Un aereo è sostenuto in volo dalla *portanza*, cioè la spinta che l'aereo riceve dall'aria sulle ali: essa è sempre diretta perpendicolarmente al piano delle ali. In condizioni di volo rettilineo, la portanza bilancia esattamente la forza-peso. In curva, l'aereo inclina il piano alare, cosicché la portanza assume una componente orizzontale che fornisce forza centripeta.

Un aereo di linea sta volando ad una velocità di crociera v=850 km/h. Per effettuare una virata, inclina il piano delle ali di un angolo $\theta=35^{\circ}$ rispetto all'orizzontale. Qual è l'accelerazione centripeta a_{\perp} esercitata dalle ali sull'aereo? Qual è il raggio R della curva descritta?

Solutione

Possiamo scomporre la portanza \vec{F}_P in due componenti: una verticale, F_P^V , che sostiene l'aereo, e una orizzontale, F_P^H , che dà come effetto la forza centripeta. Poiché la portanza è sempre ortogonale alle ali, l'angolo θ formato dalle ali rispetto all'orizzontale è lo stesso formato dalla portanza rispetto alla verticale. Quindi, $F_P^V = F_P \cos \theta$ e $F_P^H = F_P \sin \theta$.

Detta m la massa dell'aereo, affiché esso sia sostenuto, deve essere $F_P^V = mg$, da cui si deduce $F_P^H = F_P \sin \theta = \frac{F_P^V}{\cos \theta} \sin \theta = mg \tan \theta$. L'accelerazione centripeta è $a_\perp = \frac{F_P^H}{m} = g \tan \theta = 6.866 \text{ m/s}^2$. Poiché $a_\perp = \frac{v^2}{R}$, si ricava $R = \frac{v^2}{a_\perp} = 8119 \text{ m} = 8.119 \text{ km}$.

Cognome e nome Matricola

Fisica Generale per Tecnologie dei Beni Culturali

Prova scritta 06 / 07 / 2015

Ogni risultato va espresso sia come formula che come valore numerico, completo di unità di misura. Se si usano simboli diversi da quelli che compaiono nei quesiti, occorre definirli.

Esercizio 1

Un pendolo è costituito da una massa m=20 kg appesa ad un filo di massa trascurabile e lunghezza $\ell=15$ m. Il pendolo viene trattenuto da una fune orizzontale in una posizione che si discosta di x=75 cm dalla verticale. Qual è la tensione T_1 della fune orizzontale? Qual è la tensione T_0 del cavo del pendolo?

Solutione

La massa del pendolo è soggetta a 3 forze: \vec{T}_0 è la tensione del filo del pendolo, \vec{F}_g è la forza di gravità, \vec{T}_1 è la tensione della fune orizzontale. In equilibrio deve essere $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$. Ora, scegliamo l'asse \hat{z} verso l'alto, e l'asse \hat{x} orizzontale e diretto come lo spostamento della massa del pendolo dal suo punto di equilibrio. L'asse \hat{y} in questo caso è irrilevante. Scriviamo per componenti le 3 forze in gioco:

$$\vec{T}_0 = T_{0,x}\hat{x} + T_{0,z}\hat{z}$$
 $\vec{F}_g = -mg\hat{z}$
 $\vec{T}_1 = T_1\hat{x}$

L'equilibrio delle forze implica che $T_{0,z}=mg=196.12$ N e $T_{0,x}=-T_1$. D'altra parte, la tensione \vec{T}_0 agisce nella direzione del filo stesso. Possiamo scegliere l'origine O nell'ancoraggio del pendolo, cosicché le coordinate della massa del pendolo sono (x,z), essendo x=75 cm lo spostamento orizzontale, e z<0 (ovviamente!) tale che $\ell^2=x^2+z^2$ — quindi $z=-\sqrt{\ell^2-x^2}=14.98$ m. La direzione di \vec{T}_0 implica che $\frac{T_{0,x}}{T_{0,z}}=\frac{x}{z}$, ovvero $T_{0,x}=T_{0,z}\frac{x}{z}=-9.82$ N. In segno è negativo, giustamente, poiché la tensione $T_{0,x}$ tende a riportare il pendolo in verticale. Quindi $T_1=-T_{0,x}=9.82$ N.

