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Preface

The fifth edition of this book continues to demonstrate how to apply probability theory
to gain insight into real, everyday statistical problems and situations. As in the previous
editions, carefully developed coverage of probability motivates probabilistic models of
real phenomena and the statistical procedures that follow. This approach ultimately
results in an intuitive understanding of statistical procedures and strategies most often
used by practicing engineers and scientists.

Thisbookhasbeenwrittenforanintroductorycourse instatisticsor inprobabilityand
statistics for students in engineering, computer science, mathematics, statistics, and the
natural sciences. As such it assumes knowledge of elementary calculus.

ORGANIZATION AND COVERAGE
Chapter 1 presents a brief introduction to statistics, presenting its two branches of des-
criptive and inferential statistics, and a short historyof the subject and some of the people
whose early work provided a foundation for work done today.

The subject matter of descriptive statistics is then considered in Chapter 2. Graphs
and tables that describe a data set are presented in this chapter, as are quantities that
are used to summarize certain of the key properties of the data set.

To be able to draw conclusions from data, it is necessary to have an understanding
of the data’s origination. For instance, it is often assumed that the data constitute a
“random sample” from some population. To understand exactly what this means and
what its consequences are for relating properties of the sample data to properties of the
entire population, it is necessary to have some understanding of probability, and that
is the subject of Chapter 3. This chapter introduces the idea of a probability experi-
ment, explains the concept of the probability of an event, and presents the axioms of
probability.

Our study of probability is continued in Chapter 4, which deals with the important
concepts of random variables and expectation, and in Chapter 5, which considers some
special types of random variables that often occur in applications. Such random variables
as the binomial, Poisson, hypergeometric, normal, uniform, gamma, chi-square, t, and
F are presented.

xiii



xiv Preface

In Chapter 6, we study the probability distribution of such sampling statistics as the
sample mean and the sample variance. We show how to use a remarkable theoretical
result of probability, known as the central limit theorem, to approximate the probability
distributionofthesamplemean.Inaddition,wepresentthejointprobabilitydistribution
of the sample mean and the sample variance in the important special case in which the
underlying data come from a normally distributed population.

Chapter 7 shows how to use data to estimate parameters of interest. For instance, a
scientist might be interested in determining the proportion of Midwestern lakes that are
afflicted by acid rain. Two types of estimators are studied. The first of these estimates
the quantity of interest with a single number (for instance, it might estimate that
47 percent of Midwestern lakes suffer from acid rain), whereas the second provides
an estimate in the form of an interval of values (for instance, it might estimate that
between 45 and 49 percent of lakes suffer from acid rain). These latter estimators also
tell us the “level of confidence” we can have in their validity. Thus, for instance, whereas
we can be pretty certain that the exact percentage of afflicted lakes is not 47, it might
very well be that we can be, say, 95 percent confident that the actual percentage is
between 45 and 49.

Chapter 8 introduces the important topic of statistical hypothesis testing, which is
concerned with using data to test the plausibility of a specified hypothesis. For instance,
such a test might reject the hypothesis that fewer than 44 percent of Midwestern lakes are
afflictedbyacidrain.Theconceptofthep-value,whichmeasuresthedegreeofplausibility
of the hypothesis after the data have been observed, is introduced. A variety of hypothesis
tests concerning the parameters of both one and two normal populations are considered.
Hypothesis tests concerning Bernoulli and Poisson parameters are also presented.

Chapter 9 deals with the important topic of regression. Both simple linear
regression — including such subtopics as regression to the mean, residual analysis, and
weighted least squares — and multiple linear regression are considered.

Chapter 10 introduces the analysis of variance. Both one-way and two-way (with
and without the possibility of interaction) problems are considered.

Chapter11 is concernedwithgoodness of fit tests, whichcanbeused to test whethera
proposed model is consistent with data. In it we present the classical chi-square goodness
of fit test and apply it to test for independence in contingency tables. The final section
of this chapter introduces the Kolmogorov–Smirnov procedure for testing whether
data come from a specified continuous probability distribution.

Chapter 12 deals with nonparametric hypothesis tests, which can be used when one
is unable to suppose that the underlying distribution has some specified parametric
form (such as normal).

Chapter 13 considers the subject matter of quality control, a key statistical tech-
nique in manufacturing and production processes. A variety of control charts, includ-
ing not only the Shewhart control charts but also more sophisticated ones based on
moving averages and cumulative sums, are considered.

Chapter 14 deals with problems related to life testing. In this chapter, the expo-
nential, rather than the normal, distribution plays the key role.



Preface xv

In Chapter 15, we consider the statistical inference techniques of bootstrap statisti-
cal methods and permutation tests. We first show how probabilities can be obtained by
simulation and then how to utilize simulation in these statistical inference approaches.

The fifth edition contains a multitude of small changes designed to even further
increase the clarity of the text’s presentations and arguments. There are also many
new examples and problems. In addition, this edition includes new subsections on

• The Pareto Distribution (subsection 5.6.2)
• Prediction Intervals (subsection 7.3.2 )
• Dummy Variables for Categorical Data (subsection 9.10.2)
• Testing the Equality of Multiple Probability Distributions (subsection 12.4.2)

SUPPLEMENTAL MATERIALS
Solutions manual and software useful for solving text examples and problems are avail-
able at: textbooks.elsevier.com/web/Manuals.aspx?isbn=9780123948113.
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Chapter 1

1. Method (c) is probably best, with (e) being the second best.

2. In 1936 only upper middle class and rich people had telephones. Almost all voters
have telephones today.

3. No, these people must have been prominent to have their obituaries in the Times;
as a result they were probably less likely to have died young than a randomly chosen
person.

4. Locations (i) and (ii) are clearly inappropriate; location (iii) is probably best.

5. No, unless it believed that whether a person returned the survey was independent of
that person’s salary; probably a dubious assumption.

6. No, not without additional information as to the percentages of pedestrians that wear
light and that wear dark clothing at night.

7. He is assuming that the death rates observed in the parishes mirror that of the entire
country.

8. 12,246/.02 = 612,300

9. Use them to estimate, for each present age x, the quantity A(x), equal to the average
additional lifetime of an individual presently aged x. Use this to calculate the average
amount that will be paid out in annuities to such a person and then charge that person
1+a times that latter amount as a premium for the annuity. This will yield an average
profit rate of a per annuity.

10. 64 percent, 10 percent, and 48 percent.

1



Chapter 2

2. 360/r degrees.

6. (d) 3.18
(e) 3
(f ) 2
(g)

√
5.39

7. (c) 119.14
(d) 44.5
(e) 144.785

8. Not necessarily. Suppose a town consists of n men and m women, and that a is the
average of the weights of the men and b is the average of the weights of the women.
Then na and mb are, respectively, the sums of the weights of the men and of the
women. Hence, the average weight of all members of the town is

na + mb
n + m

= a p + b (1 − p)

where p = n/(n + m) is the fraction of the town members that are men. Thus, in
comparing two towns the result would depend not only on the average of the weights
of the men and women in the towns but also their sex proportions. For instance, if
town A had 10 men with an average weight of 200 and 20 women with an average
weight of 120, while town B had 20 men with an average weight of 180 and 10
women with an average weight of 100, then the average weight of an adult in town
A is 200 1

3 + 120 2
3 = 440

3 whereas the average for town B is 180 2
3 + 100 1

3 = 460
3 .

10. It implies nothing about the median salaries but it does imply that the average of the
salaries at company A is greater than the average of the salaries at company B.

11. The sample mean is 110. The sample median is between 100 and 120. Nothing can
be said about the sample mode.

12. (a) 40.904
(d) 8, 48, 64

13. (a) 15.808
(b) 4.395

2
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14. Since
∑

xi = nx̄ and (n−1)s2 = ∑
x2

i −nx̄2, we see that if x and y are the unknown
values, then x + y = 213 and

x2 + y2 = 5(104)2 + 64 − 1022 − 1002 − 1052 = 22,715

Therefore,
x2 + (213 − x)2 = 22,715

Solve this equation for x and then let y = 213 − x.

15. No, since the average value for the whole country is a weighted average where the
average wage per state should be weighted by the proportion of all workers who
reside in that state.

19. (a) 44.8
(b) 70.45

20. 74, 85, 92

21. (a) 84.9167
(b) 928.6288
(c) 57.5, 95.5, 113.5

25. (a) .3496
(b) .35
(c) .1175
(d) no
(e) 3700/55 = 67.3 percent

26. (b) 3.72067
(c) .14567

28. Not if both sexes are represented. The weights of the women should be approxi-
mately normal as should be the weights of the men, but combined data is probably
bimodal.

30. Sample correlation coefficient is .4838

31. No, the association of good posture and back pain incidence does not by itself imply
that good posture causes back pain. Indeed, although it does not establish the reverse
(that back pain results in good posture) this seems a more likely possibility.

32. One possibility is that new immigrants are attracted to higher paying states because
of the higher pay.

33. Sample correlation coefficient is .7429
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34. If yi = a + bxi then yi − ȳ = b(xi − x̄), implying that
∑

(xi − x̄)(yi − ȳ)
√∑

(xi − x̄)2
∑

(yi − ȳ)2
= b√

b2
= b

|b|

35. If ui = a + bxi, vi = c + dyi then
∑

(ui − ū)(vi − v̄) = bd
∑

(xi − x̄)(yi − ȳ)

and
∑

(ui − ū)2 = b2
∑

(xi − x̄)2,
∑

(vi − v̄)2 = d2
∑

(yi − ȳ)2

Hence,

ru,v = bd
|bd | rx,y

36. More likely, taller children tend to be older and that is why they had higher reading
scores.

37. Because there is a positive correlation does not mean that one is a cause of the other.
There are many other potential factors. For instance, mothers that breast feed might
be more likely to be members of higher income families than mothers that do not
breast feed.



