$
 - c) Se $\sum_{n=1}^{\infty} a_n$ converge, allora $\sum_{n=1}^{\infty} b_n$ converge
 - d) Se $\sum_{n=1}^{\infty} a_n$ diverge, allora $\sum_{n=1}^{\infty} b_n$ diverge
- 5. (PUNTI 1) Sia $f: [a, b] \subseteq \mathbb{R} \to \mathbb{R}$.
 - a) Se $x_0 \in (a, b)$ è un punto estremante, allora f è derivabile in x_0 e vale $f'(x_0) = 0$
 - b) Se $x_0 \in [a, b]$ è un punto estremante e f è derivabile in x_0 , allora $f'(x_0) = 0$
 - c) Se f è continua su [a,b], allora f è invertibile su [a,b]
 - d) Se f è continua e invertibile su [a,b], allora f^{-1} è continua su f([a,b])

- 6. (PUNTI 3) Utilizzando la definizione di limite, dimostare che $\lim_{x\to +\infty} \frac{e^x}{e^x+1} = 1$
- 7. (PUNTI 3) Trovare le soluzioni in forma algebrica dell'equazione $z^3 = 4i|z|$
- 8. (PUNTI 3) Calcolare l'integrale $\int_1^e (\log x)^2 dx$
- 9. (PUNTI 3) Determinare il carattere della serie $\sum_{n=1}^{\infty} \frac{\sqrt{1 + \frac{2}{n}} 1}{n}$
- 10. (PUNTI 3) Data la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ dimostrare che è convergente usando il confronto integrale e determinare la rapidità di approssimazione alla somma.

(PUNTI 10) Si consideri la funzione $f(x) = x^2(\log x - 1)$.

- 1) Determinare: l'insieme di definizione; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo; f''(x); il segno di f''(x), eventuali punti di flesso.
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Tracciare un grafico qualitativo di g(x) = f(|x|)
- 4) f(x) è prolungabile per continuità in qualche punto? Se sì, quale?

FORMULE DI TAYLOR

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) \qquad \text{per } x \to 0$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) \qquad \text{per } x \to 0$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n) \qquad \text{per } x \to 0$$

$$(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + o(x^2) \qquad \text{per } x \to 0$$

$$\arcsin x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\tan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\tan x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\tan x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 16.06.21

Corso di Laurea in Informatica - a.a. 2020/21 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1.	Le so	luzioni	dell	'equazione	$\log_4($	1-x) = 3	sono
----	-------	---------	------	------------	-----------	-----	-------	------

a)
$$x = 1 - e^3$$

b)
$$x = -11$$

a)
$$x = 1 - e^3$$
 b) $x = -11$ c) $x = 1 - e^{12}$ d) $x = -63$

d)
$$x = -63$$

2. Sia
$$B \subseteq \mathbb{R}$$
 così definito $B = \{1 + 2x \text{ tale che } x > 3\}$. Allora

a)
$$B = (3, +\infty)$$

b)
$$2 \in B$$

a)
$$B = (3, +\infty)$$
 b) $2 \in B$ c) $B = (7, +\infty)$ d) $7 \in B$

d)
$$7 \in E$$

3. Le soluzioni della disequazione
$$6x^2 - x \ge 1$$
 sono

a)
$$-\frac{2}{3} \le x \le 1$$

b)
$$x \le -\frac{2}{3}$$
 e $x \ge$

c)
$$-\frac{1}{3} \le x \le \frac{1}{2}$$

a)
$$-\frac{2}{3} \le x \le 1$$
 b) $x \le -\frac{2}{3}$ e $x \ge 1$ c) $-\frac{1}{3} \le x \le \frac{1}{2}$ d) $x \le -\frac{1}{3}$ e $x \ge \frac{1}{2}$

4. Calcolare l'ottava parte di
$$(16)^5$$
 come potenza di 2

a)
$$2^{8}$$

(b)
$$2^{17}$$
 c) 2^{20}

c)
$$2^{20}$$

d)
$$2^5$$

5. Calcolare il prezzo di vendita di un capo da 350 Euro scontato del 18%

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia
$$F(x) = \int_0^x f(t)dt$$
, con f continua e positiva su \mathbb{R} . Allora

a) F(x) è monotona strettamente crescente su \mathbb{R}

b) F(x) è positiva su \mathbb{R}

c)
$$\lim_{x \to +\infty} F(x) = +\infty$$

d)
$$F'(0) = 0$$

2. (PUNTI 1) Sia
$$f:[a,b] \to \mathbb{R}$$
.

a) Se
$$x_0 \in (a, b)$$
 ed esiste $f'(x_0) \neq 0$, allora x_0 non è punto estremante

b) Se
$$f$$
 è derivabile in $x_0 \in (a,b)$ allora $f'(x_0) = 0$

c) Se
$$x_0 \in [a, b]$$
 è un punto estremante e f è derivabile in x_0 allora $f'(x_0) = 0$

d) Se
$$f(a)f(b) > 0$$
 allora $f(x_0) > 0$ per ogni $x_0 \in [a, b]$

3. (PUNTI 1) Sia
$$A \subset \mathbb{R}$$
 non vuoto e limitato inferiormente.