La tensione totale del filo del pendolo è $T_0 = \sqrt{T_{0,x}^2 + T_{0,y}^2} = 196.37 \text{ N}$ — praticamente quasi uguale alla sua componente verticale: la ragione è che, essendo $x \ll \ell$, anche $T_{0,x} \ll T_{0,z}$.

Un balestriere tende una balestra con una forza di 450 N e spostando la corda di 10 cm. La freccia ha una massa $m_1 = 40$ g. Con che velocità viene lanciata la

La freccia vola orizzontalmente e si conficca in un bersaglio di legno di massa $m_2 = 5$ kg. Con quale velocità w si muove il bersaglio, dopo l'impatto della freccia?

Solutione

L'energia elastica della balestra è $U_{el}=\frac{k}{2}(\Delta\ell)^2$, essendo k la costante elastica e $\Delta\ell=10$ cm lo spostamento della corda. Poiché per tale spostamento la forza applicata è $F_{el}=450$ N, si deduce che $\Delta\ell=\frac{F_{el}}{k}$, quindi $U_{el}=\frac{F_{el}\,\Delta\ell}{2}=22.5$ J. Al momento del lancio, questa energia potenziale viene convertita in energia cinetica della freccia, pertanto la velocità della freccia v è tale che $\frac{m}{2}v^2=U_{el}$, ovvero

$$v = \sqrt{\frac{2U_{el}}{m}} = 33.54 \text{ m/s}$$

 $v = \sqrt{\frac{2\,U_{el}}{m}} = 33.54 \text{ m/s}.$ Per calcolare la velocità del bersaglio dopo l'impatto, si usa la conservazione della quantità di moto: $m_1v = (m_1 + m_2)w$, da cui $w = \frac{m_1v}{m_1 + m_2} = 0.266 \text{ m/s}.$

Esercizio 3

Un escursionista (massa complessiva m=78 kg, inclusi zaino e attrezzature varie) ha impiegato un tempo $\Delta t=2$ ore per compiere un'ascensione di dislivello di h=1100 m e sviluppo orizzontale $\ell=8$ km. L'escursionista vorrebbe valutare la potenza W delle sue gambe, e ingenuamente penserebbe di partire calcolando il lavoro fatto contro la forza di gravità, ma si rende subito conto che, così facendo, trascurerebbe l'energia dissipata dalla forza di attrito F_{attr} , dovuta in pratica agli scarponi che sbattono sul terreno ad ogni passo. Allora fa il seguente ragionamento.

Sa che, con lo stesso sforzo e lo stesso equipaggiamento addosso, può camminare in piano ad una velocità $v_0 = 6$ km/h. Dalla sua velocità in piano può ricavare una relazione tra W e F_{attr} : qual è questa relazione?

Dai dati dell'escursione in salita, estrae un'altra relazione fra il lavoro totale \mathcal{L} , il dislivello h, l'attrito F_{attr} e la lunghezza del percorso ℓ . Qual è questa relazione? Esprimendo F_{attr} in funzione di W dalla prima relazione e risolvendo la seconda, quando vale W? E quanto vale F_{attr} ?

Qual è stato il lavoro "verticale" \mathcal{L}_V , fatto per salire, e quanto quello "orizzontale" \mathcal{L}_H , dissipato dagli scarponi?

Solutione

Dalla velocità in piano si ricava $W = F_{attr}v_0$, dove per il momento F_{attr} è

Dall'escursione in salita possiamo dire che il lavoro totale richiesto è stato $\mathcal{L} = mgh + F_{attr} \ell = W \Delta t$. Possiamo esprimere $F_{attr} = \frac{W}{v_0}$ e ottenere quindi $mgh=W\left(\Delta t-\frac{\ell}{v_0}\right)$. Da qui si può ricavare $W=mgh\frac{v_0}{v_0\,\Delta t-\ell}$. Convertiamo in unità S.I.: $v_0 = 6$ km/h = 1.67 m/s (passo spedito ma realistico: corrisponde a poco meno di 2 falcate in un secondo) e $\Delta t = 2$ h = 7200 s. Otteniamo quindi W = 349 W.