Chapter 3

1. S = {rr, rb, rg, br, bb, bg, gr, gb, gg} when done with replacement and S =
{rb, rg, br, bg, gr, gb} when done without replacement, where rb means, for instance,
that the first marble is red and the second green.

2. S = {hhh, hht, hth, htt, thh, tht, tth, ttt}. The event {hhh, hht,hth, thh} corresponds
to more heads than tails.

3. (a) {7}, (b) {1, 3, 4, 5, 7}, (c) {3, 5, 7}, (d) {1, 3, 4, 5}, (e) {4, 6}, (f ) {1, 4}

4. EF = {(1, 2), (1, 4), (1, 6)}; E ∪ F = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), or
any of the 15 possibilities where the first die is not 1 and the second die is odd when
the first is even and even when the first is odd.}; FG = {(1, 4)}; EFc = {any of the
15 possible outcomes where the first die is not 1 and the two dice are not either both
even or both odd}; EFG = FG.

5. (a) 24 = 16
(b) {(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1), (0, 0, 1, 1), (0, 1, 1, 1),

(1, 0, 1, 1)}
(c) 22 = 4

6. (a) EFcGc (b) EFcG (c) E ∪ F ∪ G (d) EF ∪ EG ∪ FG
(e) EFG (f ) EcF cGc (g) EcF c ∪ EcGc ∪ FcGc

(h) (EFG)c (i) EFGc ∪ EFcG ∪ EcFG (j) S

7. (a) S (b) 0 (c) E (d) EF (e) F ∪ EG

9. 1 = EFcGc 2 = EFGc 3 = EcFGc 4 = EFG 5 = EcFG 6 = EcF cG
7 = EFcG

10. Since E ⊂ F it follows that F = E∪EcF and since E and EcF are mutually exclusive
we have that

P(F) = P(E) + P(EcF) ≥ P(E)

11. Write ∪Ei as the union of mutually exclusive events as follows:

∪Ei = E1 ∪ Ec
1E2 ∪ Ec

1Ec
2E3 ∪ · · · ∪ Ec

1 Ec
n−1En

Now apply Axiom 3 and the results of Problem 10.

12. 1 ≥ P(E ∪ F) = P(E) + P(F) − P(EF)

5
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13. (i) Write E = EF ∪ EFc and apply Axiom 3.
(ii) P(EcF c) = P(Ec) − p(EcF) from part (i)

= 1 − P(E) − [P(F) − P(EF)]
14. P(EFc ∪ EcF) = P(EFc) + P(EcF)

= P(E) − P(EF) + P(F) − P(EF) from Problem 13(i)

15. 84, 84, 21, 21, 120

16. To select r items from a set of n is equivalent to choosing the set of n − r unselected
elements.

17.
(

n − 1
r − 1

)
+
(

n − 1
r

)
= (n − 1)!

(n − r)!(r − 1)! + (n − 1)!
(n − 1 − r)!r!

= n!
(n − r)!r!

{
r
n

+ n − r
n

}
=
(

n
r

)

18. (a) 1/3 (b) 1/3 (c) 1/15

19. Because the 253 events that persons i and j have the same birthday are not mutually
exclusive.

20. P(smaller of (A, B) < C) = P(smallest of the 3 is either A or B)= 2/3

21. (a) P(A ∪ B) = P(A ∪ B|A)P(A) + P(A ∪ B|Ac)P(Ac)

= 1 · P(A) + P(B|Ac)P(Ac)

= .6 + .1(.4) = .64

(b) Assuming that the events A and B are independent, P(B|Ac) = P(B) and

P(AB) = P(A)P(B) = .06

22. Chebyshev’s inequality yields that at least 1 − 1/4 of the accountants have salaries
between $90, 000 and $170, 000. Consequently, the probability that a randomly
chosen accountant will have a salary in this range is at least 3/4. Because a salary
above $160, 000 would exceed the sample mean by 1.5 sample standard deviation,
it follows from the one-sided Chebyshev inequality that at most 1

1+9/4 = 4/13
of accountants exceed this salary. Hence, the probability that a randomly chosen
accountant will have a salary that exceeds this amount is at most 4/13.

23. P(RR|red side up) = P(RR, red side up)

P(red side up)

= P(RR)P(red side up|RR)

P(red side up)

= (1/3)(1)

1/2
= 2/3

24. 1/2
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30. Let Ni be the event that i balls are colored red.

P(N2|R1R2) = P(N2R1R2)

P(R1R2)

= P(R1R2|N2)P(N2)

P(R1R2|N0)P(N0) + P(R1R2|N1)P(N1) + P(R1R2|N2)P(N2)

= 1(1/4)

0 + (1/4)(1/2) + 1(1/4)
= 2/3

P(R3|R1R2) = P(R1R2R3)

P(R1R2)

= 0 + (1/8)(1/2) + 1(1/4)

3/8
= 5/6

31. P(D|VR) = P(DVR)

P(VR)
= 50/1000

590/1000
= 5/59

32. (a) 1/3 (b) 1/2

33. P{S in second|S in first drawer} = P{A}/P{S in first}
P{S in first} = P{S in first|A}1/2 + P{S in first|B}1/2 = 1/2 + 1/2 × 1/2 = 3/4
Thus probability is 1/2 ÷ 3/4 = 2/3.

34. P(C |E) = P(E |C)P(C)

P(E |C)P(C) + P(E |Cc)P(Cc)

= (.268)(.7)

(.268)(.7) + (.145)(.3)
= .8118

P(C |Ec) = P(Ec|C)P(C)

P(Ec|C)P(C) + P(Ec|Cc)P(Cc)

= (.732)(.7)

(.732)(.7) + (.865)(.3)
= .6638

35. (a) P{good|O} = P{good, O}/P{O}
= .2P{O|good}/[P{O|good}.2 + P{O|average}.5 + P{O|bad}.3]
= .2 × .95/[.95 × .2 + .85 × .5 + .7 × .3] = 190/825

36. (a) P{sum is 7|first is 4} = P{(4, 3)}/P{first is 4} = 1/36
1/6 = 1/6 = P{sum is 7}.

(b) Same argument as in (a).

37. (a) p5[1 − (1 − p1p2)(1 − p3p4)]
(b) Conditioning on whether or not circuit 3 closes yields the answer

p3[(1−(1−p1)(1−p2)][1−(1−p4)(1−p5)]+(1−p3)[1−(1−p1p4)(1−p2p5)]

38. 1−P(at most 1 works) = 1−Q1Q2Q3Q4−P1Q2Q3Q4−Q1P2Q3Q4−Q1Q2P3Q4−
Q1Q2Q3P4; where Q1 = 1 − P1.
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39. (a) 1/8 + 1/8 = 1/4
(b) P(F ∪ L) = P(F) + P(L) − P(FL) = 1/4 + 1/4 − 2/32 = 7/16
(c) 6/32, since there are 6 outcomes that give the desired result.

40. Let Ni be the event that outcome i never occurs. Then

P(N1 ∪ N2) = .5n + .8n − .3n

Hence, the desired answer is 1 − .5n + .8n − .3n

41. Let W1 be the event that component 1 works. Then,

P(W1|F) = P(W1F)

P(F)
= P(F |W1)(1/2)

1 − (1/2)n = 1/2
1 − (1/2)n

42. 1: (a) 1/2 × 3/4 × 1/2 × 3/4 × 1/2 = 9/128
(b) 1/2 × 3/4 × 1/2 × 3/4 × 1/2 = 9/128
(c) 18/128
(d) 1 − P(resembles first or second) = 1 − [9/128 + 9/128 − P(resembles both)]

= 110/128

2: (a) 1/2 × 1/2 × 1/2 × 1/2 × 1/2 = 1/32
(b) 1/32 (c) 1/16 (d) 1 − 2/32 = 15/16

43. Prisoner A’s probability of being executed remains equal to 1/3 provided the jailer is
equally likely to answer either B or C when A is the one to be executed. To see this
suppose that the jailer tells A that B is to be set free. Then

P
{
A to be executed | jailer says B

}
= P{A executed, B}/P{B}

= P{B|A executed}1/3
P{B|A exec.}1/3 + P{B|C exec.}1/3

= 1/6 + (1/6 + 1/3) = 1/3

44. Since brown is dominant over blue the fact that you have blue eyes means that both
your parents have one brown and one blue gene. Thus the desired probability is 1/4.

45. (a) Call the desired probability pA. Then pA = p3

p3+(1−p)3

(b) Conditioning on which team is ahead gives the result

pA(1 − (1 − p)4) + (1 − pA)(1 − p4)

(c) Let W be the event that team that wins the first game also wins the series. Now,
imagine that the teams continue to play even after the series winner is decided.
Then the team that won the first game will be the winner of the series if and
only if that team wins at least 3 of the next 6 games played. (For if they do they
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would get to 4 wins before the other team, and if they did not then the other
team would reach 4 wins first.) Hence,

P(W ) =
6∑

i=3

(
6
i

)
(1/2)i(1/2)6−i = 20 + 15 + 6 + 1

64
= 21

32

46. Let 1 be the card of lowest value, 2 be the card of next higher value, and 3 be the
card of highest value.
(a) 1/3, since the first card is equally likely to be any of the 3 cards.
(b) You will accept the highest value card if the cards appear in any of the orderings;

1, 3, 2 or 2, 3, 1 or 2, 1, 3

Thus, with probability 3/6 you will accept the highest valued card.