a) L'estremo inferiore di
$$A$$
 è il minimo dei minoranti

b) L'estremo inferiore di
$$A$$
 è il minimo dei maggioranti

c)
 L'estremo inferiore di
$$A$$
 è il massimo dei maggioranti

- 4. (PUNTI 1) Siano $a_n e b_n$ due successioni a termini non nulli con $a_n = b_n + \frac{1}{n}$. Allora

- a) $a_n = o(b_n)$ b) $a_n \sim b_n$ c) $b_n = o(a_n)$ d) $a_n = b_n + o(1)$
- 5. (PUNTI 1) Siano a_n, b_n, c_n tre successsioni tali che $0 \le a_n \le b_n \le c_n$
 - a) Se $\sum_{n=0}^{\infty} a_n$ converge allora $\sum_{n=0}^{\infty} b_n$ converge
 - b) Se $\sum_{n=0}^{\infty} c_n$ diverge allora $\sum_{n=0}^{\infty} b_n$ diverge
 - c) Se $\sum_{n=1}^{\infty} b_n$ converge allora le serie $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} c_n$ convergono
 - d) Se $\sum_{n=1}^{\infty} a_n$ diverge allora $\sum_{n=1}^{\infty} c_n$ diverge

- 6. (PUNTI 3) Utilizzando la **definizione**, dimostare che la successione $a_n = \frac{n^2 4n}{n+2}$ è monotona, specificando se crescente o decrescente
- 7. (PUNTI 3) Trovare le soluzioni in forma algebrica dell'equazione $z^3 + \overline{z} = 0$
- **8.** (**PUNTI 3**) Calcolare l'integrale improprio $\int_{0}^{9} \frac{\log x}{\sqrt{x}} dx$
- 9. (PUNTI 3) Determinare il carattere della serie $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$
- 10. (PUNTI 3) Data la funzione $f(x) = \frac{1}{x}$ scrivere la formula di Taylor con resto in forma di Peano arrestata al terzo ordine e centrata in x = 2

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(PUNTI 10) Si consideri la funzione $f(x) = \arctan x - \log(x - 1)$.

- 1) Determinare: l'insieme di definizione A; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo; $\sup_{A} f$; $\inf_{A} f$.
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Tracciare un grafico qualitativo di g(x) = f(|x|)
- 4) Tracciare un grafico qualitativo di h(x) = |f(x)|
- 5) Determinare al variare di k il numero di soluzioni di $\arctan x \log(x 1) = k$

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 06.07.21

Corso di Laurea in Informatica - a.a. 2020/21 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1. Calcolare
$$\log_{\frac{1}{5}} \left(\frac{\sqrt[3]{25}}{5^2} \right)$$
 a) $-\frac{4}{3}$ b) $\frac{4}{3}$ c) $-5^{-\frac{4}{3}}$ d) $5^{\frac{4}{3}}$

2. Sia
$$B = \{(x,y) \in \mathbb{R}^2 \text{ tali che } x + |y| > 1 \text{ e } x^2 - x < 1\}$$
. Allora

a)
$$(-1, 2) \in B$$

b)
$$(\frac{1}{2}, \frac{1}{3}) \in B$$

c)
$$(\frac{1}{2}, -\frac{2}{3}) \in E$$

a)
$$(-1,2) \in B$$
 b) $(\frac{1}{2}, \frac{1}{3}) \in B$ c) $(\frac{1}{2}, -\frac{2}{3}) \in B$ d) $(2, -3) \in B$

3. Le soluzioni della disequazione
$$\frac{1}{x} + \frac{1}{x+2} \ge 1$$
 sono

a)
$$-\sqrt{2} \le x \le \sqrt{2}$$

a)
$$-\sqrt{2} \le x \le \sqrt{2}$$
 b) $x \le -1$ e $x \ge 1$

c)
$$-2 < x < 0$$

c)
$$-2 < x < 0$$
 d) $-2 < x \le -\sqrt{2}$ e $0 < x \le \sqrt{2}$

4. Risolvere l'equazione
$$(3^x)^2 + 2(9^x) = 1$$

b)
$$x = -\frac{1}{2}$$

e)
$$x = 1$$

a) Nessuna soluzione b)
$$x=-\frac{1}{2}$$
 c) $x=1$ d) $x=-1+\sqrt{2}$ e $x=-1-\sqrt{2}$

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia
$$F(x) = \int_a^x f(t)dt$$
, con f continua su $[a,b]$. Allora

a)
$$F(b) = f(b) - f(a)$$

b)
$$F(x)$$
 ammette in $x = a$ un punto estremante

c) se
$$f(x) > 0$$
 allora $F(x) \ge 0, \forall x \in [a, b]$

d)
$$f'(x) = F(x), \forall x \in [a, b]$$

2. (PUNTI 1) Sia
$$f:[a,b] \to \mathbb{R}$$
.