Quindi si può ricavare anche la forza di attrito: $F_{attr} = \frac{W}{w_{c}} = 209 \text{ N}.$ E finalmente, $\mathcal{L}_V = mgh = 0.841$ MJ, mentre $\mathcal{L}_H = F_{attr} \ell = 1.67$ MJ.

Un raggio laser di frequenza $\nu=490\cdot 10^{12}$ Hz viene mandato contro uno schermo in cui c'è una fenditura di larghezza D da determinare. Oltre la fenditura si osserva una figura di diffrazione, in cui il primo massimo secondario è ad un angolo $\theta=41^\circ$ rispetto al massimo centrale. Quanto vale D?

Se ora si pone, al di là dello schermo ed esattamente a contatto con esso, un materiale dielettrico trasparente, si osserva che l'angolo del primo massimo secondario diventa $\theta' = 27^{\circ}$. Quanto vale l'indice di rifrazione n del dielettrico?

Solutione

Nel vuoto, la lunghezza d'onda è $\lambda=\frac{c}{\nu}=6.122\cdot 10^{-7}~\mathrm{m}=612.2~\mathrm{nm}.$ La formula della diffrazione per i massimi secondari è $\sin\theta=\left(K+\frac{1}{2}\right)\frac{\lambda}{D}$: per il primo massimo secondario dobbiamo considerare K=1. Da qui ricaviamo $D=\frac{1.5}{\sin\theta}\lambda=1.400\cdot 10^{-6}~\mathrm{m}=1.4~\mu\mathrm{m}.$

Aggiungendo il dielettrico, la lunghezza d'onda diventa $\lambda' = \frac{\lambda}{n}$. Anche in questo caso deve valere un'equazione $\sin \theta' = \left(K + \frac{1}{2}\right) \frac{\lambda'}{D}$. Per confronto con l'analoga equazione del vuoto, si ottiene $\frac{\sin \theta'}{\sin \theta} = \frac{\lambda'}{\lambda}$, da cui ricaviamo $n = \frac{\lambda}{\lambda'} = \frac{\sin \theta}{\sin \theta'} = 1.445$.

Cognome e nome Matricola

Fisica Generale per Tecnologie dei Beni Culturali

Prova scritta 06 / 07 / 2015

Ogni risultato va espresso sia come formula che come valore numerico, completo di unità di misura. Se si usano simboli diversi da quelli che compaiono nei quesiti, occorre definirli.

Esercizio 5

Si vuole sghiacciare un freezer utilizzando un asciugacapelli di potenza W = 2.2 kW. Il freezer, appena spento, era impostato su una temperatura $T_0 = -25^{\circ}\text{C}$. Il ghiaccio, inizialmente incrostato alle pareti, sotto l'effetto dell'aria calda, si scalda e si scioglie, e l'acqua ottenuta scorre via.

L'operazione dura in tutto 7 minuti. Assumendo che tutta la potenza dell'asciugacapelli vada a sciogliere il ghiaccio, quanta energia è stata necessaria? Quanta era la massa del ghiaccio? Si ricorda che il calore specifico del ghiaccio è $c=2220~{\rm J/(K\cdot kg)}$ e il calore latente di fusione è $\lambda=333.5~{\rm kJ/kg}$.

Solutione

L'energia totale ceduta al ghiaccio è $\Delta E=W\cdot\Delta t=(2200~{\rm W})(420~{\rm s})=9.24\cdot 10^5~{\rm J}.$

Questa energia serve ad innalzare la temperatura fino a 0°C (cioè $\Delta T = 25$ °C), quindi a portare il ghiaccio allo stato liquido. Pertanto, detta m la massa di ghiaccio, $\Delta E = mc\Delta T + m\lambda$. Dunque si ricava $m = \frac{\Delta E}{c\Delta T + \lambda} = 2.375$ kg.