47. .2 + .3 = .5, .2 + .3 − (.2)(.3) = .44, .2(.3)(.4) = .024, 0

48. Let C be the event that the woman has breast cancer. Then

P(C |pos) = P(C , pos)
P(pos)

= P(pos|C)P(C)

P(pos|C)P(C) + P(pos|Cc)P(Cc)

= .9(.02)

.9(.02) + .1(.98)

= 18
116

49. Let C be the event that the household is from California and let O be the event that
it earns over 250, 000. Then

P(C |O) = P(CO)

P(O)

= P(O|C)P(C)

P(O|C)P(C) + P(O|Cc)P(Cc)

= .063(.12)

.063(.12) + .033(.88)
= .2066

50. P(A ∪ B) = P(A ∪ B|A)P(A) + P(A ∪ B|Ac)P(Ac)

= P(A) + P(B|Ac)P(Ac) = .6 + .1(.4) = .64

51. The only way in which it would not be smaller than the value on card C is for card
C to have the smallest of the 3 values, which is 1/3. Hence, the desired probability
is 2/3.



Chapter 4

1. P1 = 5/10, P2 = 5/10 × 5/9 = .2778, P3 = 5/10 × 4/9 × 5/8 = .1389.

P4 = 5/10×4/9×3/8×5/7 = .0595, P5 = 5/10×4/9×3/8×2/7×5/6 = .0198,

P6 = 5/10 × 4/9 × 3/8 × 2/7 × 1/6 = .0040, where Pi = P(X = i).

2. n − 2i, i = 0, 1, . . . , n

3. P{X = 3 − 2i} = P{i tails} = Pi , where P0 = 1/8, P1 = 3/8, P2 = 3/8, P3 = 1/8.

4. (b) 1 − F(1/2) = 3/4 (c) F(4) − F(2) = 1/12 (d) lim
h→0

F(3 − h) = 11/12

(e) F(1) − lim
h→0

F(1 − h) = 2/3 − 1/2 = 1/6

5. (a) c
∫ 1

0 x3dx = 1 ⇒ c = 4
(b) 4

∫ .8
.4 x3dx = .84 − .44 = .384

6. Note first that since
∫

f (x)dx = 1, it follows that λ = 1/100; therefore,∫ 150
50 f (x)dx = e−1/2 − e−3/2 = .3834. Also,

∫ 100
0 f (x)dx = 1 − e−1 = .6321.

7. The probability that a given radio tube will last less than 150 hours is
∫ 150

0 f (x)dx =
1 − 2/3 = 1/3. Therefore, the probability desired is

(5
2

)
(1/3)2(2/3)3 = .3292

8. Since the density must integrate to 1: c = 2 and P{X > 2} = e−4 = .0183.

9. With p(i, j) = P(N1 = i, N2 = j)

p(1, 1) = (3/5)(2/4) = 3/10

p(1, 2) = (3/5)(2/4)(2/3) = 2/10

p(1, 3) = (3/5)(2/4)(1/3) = 1/10

p(2, 1) = (2/5)(3/4)(2/3) = 2/10

p(2, 2) = (2/5)(3/4)(1/3) = 1/10

p(3, 1) = (2/5)(1/4) = 1/10

p(i, j) = 0 otherwise

10. (a) Show that the multiple integral of the joint density equals 1.

(b)
∫ 2

0 f (x, y)dy = 12x2/7 + 6x/7

(c)
∫ 1

0

∫ x
0 f (x, y)dy dx =

∫ 1
0 (6x3/7 + 3x3/14)dx = 15/56.

11
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11. P{M ≤ x} = P{X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x} =
n∏

i=1
P{Xi ≤ x} = xn.

Differentiation yields that the probability density function is nxn−1, 0 ≤ x ≤ 1.

12. (i) Integrate over all y to obtain fX (x) = xe−x

(ii) Integrate the joint density over all x to obtain fY (y) = e−y (since∫
xe−x dx = 1).

(iii) Yes since the joint density is equal to the product of the individual densities.

13. (i)
∫ 1

x 2dy = 2(1 − x), 0 < x < 1.

(ii)
∫ y

0 2dx = 2y, 0 < y < 1.

(iii) No, since the product of the individual densities is not equal to the joint density.

14. fX (x) = k(x)
∫

1(y)dy, and fY (y) = 1(y)
∫

k(x)dx. Hence, since 1 =∫ ∫
f (x, y)dydx =

∫
1(y)dy

∫
1(x)dx. we can write f (x, y) = fX (x)fY (y) which

proves the result.

15. Yes because only in Problem 12 does the joint density factor.

16. (i) P(X + Y ≤ a) =
∫∫

x+y≤a
f (x, y)dxdy

=
∫∫

x≤a−y
fX (x)fY ( y)dxdy =

∫
FX (a − y)fY ( y)dy

(ii) P{X ≤ Y } =
∫∫

x<y
fX (x)dx fY ( y)dy =

∫
FX ( y)fY ( y)dy.

17. P{W ≤ a} =
∫∫

x2y≤a
fI (x)fR(y)dydx

=
∫√

a
0

∫ 1
0 +

∫ 1√
a

∫ a/x2

0 = 3a − 2a2/3 + a2 ∫ 1√
a 6x(1 − x)/x4dx

The density is now obtained upon differentiation:

fW (a) = 3 − 3a1/2 + 2a
∫ 1

√
a

6(1 − x)/x3dx − 3(1 − a1/2)

19. (a) fY (y) =
∫ 1

0 f (x, y)dx = 2/7 + 3y/14, 0 < y < 2. Hence,

fx|y(x|y) = 12x2 + 6xy
4 + 3y

, 0 < x < 1.

20. PX |Y (x|y) = PX (x) is equivalent to PX ,Y (x, y)/PY (y) = PX (x) which is the condi-
tion (3.8). The verification in (b) is similar.

21. E[X ] = 5/10 + 5/9 + 5/12 + 5/21 + 25/252 + 1/42 = 1.833

22. E[X ] = 0 by symmetry.
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23. The expected score of a meteorologist who says that it will rain with probability p is

E = p∗[1 − (1 − p)2] + (1 − p∗)[1 − p2]

Differentiation yields that

dE
dp

= 2p∗(1 − p) − 2p(1 − p∗).

Setting the above equal to 0 yields that the maximal (since the second derivative is
negative) value is attained when p = p∗.

24. If the company charges c, then

E[profit] = c − Ap

Therefore, E[profit] = .1A when c = A(p + .1).

25. (a) E[X ], because the randomly chosen student is more likely to have been on a
bus carrying a large number of students than on one with a small number of
students.

(b) E[X ] = 40(40/148) + 33(33/148) + 25(25/148) + 50(50/148) ≈ 39.28
E[Y ] = (40 + 33 + 25 + 50)/4 = 37

26. Let X denote the number of games played.

E[X ] = 2[p2 + (1 − p)2] + 3[2p(1 − p)] = 2 + 2p(1 − p)

Differentiating this and setting the result to 0 gives that the maximizing value of p is
such that

2 = 4p

27. Since f is a density it integrates to 1 and so a + b/3 = 1. In addition 3/5 = E[X ] =∫ 1
0 x(a + bx2)dx = a/2 + b/4. Hence, a = 3/5 and b = 6/5.

28. E[X ] = α2 ∫ x2e−αx dx =
∫

y2e−ydt/α = 2/α (upon integrating by parts twice).

29. E[Max] =
∫ 1

0 xnxn−1dx = n/(n + 1) where we have used the result of Problem 11.
P{Min ≤ x} = 1 − P{Min > x} = 1 −∏

P{Xi > x} = 1 − (1 − x)n, 0 < x < 1.
Hence, the density of Min is n(1 − x)n−1, 0 < x < 1; and so

E[Min] =
∫ 1

0
nx(1 − x)n−1dx =

∫ 1

0
n(1 − y)yn−1dy = 1/(n + 1).

30. P{X n ≤ x} = P{X ≤ x1/n} = x1/n. Hence, fX n(x) = x(1/n−1)/n, and so

E[X n] = 1
n

∫ 1

0
x1/ndx = 1/(n + 1). Proposition 5.1 directly yields that E[X n] =

∫ 1
0 xndx = 1/(n + 1).
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31. E[cost] = 1
2

∫ 2
0 (40 + 30

√
x)dx = 40 + 10 × 23/2 = 68.284

32. (a) E[4 + 16X + 16X 2] = 164
(b) E[X 2 + X 2 + 2X + 1] = 21

33. Let Xi = 1 if the ith ball chosen is white
0 otherwise

.

Now E[Xi] = P{Xi = 1} = 17/40 and so E[X ] = 170/40.
Suppose the white balls are arbitrarily numbered before the selection and let

Yi = 1 if white ball number i is selected,
0 otherwise.

Now E[Yi] = P{Yi = 1} = 10/40 and so E[X ] = 170/40.

34. (a) Since

F(x) =
∫ x

0
e−xdx = 1 − e−x

if follows that
1/2 = 1 − e−m or m = log(2)

(a) In this case, F(x) = x, 0 ≤ x ≤ 2; hence m = 1/2.

35. Using the expression given in the hint yields that

d
dc

E[|X − c|] = cf (c) + F(c) − cf (c) − cf (c) − [1 − F(c)] + cf (c)

= 2F(c) − 1

Setting equal to 0 and solving gives the result.

36. As F(x) = 1 − e−2x, we see that

p = 1 − e−2mp or mp = −1
2

log(1 − p)

37. E[Xi] =
(198

50

)
/
(200

50

)
= 150×149

200×199 . Hence E[∑Xi] = 75 × 149/199 = 56.156.

38. Let Xi equals 1 if trial i is a success and let it equal 0 otherwise. Then X = ∑
Xi

and so E[X ] = ∑
E[Xi] = np. Also Var(X ) = ∑

Var(Xi) = np(1 − p) since the
variance of Var(Xi) = E[X 2

i ] − (E[Xi])2 = p − p2. Independence is needed for
the variance but not for the expectation (since the expected value of a sum is always
the sum of the expected values but the corresponding result for variances requires
independence).