a) esiste almeno un punto
$$x_0 \in [a, b]$$
 tale che $f(x) \leq f(x_0), \, \forall \, x \in [a, b]$

b) Se
$$f$$
 è derivabile in $x_0 \in (a, b)$ allora $\lim_{x \to x_0} f(x) = f(x_0)$

c) Se
$$f$$
 è continua in $x_0 \in [a,b]$ allora f è derivabile in x_0

d) Se
$$f(a)f(b) < 0$$
 allora esiste un punto $x_0 \in (a,b)$ tale che $f(x_0) = 0$

3. (PUNTI 1) Sia
$$f$$
 continua su $[a, b]$ e derivabile su (a, b) .

a) Allora esiste almeno un punto
$$x_0 \in (a,b)$$
 tale che $f(x_0) = \frac{f(b)-f(a)}{b-a}$.

b) Allora esiste almeno un punto
$$x_0 \in (a,b)$$
 tale che $f'(x_0) = \frac{f(b) - f(a)}{b-a}$

c) Se
$$f(a) = f(b)$$
, allora $f(x) = k$, $\forall x \in [a, b]$

d) Allora esiste almeno un punto
$$x_0 \in (a, b)$$
 tale che $f'(x_0) = 0$

4. (PUNTI 1)

Siano a_n e b_n due successioni a termini non nulli con $a_n \sim b_n$. Allora

a)
$$a_n = b_n + o(1)$$

$$b) a_n = o(b_n)$$

a)
$$a_n = b_n + o(1)$$
 b) $a_n = o(b_n)$ c) $a_n = b_n + o(b_n)$ d) $\frac{a_n}{b} = o(1)$

$$d) \frac{a_n}{b_n} = o(1)$$

5. (PUNTI 1) Si consideri una successione a_n tale che $a_n \geq 0$.

a) Se
$$\sum_{n=0}^{\infty} a_n$$
 converge allora $\sum_{n=0}^{\infty} (-1)^n a_n$ converge.

b) Se
$$\sum_{n=0}^{\infty} (-1)^n a_n$$
 converge allora $\sum_{n=0}^{\infty} a_n$ converge.

c) Se
$$\lim_{n\to+\infty} a_n = 0$$
 allora le serie $\sum_{n=0}^{\infty} (-1)^n a_n$ converge.

d) Se
$$\sum_{n=0}^{\infty} a_n$$
 diverge allora $\sum_{n=0}^{\infty} (-1)^n a_n$ diverge.

PARTE II-2 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

6. (PUNTI 3) Calcolare con la **definizione** la derivata di
$$f(x) = \frac{1}{x^2 - 1}$$
 in $x_0 = 2$.

7. (PUNTI 3) Trovare le soluzioni
$$z^2\overline{z}-3z|z|+2z=0$$
 e disegnarle sul piano complesso.

8. (**PUNTI 3**) Calcolare l'integrale definito
$$\int_{-1}^{0} \frac{2x+1}{4x^2-4x+1} dx$$

9. **(PUNTI 3)** Data la serie di potenze
$$\sum_{n=0}^{\infty} \left(\frac{n}{n^2+1}2^n\right) x^n$$
, determinare il raggio di convergenza e l'insieme di convergenza.

10. (PUNTI 3) Stabilire la natura di
$$x = 0$$
 per $f(x) = e^{-2x} + \sin x - 2x^2 + x + 3$

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(PUNTI 10) Si consideri la funzione
$$f(x) = \log\left(\frac{e^{2x} - 4e^x + 3}{e^{2x}}\right)$$
.

- 1) Determinare: l'insieme di definizione A; il segno di f; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo.
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Tracciare un grafico qualitativo di g(x) = f(|x|)

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 19.01.22

Corso di Laurea in Informatica - a.a. 2021/22 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1. Calcolare
$$\log_{\frac{1}{5}} \left(\frac{\sqrt[3]{25}}{5^3} \right)$$
 a) $-\frac{3}{7}$ b) $\frac{3}{7}$ c) $-\frac{7}{3}$ d) $\frac{7}{3}$

$$-\frac{3}{7}$$

$$\frac{3}{7}$$
 c) –

$$d) \frac{7}{3}$$

2. Sia
$$B \subseteq \mathbb{R}$$
 tale che $B = \{x^2 + 4x \mid -4 < x < 0\}$, allora

a)
$$0 \in B$$

a)
$$0 \in B$$
 b) $B \subset (-4,0)$ c) $-4 \notin B$ d) $(-4,0) \subset B$

c)
$$-4 \notin B$$

d)
$$(-4,0) \subset E$$

3. Le soluzioni della disequazione
$$\frac{4}{x} + x + 4 < 0$$
 sono

a)
$$-2 < x < 0$$

a)
$$-2 < x < 0$$
 b) $x < 0$ con $x \ne -2$ c) $x < 0$ d) nessuna soluzione

c)
$$x < 0$$

4. Le soluzioni dell'equazione
$$e^{2x} - e^x = 6$$
 sono

(a)
$$x = \log 3$$

b)
$$x = \log 3 e x = \log 2$$
 c) $x = 3 e x = -2$ d) $x = 3$

c)
$$x = 3 e x = -2$$

d)
$$x = 3$$

5. Calcolare
$$\frac{1}{8}$$
 di $(16)^2$

a)
$$2^2$$

b)
$$2^3$$
 c) 2^4 d) 2^5

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia
$$\lim_{n \to +\infty} a_n = a \in \mathbb{R}$$
.