Un modo per misurare la velocità di un liquido in una conduttura è di modificarne la sezione in un tratto orizzontale: la variazione di sezione (da Σ_1 a Σ_2) produce una variazione di velocità (da u_1 a u_2) che a sua volta produce una variazione di pressione (da P_1 a P_2). Conoscendo le sezioni e misurando le pressioni, si può ricavare le velocità.

In questo caso particolare, il liquido è acqua. La variazione di sezione è tale che $\Sigma_2=2\Sigma_1$. Le pressioni $P_1,\ P_2$ vengono misurate mediante due colonnine verticali, aperte in alto, nelle quali l'acqua è localmente ferma e raggiunge rispettivamente altezze $h_1=68~{\rm cm}$ e $h_2=156~{\rm cm}$.

Quanto valgono le pressioni P_1 e P_2 ?

Quanto vale la velocità u_1 prima della variazione della sezione?

Solutione

Ciascuna pressione si può calcolare con la legge di Stevin: $P_i = P_0 + \rho g h_i$ (i=1,2), essendo $P_0 = 1$ Atm = 101 325 Pa (poiché le colonnine sono aperte in alto) e la densità dell'acqua è $\rho = 1000$ kg/m³. Quindi si ottiene $P_1 = 107 993$ Pa e $P_2 = 116 622$ Pa.

Ora usiamo il teorema di Bernoulli: $\frac{u_1^2}{2} + \frac{P_1}{\rho} + gz_1 = \frac{u_2^2}{2} + \frac{P_2}{\rho} + gz_2.$ La conduttura è orizzontale, quindi $z_1 = z_2$, e i due contributi in z si elidono. Resta dunque $\frac{u_1^2 - u_2^2}{2} = \frac{P_2 - P_1}{\rho}.$ Per la conservazione della portata, $\Sigma_1 u_1 = \Sigma_2 u_2$, quindi possiamo sostituire $u_2 = \frac{u_1}{2}$ e ottenere $\frac{1}{2} \left(u_1^2 - \frac{u_1^2}{4} \right) = \frac{P_2 - P_1}{\rho},$ ovvero $u_1 = \sqrt{\frac{8}{3} \frac{P_2 - P_1}{\rho}} = 4.80 \text{ m/s}.$

Un'osservazione: il risultato dipende da $\frac{P_2 - P_1}{\rho} \equiv g(h_2 - h_1)$, quindi in realtà è indipendente dalla pressione esterna P_0 (cosa piuttosto conveniente!) e anche dalla densità del liquido.

Esercizio 7

I forni a microonde producono onde elettromagnetiche alla frequenza $\nu=2.45~\mathrm{GHz}$. La sorgente di tali onde è costituita da elettroni che vengono liberati e costretti a ruotare in orbite circolari grazie ad un campo magnetico B.

Quanto deve essere la frequenza angolare ω degli elettroni? Quanto deve valere il campo B?

Solutione

Una radiazione e.m. di frequenza ν è prodotta da cariche elettriche che oscillano con la stessa frequenza. Pertanto il periodo orbitale degli elettroni deve essere $T=\frac{1}{\nu}$, quindi la loro frequenza angolare deve essere $\omega=\frac{2\pi}{T}=2\pi\,\nu=1.539\cdot 10^{10}\,\mathrm{rad/s}.$ Essa è legata al campo B dalla relazione $\omega=\frac{|q|B}{m}$, da cui $B=\frac{m\omega}{|q|}$. Inserendo la carica dell'elettrone, $|q|=e=1.602\cdot 10^{-19}\,\mathrm{C}$, e la sua massa, $m=9.109\cdot 10^{-31}\,\mathrm{kg}$, si ottiene $B=8.751\cdot 10^{-2}\,\mathrm{T}$.