39. E[X ] = (1 + 2 + 3 + 4)/4 = 10/4. E[X 2] = (1 + 4 + 9 + 16)/4 = 30/4, and
Var(X ) = 1.25
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40. p1 +p2 +P3 = 1 p1 +2p2 +3p3 = 2 and the problem is to minimize and maximize
p1 +4p2+9p3 = P1 +4(1−2p1)+2p1+4. Clearly, the maximum is obtained when
p1 = 1/2 — the largest possible value of p1 since p3 = p1 — (and p2 = 0, p3 = 1/2)
and the minimum when p1 = 0 (and p2 = 1, p3 = 0).

41. Let Xi denote the number that appear on the ith flip. Then E[Xi] = 21/6. E[X 2
i ] =

91/6, and Var(Xi) = 91/6 − 49/4 = 35/12. Therefore,

E
[∑

Xi

]
= 3 × 21/6 = 21/2; Var

(∑
Xi

)
= 35/4.

42. 0 ≤ Var(X ) = E[X ]2 − (E[X ])2. Equality when the variance is 0 (that is, when X
is constant with probability 1).

43. E[X ] =
∫ 9

8
x(x − 8)dx +

∫ 10

9
x(10 − x)dx

E[X 2] =
∫ 9

8
x2(x − 8)dx +

∫ 10

9
x2(10 − x)dx and Var(X ) = E[X 2]−(E[X ])2

E[Profit] = −
∫ 8.25

8
(x/15 + .35)f (x)dx +

∫ 10

8.25
(2 − x/15 − .35)f (x)dx

44. (a) fX1(x) = 3
∫ 1−x

0
(x + y)dy

= 3x(1 − x) + 3(1 − x)2/2

= 3
2
(1 − x2), 0 < x < 1,

with the same density for X2.
(b) E[Xi] = 3/8, Var(Xi) = 1/5 − (3/8)2 = 19/64

45. PX1(i) =
3/16, i = 0
1/8, i = 1
5/16, i = 2
3/8, i = 3

PX2(i) = 1/2 i = 1
1/2 i = 2

E[X1] = 30/16 Var(X1) = 19/4 − (15/8)2 = 1.234, E[X2] = 3/2
Var(X2) = .25

46. E[X1X2] = 3
∫ 1

0

∫ 1−x

0
xy(x + y)dydx

= 3
∫ 1

0
x
∫ 1−x

0
(xy + y2)dy

= 3
∫ 1

0
x(x(1 − x)2/2 + (1 − x)3/3))dx
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= 3
2

∫ 1

0
x2(1 − x)2dx +

∫ 1

0
x(1 − x)3dx

= 1
20

+ 1
20

= 1
10

Hence,

Corr(X1, X2) = 1/10 − 9/64
19/64

= −26/190

47. Cov(aX , Y ) = E[aXY ] − E[aX ]E[Y ] = aE[XY ] − aE[X ]E[Y ] = aCov(X , Y )

48. Cov

( n∑

i=1

Xi , Y

)
= Cov

(n−1∑

i=1

Xi , Y

)
+ Cov(Xn, Y ) by Lemma 7.1

=
n−1∑

i=1

Cov(Xi, Y ) + Cov(Xn, Y ) by the induction hypothesis

49. 0 ≤ Var(X /σx + Y /σy) = 1 + 1 + 2Cov(X , Y )/σxσy since Var(X /σx) = 1 which
yields that −1 ≤ Corr(X , Y ). The fact that Corr(X , Y ) ≤ 1 follows in the same
manner using the second inequality. If Corr(X , Y ) = 1 then 0 = Var(X /σx −Y /σx)

implying that X /σx − Y /σy = c or Y = a + bX , where b = σ y/σ x. The result for
Corr(X , Y ) = −1 is similarly show.

50. If N1 is large, then a large number of trials result in outcome1, implying that there
are fewer possible trials that can result outcome 2. Hence, intuitively, N1 and N2 are
negatively correlated.

Cov(N1, N2) =
n∑

i=1

n∑

j=i

Cov
(
Xi , Yj

)

=
n∑

i=1

Cov (Xi , Yi) +
n∑

i=1

∑

j -=i

Cov
(
Xi, Yj

)

=
n∑

i=1

Cov(Xi, Yi)

=
n∑

i=1

(E [XiYi] − E [Xi] E [Yi])

=
n∑

i=1

(−E [Xi] E [Yi])

= −np1p2

where the third equality follows since Xi and Yj are independent when i -= j, and
the next to last equality because XiYi = 0.



Instructor’s Manual 17

51. E[XiXj] = P{Xi = Xj = 1} = P{Xi = 1}P{Xj = 1|Xi = 1} = 1
n

1
n−1 .

Hence, Cov(XiXj) = [n(n − 1)]−1 − 1/n2 = [n2(n − 1)]−1, for i -= j; and

since Var(Xi) = 1
n
(1 − 1/n) = (n − 1)/n2 we see that Var(X ) = (n − 1)/n +

2
(n

2

)
[n2(n − 1)]−1 = 1.

52. Cov(X1 − X2, X1 + X2) = Cov(X1, X1) − Cov(X2, X1) + Cov(X1, X2) −
Cov(X2, X2) = 0 since Cov(X1, X1) = Cov(X2, X2) and Cov(X1, X2) =
Cov(X2, X1)

53. φ(t) =
∫

etxe−xdx =
∫

e−(1−t)xdx = (1 − t)−1

φ1(t) = (1 − t)−2 and so E[X ] = 1
φ2(t) = 2(1 − t)−3 and so E[X 2] = 2. Hence, Var(X ) = 1.

54. E[etX ] =
∫ 1

0 etx dx = (et − 1)/t = 1 + t/2!+ t2/3!+ · · ·+ tn/(n + 1)!+ · · · . From
this it is easy to see that nth derivative evaluated at t = 0 is equal to 1/(n + 1) =
E[X n].

55. P{0 ≤ X ≤ 40} = 1 − P{|X − 20| > 20} ≥ 1 − 1/20 by Chebyshev’s inequality.

56. (a) 75/85 by Markov’s inequality.
(b) it is greater than or equal to 3/4 by the Chebyshev’s inequality.
(c) P{|X̄ − 75| > 75} ≤ Var(X̄ )/25 = (25/n)/25 = 1/n. So n = 10 would suffice.

57. P(X ≤ x) = P
(
Y ≤ x−a

b

)
= P(a + bY ≤ x)

Therefore, X has the same distribution as a + bY , giving the results:
(a) E(X ) = a + bE[Y ] (b) Var(X ) = b2Var[Y ]



Chapter 5

1.
(4

2

)
(3/5)3(2/5)2 +

(4
3

)
(3/5)3(2/5) + (3/5)4 = 513/625 = .8208

2.
(5

2

)
(.2)3(.8)2 +

(5
4

)
(.2)4(.8) + (.2)5 = .0579

3.
(10

7

)
· 77 · 33 = .2668

4.
(4

3

)
(3/4)3(1/4) = 27/64

5. Need to determine when

6p2(1 − p)2 + 4p3(1 − p) + p4 > 2p(1 − p) + p2

Algebra shows that this is equivalent to

(p − 1)2(3p − 2) > 0

showing that the 4 engine plane is better when p > 2/3.

6. Since
E(X ) = np = 7, Var(X ) = np(1 − p) = 2.1

it follows that p = .7, n = 10. Hence,

P{X = 4} =
(

10
4

)
(.7)4(.3)6, P{X > 12} = 0

7. Let X denote the number of successes and Y = n − X , the number of failures, in
n independent trials each of which is a success with probability p. The result follows
by noting that X and Y are both binomial with respective parameters (n · p) and
(n · 1 − p).

8. P{X = k + 1} = n!
(n − k − 1)!(k + 1)!p

k+1(1 − p)n−k−1 = n!
(n − k)!k!p

k(1 −

p)n−k n − k
k + 1

p
1 − p

. From this we see that P{X = k + 1} ≥ P{X = k} if p(n − k) ≥
(1 − p)(k + 1) which is equivalent to np ≥ k + 1 − p or k + 1 ≤ (n + 1)p.

9.
n∑

i=0
eti(n

i

)
pi(1 − p)n−i =

n∑
i=0

(n
i

)
( pet)i(1 − p)n−i = (pet + 1 − p)n. The first 2

derivatives evaluated at t = 0 are np and n(n − 1)p2 + np which gives that the mean
is np and the variance np(1 − p).

10. (a) approximation = .1839 exact = .1938
(b) approximation = .3679 exact = .3487
(c) approximation = .0723 exact = .0660

18
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11. (a) 1 − e−1/2 = .3935 (b) 1
2 e−1/2 = .3033 (c) 1 − e−1/2 − 1

2 e−1/2 = .0902

12. P{beneficial|0 colds} = P{0 colds|beneficial}P{beneficial}
P{0|ben}P{ben} + P{0|not ben}P{not ben}

= e−23/4
e−23/4 + e−31/4

= 3e−2/(3e−2 + e−3) = .8908

13. With λ = 121.95
(a) 1 −∑129

i=0 e−λλi/i!
(b)

∑100
i=0 e−λλi/i!

14. Assuming that each person’s birthday is equally likely to be any of the 365 days.
(a) 1 − exp{−80, 000/3652}
(b) 1 − exp{−80, 000/365}

15. Say that trial i is a success if the ith card turned over results in a match. Because
each card results in a match with probability 4/52, the Poisson paradigm says that
the number of matches should approximately be Poisson distributed with mean 4,
yielding that the approximate probability of winning is P(no matches) ≈ e−4 =
.0183.

16. Exact = 1 − ∑3
i=0

(
1000

i

)
(.001)i(.999)1000−i = .01891. Approximate = 1 −

e−1 − e−1 − 1
2 e−1 = .01899

17. P{X = i}/P{X = i − 1} = λ/i ≥ 1 when i ≤ λ.

18.