a) Se $a \neq 0$ allora a_n è illimitata

b)
$$(a_n - a) = o(1)$$

c)
$$(a_n - a) \sim 1$$

d) Se
$$a = 0$$
 allora $\sum_{n=0}^{\infty} a_n$ è convergente

2. (PUNTI 1) Sia $A \subseteq \mathbb{R}$ inferiormente limitato. Allora

- a) esiste $\min A$
- b) esiste inf A
- c) inf A è il più piccolo dei minoranti di A
- d) inf A è il più piccolo dei maggioranti di A

3. (PUNTI 1) Sia
$$f$$
 continua nell'intervallo $[a,b]$ con $f(a)=f(b)$. Allora

- a) f è costante su [a, b]
- **b)** esiste un punto $x_0 \in (a,b)$ tale che $f'(x_0) = 0$
- c) f non è iniettiva su [a, b]
- d) f è invertibile su [a, b]

- 4. (PUNTI 1) Sia f continua in [a, b]. Allora
 - a) esiste almeno un punto $x_0 \in [a,b]$ tale che $f(x_0)(b-a) = \int_a^b f(x)dx$
 - b) esiste almeno un punto $x_0 \in [a, b]$ tale che $f(x_0) = (b a) \int_a^b f(x) dx$
 - c) esiste almeno un punto $x_0 \in [a, b]$ tale che $f(x_0) = \int_a^b f(x) dx$
 - d) esiste almeno un punto $x_0 \in [a, b]$ tale che $f(x_0) = \int_a^{x_0} f(x) dx$
- 5. **(PUNTI 1)** Sia f una funzione definita su \mathbb{R} , 2π periodica e continua a tratti. Sia $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ la serie di Fourier associata. Allora
 - a) la serie $\sum_{n=1}^{\infty} a_n$ converge
- b) la serie $\sum_{n=1}^{\infty} b_n$ diverge
- c) la serie di Fourier non converge nei punti in cui f(x) non è continua
- d) la serie di Fourier converge nei punti in cui f(x) non è continua a f(x)

- 6. (PUNTI 3) Utilizzando la definizione di limite, dimostare che $\lim_{x\to 0^+} \frac{1}{e^x-1} = +\infty$
- 7. (PUNTI 3) Trovare le soluzioni in \mathbb{C} in forma algebrica di $2|z| = 2z + (z\bar{z})^{\frac{1}{2}} i$
- **8.** (PUNTI 3) Trovare la primitiva di $f(x) = \log(x^2 + 1)$ che vale 5 in x = 1.
- 9. **(PUNTI 3)** Data la serie di potenze $\sum_{n=0}^{\infty} \left(\frac{n}{n^2+1}\right) \frac{1}{2^n} x^n$, determinare il raggio di convergenza e l'insieme di convergenza.
- 10. (PUNTI 3) Calcolare la formula di Taylor al II ordine centrata in $x_0 = 0$, con resto di Peano, di $f(x) = e^{x^2} + \sin x + \log(1+x) 2x x^2$ e determinare la natura di x_0

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(**PUNTI 10**) Si consideri la funzione
$$f(x) = \frac{e^{2x}}{e^x - 1}$$
.

- 1) Determinare: l'insieme di definizione A; il segno di f; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo.
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Determinare al variare del parametro k il numero di soluzioni dell'equazione f(x) = k
- 4) Tracciare un grafico qualitativo di g(x) = f(|x|)

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 03.02.22

Corso di Laurea in Informatica - a.a. 2021/22 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1	Onale	di	queste	espressioni	۵	hen	definita
Ι.	Quare	СП	queste	espression	е	ben	uemma

a) $\log(\sin \pi - 1)$ b) $\sqrt{\cos \pi}$ c) $\arccos \pi$ d) $\frac{1}{\arctan 1 - 1}$

2. Sia $B\subseteq \mathbb{R}$ tale che $B=\left\{\frac{x}{x-1}, \text{ tali che } x<1\right\}$, allora

a) $-1 \in B$ b) $1 \in B$ c) $2 \in B$ d) $3 \in B$

3. Le soluzioni della disequazione $|2^x - 3| < 3$ sono

a) $0 < x < \log_2 6$ b) $x < \log_2 6$ c) $-\log_2 6 < x < \log_2 6$

4. Le soluzioni della disequazione $\sqrt{\log(x-1)} \ge -1$ sono

b) $x \ge 2$ c) $x \ge e+1$ d) $\forall x \in \mathbb{R}$

5. Il prezzo di vendita di un capo viene prima scontato del 50% e poi di un ulteriore 40% sull'importo residuo. Qual è la percentuale di sconto finale rispetto al valore iniziale?

a) 60%

b) 70%

c) 80%

d) 90%

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) La relazione $\frac{n^{\alpha}}{1+n^{\alpha}} \sim 1$ è vera

a) solo per $\alpha=0$ —b) solo per $\alpha>0$ —c) solo per $\alpha\geq0$ —d) per ogni α

2. (PUNTI 1) Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ e superiormente limitato.

a) Se $\alpha < \sup A$ allora esiste $z \in A$ tale che $\alpha < z < \sup A$

b) Se $\alpha > \sup A$ allora esiste $z \in A$ tale che $\sup A < z < \alpha$

c) Esiste almeno un punto $z \in A$ tale che $z = \sup A$

d) sup A è il più grande dei maggioranti di A

3. (PUNTI 1) Siano $f \in g$ continue in [a, b] e derivabili in $(a, b) \in g'(x) \neq 0, \forall x \in (a, b)$.

a) Se f'(x) = g'(x), $\forall x \in (a, b)$ allora f(x) = g(x), $\forall x \in (a, b)$

b) Se $\int_a^b f(x)dx = \int_a^b g(x)dx$ allora $f(x) = g(x), \forall x \in (a,b)$

c) Esiste un punto $x_0 \in (a,b)$ tale che $\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

d) Esiste un punto $x_0 \in (a, b)$ tale che $\frac{f(x_0)}{g(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

- 4. (PUNTI 1) Scegliere la definizione corretta di $\lim_{x\to-\infty} f(x)=2$
 - a) $\exists M > 0$ tale per cui $\forall x < -M$ si ha f(x) = 2
 - b) $\forall \varepsilon > 0$ si ha $|f(x) 2| < \varepsilon$
 - c) $\forall M > 0 \; \exists \; \varepsilon > 0 \; \text{tale per cui} \; \; \forall x < -M \; \text{si ha} \; 2 \varepsilon < f(x) < 2 + \varepsilon$
 - d) $\forall \varepsilon > 0 \; \exists \; M > 0$ tale per cui $\; \forall x < -M \; \text{si ha} \; 2 \varepsilon < f(x) < 2 + \varepsilon \;$
- 5. (**PUNTI 1**) Sia f definita in un intorno di $x_0 = 0$ e sia derivabile tre volte in x_0 . Inoltre valga $f(x) = 1 + \alpha x^2 + x^3 + o(x^3)$ per $x \to 0$.
 - a) Se $\alpha>0,$ allora $x_0=0$ è un punto di massimo relativo di f
 - b) Se $\alpha < 0$, allora $x_0 = 0$ è un punto di minimo relativo di f
 - c) Se $\alpha = 0$, allora $x_0 = 0$ non è un punto estremante di f
 - d) $x_0 = 0$ è un punto estremante di f per qualunque valore di α

- 6. (PUNTI 3) Data f definita in un intorno di $x_0 = 1$, scrivere la **definizione** di f'(1). Inoltre calcolare (con la definizione) f'(1) nel caso $f(x) = \frac{1}{1+x^2}$
- 7. (PUNTI 3) Trovare le soluzioni in $\mathbb C$ in forma algebrica di $iz^2=2\bar z$
- 8. (**PUNTI 3**) Calcolare l'integrale improprio $\int_0^2 \frac{1+x}{\sqrt{x}} dx$
- 9. (PUNTI 3) Data la serie di potenze $\sum_{n=0}^{\infty} \frac{3^n \log n}{n^2} x^n$, determinare il raggio di convergenza e l'insieme di convergenza.
- 10. (**PUNTI 3**) Calcolare l'integrale indefinito $\int \frac{x}{x^2 2x + 5} dx$

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(**PUNTI 10**) Si consideri la funzione
$$f(x) = \frac{\log x}{\log x - 1}$$
.

- 1) Determinare: l'insieme di definizione A; il segno di f; i limiti agli estremi di A; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo, f''(x); il segno di f''(x); eventuali punti di flesso.
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Stabilire se la funzione f è prolungabile per continuità in qualche punto x_0