(80
10

)
+
(80

9

)(20
1

)
(100

10

) = .3630

19. P{X = i}/P{X = i − 1} = (n − i + 1)(k − i + 1)

i(m − k + i)

20. (a) (1 − p)k−1p
(b) E[X ] = p

∑
k(1 − p)k−1 = p/p2 = 1/p

(c)
(k−1

r−1

)
pr−1(1 − p)k−rp

(d) Using the hint, each Yi is geometric with parameter p and, by part (b) mean 1/p.

21. For a < x < b, P{a + (b − a)U < x} = P{U < (x − a)/(b − a)} = (x − a)/(b − a)

22. 2/3, 1/3

23. (a) 1 − φ(−5/6) = φ(5/6) = .7977 (b) φ(1) − φ(−1) = 2φ(1) − 1 = .6827
(c) φ(−1/3) = .3695 (d) φ(10/6) = .9522 (e) 1 − φ(1) = .1587

24. (%(1))5 = .4215, 10(%(1.4))2(1%(1.4))3 = .0045

25. Let p = P{rain exceeds 50} = 1 − φ(2.5) = .00621. Answer is 6p2(1 − p)2 =
.00023
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26. Let Wi be the demand in week i, i = 1, 2. Then,

P(Wi < 1100) = P
(

Wi − 1000
200

<
1100 − 1000

200

)

= P(Z < .5)

= %(.5 = .6915)

Hence, for (a)

P(W1 < 1100, W2 < 1100) =P(W1 < 1100)P(W2 < 1100) = (.6915)2 = .4782

Using that W1 + W2 is normal with parameters

E[W1 + W2] = 2000, Var(W1 + W2) = (200)2 + (200)2 = 8 × 104

we obtain

P(W1 + W2 > 2000) = P

(
W1 + W2 − 2000

√
8 × 104

>
2200 − 2000
√

8 × 104

)

= P(Z < 2/
√

8)

= 1 − .7601 = .2399

27. .95 = P{X > L} = 1 − φ
(L−2000

85

)
or φ([L − 2000]/85) = .05 implying that

(L − 2000)/85 = −1.64 or L = 1860.6

28. P{|X − 1.2| > .01} = 2P{Z > .01/.005} = 2(1 − φ(2)) = .0456.

29. (a) Make the change of variables y = x/σ
(b) I2 =

∫ 2π
0

∫
e−r2/2rdrdθ = 2π

30. P{X ≤ x} = P{log X ≤ log x} = φ([log x − µ]/σ )

31. Let µ and σ 2 be the mean and variance. With X being the salary of a randomly
chosen physician, and with Z = (X − µ)/σ being a standard normal, we are given
that

.25 = P(X < 180) = P(Z <
180 − µ

σ
)

and that
.25 = P(X > 320) = P(Z >

320 − µ

σ
)

Because P(Z < −.675) = P(Z > .675) ≈ .25, we see that

180 − µ

σ
= −.675,

320 − µ

σ
= .675
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giving that µ = 250, σ = 70/.675 = 103.70. Hence,
(a) P(X < 250) = .5
(b) P(260 < X < 300) = P(10/103.7 < Z < 50/103.7)

= P(.096 < Z < .482) ≈ .147

32. (a) 70−60
20 < 62−55

10 so your percentile score was higher on the statistics exam.
(b) P(X (econ) < 70) = P(Z < .5) = .6915
(c) P(X (stat) < 62) = P(Z < .7) = .7580

33. (a) .01 = P(−X > v) = P(X < −v) = P(Z < −v−10
7 ). Because P(Z <

−2.33) = .01 we have v = 6.31.
(b) .01 = P(−X > v) = P(Z > v+µ

σ ). Becuase P(Z > 2.33) = .01, this yields
v = −µ + 2.33σ .

34. (a) 1 − %(1.86/8.7) = .415

(b) 1 − %

(
84 − 80.28

8.7
√

2

)
= .381

(c) 1 − %

(
126 − 120.42

8.7
√

3

)
= .356

35. (a) %(−1.5/2.4) = .266
(b) %(5.5/2.4) = .989
(c) %(5.5/2.4) − %(−1.5/2.4) = .723
(d) %(7.5/2.4) = .999

(e) 1 − %

(
132 − 129

2.4
√

2

)
= .188

(f ) 1 − %

(
264 − 158

4.8

)
= .106

36.
x − 100

14.2
= z.01 = 2.58 → x = 100 + (2.58)(1.42) = 136.64

37. (a) e−1 = .3679 (b) e−1/2 = .6065

38. e−10/8 = .2865

39. (i) e−1 = .3679 (ii) P{X > 30|X > 10} = 1/4 + 3/4 = 1/3

40. (a) The time of the nth event.
(b) The nth event occurs before or at time t is equivalent to saying that n or more

events occur by time t.

(c) P{Sn ≤ t} = P{N (t) ≥ n} = 1 −
n−1∑
j=0

e−λt(λt)j/j!

41. (a) 1 − e−2.5 − 2.5e−2.5 = .7127
(b) e−15/4 = .0235 by the independent increment assumption
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(c) P{N (3/4) ≥ 4|N (1/2) ≥ 2} = P{N (3/4) ≥ 4, N (1/2) ≥ 2}/P{N (1/2) ≥ 2}
= P{N (1/2)=2, N (3/4)−N (1/2)≥2}+P{N (1/2)=3,N (3/4)−N (1/2)≥1}+P{N (1/2)≥4}

P{N (1/2)≥2}

= (e−5/2(5/2)2/2)[1−e−5/4−5/4e−5/4]+e−2(5/2)3/6[1−e−5/4]+1−∑3
i=0 e−5/2(5/2)i/i!

1−e−5/2−5/2e−5/2

42. (X /2)2 + (Y /2)2 = D2/4 is chi-square with 2 degrees of freedom. Hence,
P{D > 3.3} = P{D2/4 > (3.3)2/4 = .2531

43. .5770, .6354

44. .3504

45. Upon making the suggested substitution we see that

((1/2) = sqr(2)

∫

0
e−y2/2dy = 2sqr(π)P{N (0.1) > 0} = sqr(π)

46. .1732, .9597, .6536

47. T = N (0.1)

sqr(Xn/n)
where Xn is chi-square with n degrees of freedom. Therefore,

T 2 = N 2(0.1)(Xn/n)

which is F with 1 and n degrees of freedom.

48. X is a normal random variable with mean a and variance b2.



Chapter 6

1. E[X̄2] = E[X̄3] = 1.8, Var(X̄2) = .78, Var(X̄3) = .52

2. If Xi is the ith roll, then E[Xi] = 7/2, Var(Xi) = 35/12. Hence, with X = ∑
i Xi ,

it follows that E[X ] = 35, Var(X ) = 350/12. Hence, by the central limit theorem

P{30 ≤ X ≤ 40} = P{29.5 ≤ X ≤ 40.5}

≈ P
{

29.5 − 35√
350/12

≤ Z ≤ 40.5 − 35√
350/12

}

= %(1.02) − %(−1.02) = .6922

3. E[S] = 8, Var(S) = 16/12. By the central limit theorem

P{S > 10} ≈ 1 − %(2/
√

4/3) = .042

4. If W is your winnings on a single play, then E[W ] = 35/38 − 37/38 = −1/19 =
−.0526, Var(W ) = 33.21.
(a) 1 − (37/38)34 = .596

P{S > 0} = P{S > .5} ≈ 1 − %

(
.5 + .0526n√

33.21n

)

The preceding is 1 −%(.29) = .386 when n = 1000, and 1 −%(2.89) = .002
when n = 100, 000.

5. Let S be the amount of snow over the next 50 days.

(a) P{S < 80} ≈ %

(
80 − 50(1.5)

.3
√

50

)
= %(2.357) = .9908

The preceding assumes that the daily amounts of snow are independent, a dubious
assumption.

6. If R is the sum of the roundoff errors then R has mean 0 and variance 50/12. There-
fore,

P{|R| > 3} = 2P{R > 3} ≈ 2[1 − %(3/
√

50/12)] = .141

7. Imagine that we continue to roll forever, and let S be the sum of the first 140 rolls.

P{S ≤ 400.5} ≈ %

(
400.5 − 140(3.5)
√

140(35/12)

)

= %(−4.43) ≈ 0

23
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8. Let T be the lifetime (in weeks) of 12 batteries.

P{T < 52} ≈ %

(
52 − 60

1.5
√

52

)
= %(−.739) = .230

9. (a) P{X̄ < 104} ≈ %(16/20) = .788
(b) .788 − %(−8/20) = .443

10. 1 − %(9/.3) = 0

11. 1 − %(25
√

n/80)

12. (a) %(25/15) − %(−25/15) = .9044
(b) %(40/15) − %(−40/15) = .9924
(c) 1/2, since the amount by which the average score of the smaller exceeds that of

the larger is a normal random variable with mean 0.
(d) the smaller one

14. P{X < 199.5} ≈ %(−50.5/
√

3000/16) = %(−3.688) = .0001

15. (a) no
(b) they are both binomial
(c) X = XA + XB (d) Since XA is binomial with parameters (32, .5), and XB is

binomial with parameters (28, .7) it follows the X is approximately distributed
as the sum of two independent normals, with respective parameters (16, 8) and
(19.6, 5.88). Therefore, X is approximately normal with mean 35.6 and variance
13.88. Hence,

P{X > 39.5} ≈ 1 − %(3.9/
√

13.88) = .148

16. Since the sum of independent Poisson random variables remains a Poisson random
variable, it has the same distribution as the sum of n independent Poisson random
variables with mean λ/n. To 3 decimal places, the exact probability is .948; the nor-
mal approximation without the continuity correction is .945, and with the correc-
tion is .951.