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 17.02.22

Corso di Laurea in Informatica - a.a. 2021/22 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1.	Le soluzioni	dell'equazione	$\log_4(1-x)$) = 3 sono
- •	LC SOIGZIOIII	don equazione	1054(1 0	, 0 50110

a)
$$x = 1 - e^3$$

b)
$$x = -11$$

a)
$$x = 1 - e^3$$
 b) $x = -11$ c) $x = 1 - e^{12}$ d) $x = -63$

d)
$$x = -63$$

2. Sia
$$B \subseteq \mathbb{R}$$
 così definito $B = \{1 + 2x \text{ tale che } x > 3\}$. Allora

a)
$$B = (3, +\infty)$$

b)
$$2 \in B$$

a)
$$B = (3, +\infty)$$
 b) $2 \in B$ c) $B = (7, +\infty)$ d) $7 \in B$

d)
$$7 \in I$$

3. Le soluzioni della disequazione
$$6x^2 - x \ge 1$$
 sono

a)
$$-\frac{2}{3} \le x \le 1$$

b)
$$x \le -\frac{2}{3}$$
 e $x \ge 1$

c)
$$-\frac{1}{3} \le x \le \frac{1}{2}$$

a)
$$-\frac{2}{3} \le x \le 1$$
 b) $x \le -\frac{2}{3}$ e $x \ge 1$ c) $-\frac{1}{3} \le x \le \frac{1}{2}$ d) $x \le -\frac{1}{3}$ e $x \ge \frac{1}{2}$

4. Calcolare l'ottava parte di
$$(16)^5$$
 come potenza di 2

a)
$$2^{8}$$

b)
$$2^{17}$$
 c) 2^{20}

c)
$$2^{20}$$

d)
$$2^5$$

5. Diminuendo del 50% il lato di un quadrato, di quanto **diminuisce** l'area?

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia
$$F(x) = \int_0^x f(t)dt$$
, con f continua e positiva su \mathbb{R} . Allora

a)
$$F(x)$$
 è monotona strettamente crescente su \mathbb{R}

b)
$$F(x)$$
 è positiva su \mathbb{R}

c)
$$\lim_{x \to +\infty} F(x) = +\infty$$

d)
$$F(0) = f(0)$$

2. (PUNTI 1) Sia
$$f:[a,b] \to \mathbb{R}$$
.

a) Se
$$x_0 \in (a,b)$$
 ed esiste $f'(x_0) \neq 0$, allora x_0 non è punto estremante

b) Se
$$f$$
 è continua in $x_0 \in (a, b)$ allora f è derivabile in x_0

c) Se
$$x_0 \in [a, b]$$
 è un punto estremante e f è derivabile in x_0 allora $f'(x_0) = 0$

d) Se
$$f$$
 è iniettiva su $[a, b]$ allora f è strettamente monotona su $[a, b]$

3. (PUNTI 1) Sia
$$A \subset \mathbb{R}$$
 non vuoto e limitato inferiormente.

a) L'estremo inferiore di
$$A$$
 è il minimo dei minoranti

c) L'estremo inferiore di
$$A$$
 è il massimo dei maggioranti

- 4. (PUNTI 1) Siano a_n e b_n due successioni a termini non nulli con $a_n = b_n + \frac{1}{n}$. Allora
 - a) $a_n = o(b_n)$ b) $a_n \sim b_n$ c) $b_n = o(a_n)$

- d) $a_n = b_n + o(1)$
- 5. (PUNTI 1) Siano a_n, b_n, c_n tre successsioni tali che $0 \le a_n \le b_n \le c_n$
 - a) Se $\sum_{n=0}^{\infty} a_n$ converge allora $\sum_{n=0}^{\infty} b_n$ converge
 - b) Se $\sum_{n=0}^{\infty} c_n$ diverge allora $\sum_{n=0}^{\infty} b_n$ diverge
 - c) Se $\sum_{n=1}^{\infty} b_n$ converge allora le serie $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} c_n$ convergono
 - d) Se $\sum_{n=1}^{\infty} a_n$ diverge allora $\sum_{n=1}^{\infty} c_n$ diverge

- 6. (PUNTI 3) Utilizzando la **definizione**, dimostare che la successione $a_n = \frac{n^2 4n}{n+2}$ è monotona, specificando se crescente o decrescente
- 7. (PUNTI 3) Trovare le soluzioni in forma algebrica dell'equazione $z^3 + \overline{z} = 0$
- 8. (PUNTI 3) Stabilire la natura di x = 0 per $f(x) = e^{-2x} + \sin x 2x^2 + x + 3$
- 9. (PUNTI 3) Calcolare l'integrale improprio $\int_{0}^{9} \frac{\log x}{\sqrt{x}} dx$
- 10. (PUNTI 3) Determinare il carattere della serie $\sum_{n=0}^{\infty} \frac{(n!)^2}{2^{n^2}}$

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(PUNTI 10) Si consideri la funzione $f(x) = (\log x)^3 - \log x$.

- 1) Determinare: l'insieme di definizione A; il segno di f; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo; sup f; inf f.
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Tracciare un grafico qualitativo di g(x) = |f(x)|
- 4) Determinare al variare di k il numero di soluzioni dell'equazione f(x) = k

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 15.06.22

Corso di Laurea in Informatica - a.a. 2021/22 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1. Le soluzioni dell'eq	uazione log	$g(x^2) = 1$	0 sono
-------------------------	-------------	--------------	--------

a) $\mathbb{R} \setminus \{0\}$

b) nessuna soluzione c) x = 1 e x = -1 d) x = 1

2. Sia $B \subseteq \mathbb{R}$ tale che $B = \{6x - x^2 \mid 0 < x < 6\}$, allora

a) B = [0, 9] b) B = (0, 9) c) B = (0, 9] d) B = [0, 9)

3. Le soluzioni della disequazione ax - 1 > 0 sono

a) se a < 0: $x < \frac{1}{a}$ b) $x > \frac{1}{a}$ c) se a = 0: $\forall x \in \mathbb{R}$ d) se $a \neq 0$: $x > \frac{1}{a}$

4. Le soluzioni della disequazione $\sin^2 x < 0$ sono

a) nessuna soluzione b) x = 0 e $x = \pi$ c) $x = 2k\pi, k \in \mathbb{Z}$ d) $x = k\pi, k \in \mathbb{Z}$

5. Aumentando del 100% la misura del lato di un quadrato, di quanto **aumenta** l'area?

a) 100%

b) 200%

c) 300%

d) 400%

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia $b_n \neq 0$ e valga $\lim_{n \to +\infty} \frac{a_n}{b_n} = 0$. Allora

a) $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n$

b) $a_n = o(b_n)$

c) $b_n = o(a_n)$

 $d) \lim_{n \to +\infty} a_n = 0$

2. (PUNTI 1) Sia $A \subseteq \mathbb{R}$ inferiormente limitato.

a) Se $\beta \leq \inf A$ allora β è un minorante di A

b) inf A è il più piccolo dei minoranti di A

c) inf A è il più piccolo dei maggioranti di A

d) Se esiste inf A allora esiste min A e sono uguali

3. (PUNTI 1) Sia f continua nell'intervallo [a, b].

a) Se f(a) = f(b) allora f è costante su [a, b]

b) Se f(a) > 0 e f(b) > 0 allora $f(x) > 0, \forall x \in [a, b]$

c) Se f(a) < f(b) allora f([a, b]) = [f(a), f(b)]

d) Se f(a) < f(b) allora $[f(a), f(b)] \subseteq f([a, b])$

- 4. (PUNTI 1) Sia f continua su [a,b] e sia $F(x) = \int_a^x f(t)dt, \forall x \in [a,b].$
 - a) Se G è una primitiva di f su [a, b], allora $F(x) = G(x), \forall x \in [a, b]$.
 - b) Se G è una primitiva di f su [a,b], allora $F(x) F(a) = G(x) G(a), \forall x \in [a,b]$.
 - c) Se G è una primitiva di f su [a, b], allora $F'(x) = G(x), \forall x \in [a, b]$.
 - d) Se G è una primitiva di f su [a,b], allora $G'(x)=F(x),\,\forall\,x\in[a,b].$
- 5. (PUNTI 1) Siano a_n, b_n, c_n tre successsioni tali che $0 \le a_n \le b_n \le c_n$
 - a) Se $\sum_{n=1}^{\infty} a_n$ converge allora le serie $\sum_{n=1}^{\infty} b_n$ e $\sum_{n=1}^{\infty} c_n$ convergono
 - b) Se $\sum_{n=1}^{\infty} c_n$ diverge allora le serie $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ divergono
 - c) Se $\sum_{n=1}^{\infty} b_n$ converge allora le serie $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} c_n$ convergono
 - d) Se $\sum_{n=1}^{\infty} a_n$ diverge allora le serie $\sum_{n=1}^{\infty} b_n$ e $\sum_{n=1}^{\infty} c_n$ divergono

- 6. (PUNTI 3) Utilizzando la **definizione**, dimostare che la successione $a_n = \frac{n+1}{n^2 n}$ è monotona strettamente decrescente per $n \ge 2$.
- 7. (**PUNTI 3**) Trovare le soluzioni in \mathbb{C} in forma algebrica di $|z| = \frac{z^4}{z\overline{z}} 6$
- 8. (PUNTI 3) Calcolare $\int_{1}^{+\infty} xe^{-x^2} dx$.
- 9. **(PUNTI 3)** Data la serie di potenze $\sum_{n=1}^{\infty} \left(\frac{n + \log n}{3^n n^2}\right) x^n$, determinare il raggio di convergenza e l'insieme di convergenza.
- 10. (PUNTI 3) Calcolare la formula di Taylor al II ordine centrata in $x_0 = 0$, con resto di Peano, di $f(x) = \sin x + \cos x e^x + 2$ e determinare la natura di x_0 .

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(PUNTI 10) Si consideri la funzione
$$f(x) = \frac{x^3}{x^2 - 3}$$
.