17. The actual probability is .5832; the Poisson approximation is .5830 and the normal
approximation is .566.

18. (a) P{S2/σ ≤ 1.8} = P{χ2
4 ≤ 7.2}

(b) P{3.4 ≤ χ2
4 ≤ 4.2}

20. Using that 9S2
1/4 and 4S2

2/2 are chi squares with respective degrees of freedom 9 and
4 shows that S2

1/(2S2
2) is an F random variable with degrees of freedom 9 and 4.

Hence,
P{S2

2 > S2
1 } = P{S2

1 /(2S2
2) < 1/2} = P{F9,4 < 1/2}
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21. .5583

22. Using the disk gives the answers: .6711, .6918, .9027, .99997

23. The exact answers are .0617, .9735

24. The exact answers are .9904, .0170

25. X , the number of men that rarely eat breakfast is approximately a normal random
variable with mean 300(.42) = 126 and variance 300(.42)(.58) = 73.08 whereas
Y , the number of men that rarely eat breakfast, is approximately a normal random
variable with mean 300(.454) = 136.2 and variance 300(.454)(.546) = 74.3652.
Hence, X − Y is approximately normal with mean −10.2 and variance 147.4452,
implying that

P{X − Y > 0} ≈ 1 − %

(
10.2√

147.5542

)
= %(−.84) = .2005

27. (.851)5 = .4463, (.645)5 = .1116

28. Using that 120/
√

144 = 10 gives the following
(a) 1 − %(−1) = %(1) = .8413
(b) 1/2
(c) 1 − %(2) = %(−2) = .0227
(d) 1 − %(3.3) = %(−3.3) = .0005

29. 1 − %(1.4
√

12/3.2) = 1 − %(1.516) = .0648



Chapter 7

1. f (x1 . . . xn) = enθ exp{−∑
xi} = cenθ , θ < xi, i = 1, . . . , n; Thus, f is 0, other-

wise maximized when θ is as large as possible — that is, when θ = min xi. Hence,
the maximum likelihood estimator is min xi

2. log[f (x1, . . . , xn)] = log

[

θ2n
n∏

i=1

xie−θxi

]

= 2n log(θ) +
n∑

i=1

log(xi) − θ

n∑

i=1

xi

Therefore, (∂/∂θ)f = 2n/θ −∑n
i=1 xi. Setting equal to 0 gives the maximum like-

lihood estimator θ̂ = 2n/
∑n

i=1 xi

3. f (x1 . . . xn) = c(σ 2)−n/2 exp
(
−∑

(xi − µ)2/2σ 2)

log(f (x)) = −n/2 log σ 2 −∑
(xi − µ)2/2σ 2

d
dσ 2 log f (x) = −n

2σ 2 +
∑

(xi − µ)2/2σ 4

Equating to 0 shows that the maximum likelihood estimator of σ 2 is
∑

(xi −µ)2/n.
Its mean is σ 2.

4. The joint density is

f (x1, . . . , xn) = λnanλ(x1 · · · xn)
−(λ+1), min

i
xi ≥ a

and is 0 otherwise. Because this is increasing in a for a ≤ min xi and is then 0,
m = min xi is the maximum likelihood estimator for a. The maximum likelihood
estimate of λ is the value that maximizes λnmnλ(x1 · · · xn)

−(λ+1). Taking logs gives

n log(λ) + nλ log(m) − (λ + 1) log(x1 · · · xn)

Differentiating, setting equal to 0 and solving for λ, gives that its maximum likeli-
hood estimator is n

log(x1···xn)−n log(m)
.

5. f (x1, . . . , xn, y1, . . . , yn, w1, . . . , wn)

= (2πσ 2)3n/2e−
∑n

i=1[(xi−µ1)
2+(yi−µ2)2+(wi−µ1−µ2)2]/(2σ 2)

log[f (data)] = 3n
2 log(2πσ 2) −

n∑
i=1

[
(xi − µ1)

2 + ( yi − µ2)
2

+(wi − µ1 − µ2)
2] /(2σ 2)

26
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yielding
∂

∂µ1
f = −

n∑

i=1

[(xi − µ1) + (wi − µ1 − µ2)]/σ 2

and
∂

∂µ2
f = −

n∑

i=1

[(yi − µ2) + (wi − µ1 − µ2)]/σ 2

Setting equal to 0 gives

n∑

i=1

xi +
n∑

i=1

wi = 2nµ1 + nµ2

n∑

i=1

yi +
n∑

i=1

wi = nµ1 + 2nµ2

yielding µ̂1 = 2
∑

xi +∑
wi −∑

yi

3n
, µ̂2 = 2

∑
yi +∑

wi −∑
xi

3n
6. The average of the distances is 150.456, and that of the angles is 40.27. Using these

estimates the length of the tower, call it T , is estimated as follows:

T = X tan(θ) ≈ 127.461

7. With Y = log(X ), then X = eY . Because Y is normal with parameters µ and σ 2

E[X ] = E[eY ] = eµ+σ 2/2, E[X 2] = E[e2Y ] = e2µ+2σ 2

giving that
Var(X ) = e2µ+2σ 2 − e2µ+σ 2

(c) Taking the sample mean and variance of the logs of the data, yields the estimates

that µ̂ = 3.7867, σ̂ 2 = .0647. Hence, the estimate of E[X ] is eµ̂+σ̂ 2/2 = 45.561.

8. X̄ = 3.1502
(a) 3.1502 ± 1.96(.1)/

√
5 = (3.0625, 3.2379)

(b) 3.1502 ± 12.58(.1)/
√

5 = (3.0348, 3.2656)

9. X̄ = 11.48
(a) 11.48 ± 1.96(.08)/

√
10 = 11.48 ± .0496

(b) (−∞, 11.48 + 1.645(.08)/
√

10) = (−∞, 11.5216)

(c) (11.48 − 1.645(.08)/
√

10, ∞) = (11.4384, ∞)

10. 74.6 ± 1.645(11.3)/9 = 74.6 ± 2.065 = (72.535, 76.665)

11. (a) Normal with mean 0 and variance 1 + 1/n
(b) With probability .9, −1.64 < (Xn+1 − X̄n)/

√
1 + 1/n < 1.64. Therefore, with

90 percent confidence, Xn+1 ∈ X̄n ± 1.64
√

1 + 1/n.

12. P{√n(µ − X̄ )/σ < zα} = 1 − α and so P{µ < X̄ + zασ /
√

n} = 1 − α



28 Instructor’s Manual

13. 1.2 ± z.0050.2/
√

20 or (1.0848, 1.3152)

14. 1.2 ± t.005,19.2/
√

20 or (1.0720, 1.3280)

15. 1.2 ± t.01,19.2/
√

20 = 1.31359

16. The size of the confidence interval will be 2tα/2,n−1Sn/
√

n 0 2za/2σ /
√

n for n
large. First take a subsample of size 30 and use its sample standard deviation, call
it σe, to estimate σ . Now choose the total sample size n (= 30 + additional sample
size) to be such that 2zα/2σe/

√
n ≤ A. The final confidence interval should now

use all n values.

17. Run program 7-3-1. The 95 percent interval is (331.0572, 336.9345), whereas the
99 percent interval is (330.0082, 337.9836).

18. (a) (128.14, 138.30)
(b) (−∞, 129.03)
(c) (137.41, ∞)

19. Using that t.05,8 = 1.860, shows that, with 95 percent confidence, the mean price is
above

122, 000 − 1.860(12, 000)/3 = 129, 440

114, 560

20. 2, 200 ± 1.753(800)/4 = 2, 200 ± 350.6

21. Using that t.025,99 = 1.985, show that, with 95 percent confidence, the mean score
is in the interval 320 ± 1.985(16)/10 = 320 ± 3.176

22. 330.2 ± 2.094(15.4)/
√

20, 330.2 ± 2.861(15.4)/
√

20 where the preceding used
that t.025,19 = 2.094, t.005,19 = 2.861.

23. 1220 ± 1.968(840)/
√

300, since t.025,299 = 1.968

24. 1220 ± 1.284(840)/
√

300, since t.10,299 = 1.284

26. (a) (2013.9, 2111.6), (b) (1996.0, 2129.5) (c) 2022.4

27. (93.94, 103.40)

28. (.529, .571)

29. E[N ] = e

30. (10.08, 13.05)

31. (85, 442.15, 95, 457.85)

32. Xn+1−X̄n is normal with mean 0 and variance σ 2+σ 2/n. Hence, E[(Xn+1−X̄n)
2] =

σ 2(1 + 1/n).
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33. (3.382, 6.068)

34. 3.007

36. 32.23, (12.3, 153.83, 167.2), 69.6

37. (.00206, .00529)

38. 2
3 S2

1 + 1
3 S2

2 = 4

39. .008

40. Use the fact that nT 2/σ 2 is chi-square with n degrees of freedom, where T 2 =∑n
i=1(Xi − µ)2/n. This gives that

√
n(X̄ − µ)/T is a t-random variable with n

degrees of freedom. The confidence interval is (X̄ − tα2,nT /
√

n, X̄ + tα2,nT /
√

n).
The additional degree of freedom is like having an extra observation.

41. (−22.84, 478.24), (20.91, ∞), (−∞, 434.49)

42. (−11.18, −8.82)

43. (−11.12, −8.88)

44. (−74.97, 41.97)

45. Using that
S2

y
/
σ 2

2

S2
x
/
σ 2

1

has an F-distribution with parameters m−1 and n−1 gives the following 100(1−α)
percent confidence interval for σ 2

1 /σ 2
2

(
F1−α/2,m−1,n−1S2

x
/

S2
y , Fα/2,m−1,n−1S2

x
/

S2
y

)

47. (a) .396 ± .024 [.372, .42]
(b) .389 ± .037 [.352, .426]

48. .17 ± .018, .107 ± .015

49. .5106 ± .010, .5106 ± .013

50. 1692

51. no

52. 2401

53. z.005
√

79 × 61/140/140 = .108

54. .17 ± √
17 × .83/100 = (.096, .244), (.073, .267)

55. .67 An additional sample of size 2024 is needed.
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57. (21.1, 74.2)

58. Since
P
{

2
∑

Xi/θ > χ2
1−α,2n

}
= 1 − α

it follows that the lower confidence interval is given by

θ < 2
∑

Xi
/
χ2

1−α,2n

Similarly, a 100(1 − α) percent upper confidence interval for θ is

θ > 2
∑

Xi
/
χ2

α,2n

60. Since Var[(n − 1)S2
x /σ 2] = 2(n − 1) it follows that Var(S2

x ) = 2σ 4/(n − 1) and
similarly Var(S2

y ) = 2σ 4/(n − 1). Hence, using Example 5.5b which shows that the
best weights are inversely proportional to the variances, it follows that the pooled
estimator is best.

61. As the risk of d1 is 6 whereas that of d2 is also 6 they are equally good.

62. Since the number of accidents over the next 10 days is Poisson with mean 10λ it
follows that P{83|λ} = e−10λ(10λ)83/83!. Hence,

f (λ|83) = P{83|λ}e−λ

∫
P{83|λ}e−λdλ

= cλ83e−11λ

where c does not depend on λ. Since this is the gamma density with parameters
84.11 it has mean 84/11 = 7.64 which is thus the Bayes estimate. The maximum
likelihood estimate is 8.3. (The reason that the Bayes estimate is smaller is that it incor-
porates our initial belief that λ can be thought of as being the value of an exponential
random variable with mean 1.)

63. f (λ|x1 . . . xn) = f (x1 . . . xn|λ)g(λ)/c
= cλne−λ

∑
xi e−λλ2

= cλn+2e−λ(1 +∑
xi)

where c×p(x1 . . . xn)does not depend onλ. Thus we see that the posterior distribution
of λ is the gamma distribution with parameters n + 3.1 + ∑

xi: and so the Bayes
estimate is (n+3)/(1+∑ xi), the mean of the posterior distribution. In our problem
this yields the estimate 23/93.

64. The posterior density of p is, from Equation (5.5.2)
f (p|data) = 11!pi(1 − p)10−i/1!(10 − i)! where i is the number of defectives in
the sample of 10. In all cases the desired probability is obtained by integrating this
density from p equal 0 to p equal .2. This has to be done numerically as the above
does not have a closed form integral.
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65. The posterior distribution is normal with mean 80/89(182) +9/89(200) =183.82
and variance 36/89 =.404. Therefore, with probability .95, θ ∈ 183.82 ±
z.025sqr(.404). That is, θ ∈ (182.57, 185.07) with probability .95.



Chapter 8

1. (a) The null hypothesis should be the defendant is innocent.
(b) The significance level should be relatively small, say α = .01.

2. If the selection was random, then the data would constitute a sample of size 25 from
a normal population with mean 32 and standard deviation 4. Hence, with Z being a
standard normal

p-value = PH0

{
|X̄ − 32| > 1.6

}

= PH0

{ |X̄ − 32|
4/5

> 2
}

= P {|Z | > 2}
= .046

Thus the hypothesis that the selection was random is rejected at the 5 percent level of
significance.

3. Since
√

n/σ = .4, the relevant p-values are

(a) PH0{|X̄ − 50| > 2.5} = P{|Z | > 1} = .3174

(b) PH0{|X̄ − 50| > 5} = P{|Z | > 2} = .0455

(c) PH0{|X̄ − 50| > 7.5} = P{|Z | > 3} = .0027

4. X̄ = 8.179 p-value = 2[1 − φ(3.32)] = .0010 Rejection at both levels

5. X̄ = 199.125 p-value = φ(−.502) = .3078 Acceptance at both levels

6. X̄ = 72.015 p-value of the test that the mean is 70 when the standard deviation
is 3 is given by p-value = 2[1 − φ(3.138)] = .0017 Rejection at the 1% level of
significance.

7. (a) Reject if |X̄ − 8.20|√n/.02 > 1.96
(b) Using (8.3.7) need n = 6
(c) Statistic in (a) = 13.47 and so reject
(d) probability 0 1 − φ(−12.74) 0 1

8. If µ1 < µ0 then φ[√n(µ0 −µ1)/σ + zα/2] > φ(zα/2) = 1 −α/2 0 1. Thus, from
(8.3.5)

1 − φ[√n(µ0 − µ1)/σ − zα/2] 0 β

32
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and so
√

n(µ0 − µ1)/σ − zα/2 0 zβ

9. The null hypothesis should be that the mean time is greater than or equal to 10
minutes.

10. p-value = P7.6{X̄ ≤ 7.2} = P
{

Z ≤ 4
1.2 (−.4)

}
= P{Z > 1.33} = .0913.

Thus the hypothesis is rejected at neither the 1 nor the 5 percent level of signifi-
cance.

11. The p-values are as follows.
(a) P100{X̄ ≥ 105} = P{Z ≥ 5(

√
20/5)} = P{Z > 4.47} ≈ 0

(b) P100{X̄ ≥ 105} = P{Z ≥ 5(
√

20/10)} = P{Z > 2.236} = .0127
(c) P100{X̄ ≥ 105} = P{Z ≥ 5(

√
20/15)} = P{Z > 1.491} = .068

12. Testing the null hypothesis that the mean number of cavities is at the least 3 gives

p-value = P3{X̄ ≤ 2.95}
= P3{

√
n(X̄ − 3) ≤ −.05

√
n}

= P{Z > .05(50)} = .0062

Thus we can conclude that the new toothpaste results, on average, in fewer than 3
cavities per child. However, since it also suggests that the mean drop is of the order
of .05 cavities, it is probably not large enough to convince most users to switch.

13. With T24 being a t-random variable with 24 degrees of freedom

p-value = P{|T24| ≥ 5|19.7 − 20|/1.3} = 2P{T24 ≥ 1.154} = .26

14. With T24 being a t-random variable with 35 degrees of freedom

p-value = P{|T35| ≥ 6|22.5 − 24|/3.1} = 2P{T35 ≥ 2.903} = .0064

15. With T27 being a t-random variable with 27 degrees of freedom

p-value = P{|T27| ≥
√

28|1 − .8|/.3} = 2P{T27 ≥ 3.528} = .0016

17. The p-value of the test of the null hypothesis that the mean temperature is equal to
98.6 versus the alternative that it exceeds this value is

p-value = P{T99 ≥ 10(98.74 − 98.6)/1.1} = P{T99 ≥ 1.273} = .103

Thus, the data is not strong enough to verify, even at the 10 percent level, the claim
of the scientist.

20. p-value = p{T9 < −3.25} = .005
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21. p-value = P{T17 < −1.107} = .142

22. p-value = .019, rejecting the hypothesis that the mean is less than or equal to 80.

23. No, it would have to have been greater than .192 to invalidate the claim.

24. p-value = P{T15 < −1.847} = .04

25. no, yes.

26. The data neither prove nor disprove the manufacture’s claim. The p-value obtained
when the claim is the alternative hypothesis is .237.

27. Yes, the test statistic has value 4.8, giving a p-value near 0.

28. p-value = P{|Z | > .805} = .42

29. .004, .018, .092

30. p-value = 2P{T13 > 1.751} = .1034

31. p-value = 2P{T11 > .437} = .67

32. p-value = P{T10 > 1.37} = .10

33. p-value = .019

34. yes, p-value = .004

35. p-value = P{T30 > 1.597} = .06 The professor’s claim, although strengthened
by the data, has not been proven at, say, the 5 percent level of significance.

36. p-value = .122

37. p-value = .025

38. The value of the test statistics is 1.15, not enough to reject the null hypothesis.

39. The value of the test statistic is 8.2, giving a p-value approximately equal to 0.

40. The value of the test statistic is .87, with a resulting p-value of .39.

41. p-value (test statistic = 7.170)

42. p-value = 2P{T9 > 2.333} = .044 The hypothesis of no change is rejected at the
5% level of significance.

43. For a 2-sided test of no effect p-value = 2P{T7 > 1.263} = .247 and we cannot
conclude on the basis of the presented data that jogging effects pulse rates.

44. Reject at the α level of significance if (n − 1)S2/σ 2
0 > X 2

α,n−1. Equivalently, if the
values of (n − 1)S2/σ 2

0 is v then the p-value = P{X 2
n−1 > v}.
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45. Reject at the α level if
∑

(X1 − µ)2/σ 2
0 > X 2

α,n

46. Test the null hypothesis that σ ≥ .1. The values of the test statistic is (n −1)S2/.01 =
49 × .0064/.01 = 31.36 and so p-value = P{X 2

49 < 31.36} = .023. Hence, the
hypothesis that σ ≥ 1 is rejected and the apparatus can be utilized.

47. Test H0 : σ ≥ .4 9S2/(.4)2 = 9.2525 × 104 p-value = P{X 2
9 < .000925} <

.0001. Hence, the null hypothesis that the standard deviation is as large as .4 is
rejected and so the new method should be adopted.

48. S2
1 /S2

2 = .53169 p-value = 2P{F7.7 < .53169} = .42 and so the hypothesis of
equal variances is accepted.

49. S2
1 /S2

2 = 14.053 p-value = 2P{F5.6 > 14.053} = .006 and the hypothesis of equal
variances is rejected.