- 1) Determinare: l'insieme di definizione A; il segno di f; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo.
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Determinare al variare del parametro k il numero di soluzioni dell'equazione f(x) = k

PROVA SCRITTA - MATEMATICA DEL CONTINUO - 14.07.22

Corso di Laurea in Informatica - a.a. 2021/22 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 quesiti su 5

1. Le soluzioni dell'equazione $(27)^{x-2} = 3$ sono

a)
$$x = 5$$
 b) $x = \frac{7}{3}$ c) $x = 3$ d) $x = \frac{2}{3}$

2. Sia $E \subseteq \mathbb{R}$ così definito $E = \{2x + x^2 \text{ tale che } x < 0\}$. Allora

a)
$$E = (-1, +\infty)$$
 b) $-2 \in E$ c) $E = [-1, +\infty)$ d) $0 \notin E$

b)
$$-2 \in E$$

c)
$$E = [-1, +\infty]$$

$$d) \ 0 \notin E$$

3. Le soluzioni della disequazione $2\sqrt{x} < x$ sono

a)
$$x < 0$$
 e $x > 4$

b)
$$x > 0$$

c)
$$x > 4$$

b)
$$x > 0$$
 c) $x > 4$ d) $0 < x < 4$

4. Calcolare $\log_3 \frac{1}{2^{10}} \left(\frac{8^4}{6^2} \right)$ a) -2 b) 2 c) $-\frac{1}{2}$ d) $\frac{1}{2}$

a)
$$-2$$

d)
$$\frac{1}{2}$$

5. Un capo da 120 euro viene venduto a 78 euro. La percentuale di sconto applicata è

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia $F(x) = \int_{0}^{x} f(t)dt$, con f continua, derivabile e positiva su \mathbb{R} . Allora

a) F(x) è monotona strettamente crescente su \mathbb{R}

b)
$$f'(x) = F(x), \forall x \in \mathbb{R}$$

c)
$$\lim_{x \to +\infty} F(x) = +\infty$$

d)
$$F(0) = f(0)$$

2. (PUNTI 1) Siano f e g continue su [a,b] e derivabili su (a,b).

a) Se
$$f'(x) = g'(x), \forall x \in (a, b), \text{ allora } f(x) = g(x), \forall x \in (a, b)$$

b) Se
$$g'(x) \neq 0$$
, $\forall x \in (a, b)$, allora esiste $x_0 \in (a, b)$ tale che $\frac{f'(x_0)}{g'(x_0)} = 0$

c) Se
$$g'(x) \neq 0$$
, $\forall x \in (a,b)$, allora esiste $x_0 \in (a,b)$ tale che $\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

d) Se
$$f(x) < g(x), \, \forall x \in (a,b),$$
 allora $f'(x) < g'(x), \, \forall x \in (a,b)$

- 3. (PUNTI 1) Siano $a_n \in b_n$ due successioni a termini non nulli con $a_n \sim b_n$. Allora
- a) $a_n = o(b_n)$ b) $a_n = b_n + o(1)$ c) $a_n = b_n + o(b_n)$ d) $a_n = b_n + o(a_n)$
- 4. (PUNTI 1) Sia $A \subset \mathbb{R}$ non vuoto e limitato superiormente.
 - a) Se non esiste il max A allora sup $A = +\infty$
 - b) Se non esiste il max A allora non esiste sup A
 - c) Se esiste il max A allora vale sup $A = \max A$
 - d) Se esiste il max A allora vale sup $A > \max A$
- 5. (PUNTI 1) Siano a_n, b_n, c_n tre successioni tali che $0 \le a_n \le b_n \le c_n$.
 - a) Se a_n e c_n convergeno allora b_n converge
 - b) Se c_n diverge a $+\infty$ allora a_n e b_n divergono a $+\infty$
 - c) Se b_n converge allora a_n e c_n convergeno
 - d) Se a_n diverge a $+\infty$ allora b_n e c_n divergono a $+\infty$

- 6. (PUNTI 3) Utilizzando la definizione, calcolare la derivata nel punto x=1 della funzione $f(x) = (3x+1)^{-1}$.
- 7. (PUNTI 3) Trovare le soluzioni in forma algebrica dell'equazione $z^3 4\overline{z} = 0$
- 8. (PUNTI 3) Calcolare la formula di Taylor arrestata al terzo ordine con resto di Peano e centrata in x = 0 della funzione $f(x) = e^{2x} - \sin x - 2x^2 - x - 2$.
- 9. (PUNTI 3) Calcolare l'integrale indefinito $\int \frac{x+2}{x^2-1} dx$
- 10. (PUNTI 3) Usando il confronto integrale studiare la rapidità di divergenza della serie $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte (PUNTI 10) Si consideri la funzione $f(x) = x(1 - \log x)$.

- 1) Determinare: l'insieme di definizione A; il segno di f; i limiti agli estremi dell'insieme
- di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); il segno di f'(x); eventuali punti di massimo o minimo relativo; f''(x); il segno di f''(x).
- 2) Tracciare un grafico qualitativo di f(x)
- 3) Tracciare un grafico qualitativo di g(x) = f(|x|)
- 4) Determinare al variare di k il numero di soluzioni dell'equazione f(x) = k