50. σ 2
y S2

x +σ 2
x S2

y has an F -distribution with n−1 and m−1 degrees of freedom. Hence,
under H0, P{S2

x /S2
y > Fα,n−1,m−1} ≤ P{Fn−1,m−1 > Fα,n−1,m−1} = α and so the

test is to reject if S2
x /S2

y > Fα,n−1,m−1 or, equivalently, we could compute S2
x /S2

y , call
its value v, and determine p-value = P{Fn−1,m−1 > v}.

51. Test H0 : σ 2
in ≤ σ 2

out against H1 : σ 2
in > σ 2

out S2
out/S

2
in = .4708 p-value =

P{F74.74 < .4708} = 7.5 × 10−4 by 3-8-3-a and so conclude that the variabil-
ity is greater on the inner surface.

52. The test statistic has value 5, giving a p-value approximately 0.

53. The test statistic has value 1.43 which is not large enough to reject the null hypo-
thesis that the probability of stroke is unchanged

54. p-value = P{Bin(50, .72) ≥ 42} = .036

55. (a) No, since p-value = P{Bin(100, .5) ≥ 56} = .136
(b) No, since p-value = P{Bin(120, .5) ≥ 68} = .085
(c) No, since p-value = P{Bin(110, .5) ≥ 62} = .107
(d) Yes, since p-value = P{Bin(330, .5) ≥ 186} = .012

56. (a) If the probability that a birth results in twins is .0132 then the mean number
of twin births will be 13.2 with a variance equal to 13.02576. As the standard
deviation is 3.609. Because a normal random variable would be greater than
its mean by at least 1.96 of its standard deviations is .025 it would seem that
6 or fewer twin births would result in rejection. An exact calculation yields
that P(Bin(1000, .0132) ≤ 6) = .02235, and so the null hypothesis would
be rejected if there were 6 or fewer births.

(b) When the null hypothesis is true the exact probability of getting at least 21
twin births is .02785. Because .02785 + .02235 ≈ .05, the test can be to
reject when either there are 6 or fewer or 21 or more twins births. Thus, for X
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being a binomial with paramters (1000, .0180, te answer, to 4 decimal places, is
P(X ≥ 21) + P(X ≤ 6) = .2840 + .0008 = .2848.

57. The claim is believable at neither level, since

p-value = P{Bin(200, .45) ≥ 70} = .003

58. p-value = 2P{Bin(50, 3/4) ≥ 42} = .183

59. p-value = 2P
{

Z >
41.5 − 150/4√

150/16

}
= .19

60. Using the Fisher-Irwin conditional test, the p-value is twice the probability that a
hypergeometric random variable X , equal to the number of red balls chosen when a
sample of 83 balls is randomly chosen from a collection of 84 red and 72 blue balls,
is at most 44. Because

E[X ] = 83(84)/156 = 44.69

and
√

Var(X ) =
√

83 · 84
156

[
1 − 82

155

]
= 4.59

it is clear that the p-value is quite large and so the null hypothesis would not be
rejected.
(b) We need test that p = .5 when a total of 156 trials resulted in 84 successes and 72
failures. Wit X being a binomial random variable with parameters n = 156, p = .5,
the p-value is given by

p-value = 2P(X ≥ 84)

= 2P(X ≥ 83.5)

= 2P
(

X − 78√
39

≥ 83.5 − 78√
39

)

≈ 2P(Z ≥ .8807)

≈ .38

Thus the data is consistent with the claim that the determination of the treatment to
be given to each patient was made in a totally random fashion.

62.
(n1 − i)!i!(n2 − k + i)!(k − i)!

(n1 − i − 1)!(i + 1)!(n2 − k + i + 1)!(k − i − 1)! = (n1 − i)(k − i)
(i + 1)(n2 − k + i + 1)

63. Let Y = X1/n1 + X2/n2. Then E[Y ] = p1 + p2 and Var(Y ) = p1(1 − p1)/n1 +
p2(1 − p2)/n2. By the normal approximation, to the binomial it follows that Y is
approximately normally distributed and so (a) follows. Part (b) follows since the
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proposed estimate of p1 = p2 is just the proportion of the n1 + n2 trials that result
in successes.

64. p-value = 2[1 − φ(1.517443)] = .129

65. p-value = P{|Z | > 2.209} = .027, indicating that the way in which the information
was presented made a difference.

66. (a) Assuming independence of the two samples, the value of the normal approxima-
tion test statistic is 1.57, giving

p-value = 2P(Z > 1.57) = .1164

(b) The value of the normal approximation test statistic is .552, giving

p-value = 2P(Z > .522) = .1602

67. The value of the normal approximation test statistic is .375. Thus, the hypothesis
cannot be rejected any reasonable significance level.

68. p-value = 2P{Po(416) ≥ 431} = .47

69. The p-value is P(X ≥ 27) where X is Poisson with mean 6.7. Because the standard
deviation of X is

√
6.7, X would have to exceed its mean by about 6 of its standard

deviations, which has a miniscule probability of occurring.

70. p-value = 2P{Bin375, 3/11) ≥ 119} = .063

71. The scientist should try to match her samples, so that for each smoker there is a
nonsmoker of roughly the same age.

72. No because the researcher will only be considering stocks that have been around for
the past 20 years, and is thus ignoring those that were in play 20 years ago but have
since gone bust.



Chapter 9

1. y = 2.464 + 1.206x

2. y = 206.74 − 2.376x; the estimated response at x = 25 is 147.34

3. y = .0072 + .0117x; the estimated response at x = 32 is .0448

4. y = 2826.1 + 12246.2x; the estimated response at x = .43 is 2439.8

5. y = 2.64 + 11.80x; the estimated response at x = 7 is 85.22

6. 57.1 percent

8. A = ∑
Yi/n − Bx̄

Var(A) = Var
(∑

Yi/n
)
+ x̄2Var(B) − 2x̄

n Cov
(∑

Yi · B
)

Now, Cov
(
Yj , B

)
= Cov

(
Yj ,

1
c
∑

(x1 − x̄)Yi

)
where c = ∑

x2
i − nx̄2.

= (xj − x̄)σ 2/c

Hence,
Cov

(∑
Yj , B

)
=
∑

(xj − x̄)σ 2/c = 0

and so

Var(A) = σ 2/n + x̄2σ 2
∑

x2
i − nx̄2

= σ 2∑ x2
i

n
[∑

x2
i − nx̄2

]

9. (a) SSR/8 = 105659.1 (b) (SSR/X 2
.05,8, SSR/X 2

.95,8) = (54518, 308521)

10. SSR = ∑(
Yj − Ȳ + Ȳ − A − Bxj

)2

= SYY +∑(
Ȳ − A − Bxj

)2 + 2
∑(

Yj − Ȳ
) (

Ȳ − A − Bxj
)

= SYY + B2Sxx − 2BSxY since A = Ȳ − Bx̄

= SYY − S2
xY /Sxx since B = SxY /Sxx

11. y = 46.44 + .0481x; p-value when testing β = 0 is P{|T12 > 2.8} = .016. Con-
fidence interval for α is (42.93, 49.95)

38
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12. The p-value when testing β = 0 is P{|T10| > 1.748} = .11}, not small enough to
establish the hypothesis.

14. .239, .265, .283

15. The very fine and very poor landings might just have been chance results; the following
outcomes would then be more normal even without any verbal remarks.

16. It follows from the text that

Z = (A − α)
√

nSxx

σ
√∑

x2
i

has a standard normal distribution, and thus z/
(√

SSR/[(n − 2)σ 2]
)

has a t-
distribution with n − 2 degrees of freedom.

17. (b) y = −.664 + .553x
(c) p-value = P{|T8| > 2.541} = .035
(d) 12.603
(e) (11.99, 13.22)

18. 510.081, 517.101, 518.661, 520.221

26. (b) y = −22.214 + .9928x (c) p-value = 2P〈T8 > 2.73〉 = .026 (d) 2459.7
(e) 2211 ± 10.99xt.025,8 = (2186.2, 2236.9)

28. y = −3.6397 + 4.0392x at x = 1.52 y = 2.4998
95 percent confidence interval = 2.4998 ± .00425

29. (a) d /dB
∑

(Yi − Bxi)
2 = −2

∑
xi(Yi − Bxi). Equating to 0 yields that the least

squares estimator is B = ∑
xiYi

/∑
x2

i

(b) B is normal with mean E[B] = ∑
xiE[Yi]

/∑
x2

i = β (since E[Y ] = βxi )

and variance Var(B) = ∑
x2

i Var(Yi)
/(∑

x2
i
)2 = σ 2/∑ x2

i

(c) SSR = ∑
(Yi−Bxi)

2 has a chi-square distribution with n−1 degrees of freedom.

(d) Sqr
(∑

x2
i
)
(B − β0)/σ has a unit normal distribution when β = β0 and so

V ≡ Sqr
(∑

x2
i
)
(B − β0)

/
Sqr[SSR/(n − 1)] has a t-distribution with n − 1

degrees of freedom when β = β0. Hence, if the observed value of |V | is V = v
then p-value = 2P(Tn−1 > v) where Tn−1 has a t-distribution with n − 1
degrees of freedom.

(e) Y − Bx0 is normal with mean 0 and variance σ 2 + x2
0σ 2/∑ x2

i and so
−tα/2,n−1 < Y −Bx0

Sqr
[(

1+x2
0

/∑
x2

i

)
SSR/(n−1)

] < tα2,n−1 with confidence 100(1 − α)

31. (a) A = 68.5846 B = .4164 (b) p-value < 10−4 (c) 144.366 ± 4.169
(e) R = .7644
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32. Take logs to obtain log S = log A − m log N or log N = (1/m) log A − (1/m) log S.
Fitting this with a regression line with log N = 55.59 − 14.148 log S which yields
that m = .0707 and A = 50.86.

33. Taking logs and using Program 9-2 yields the estimates log t = 3.1153 log s =
.0924 or t = 22.540 and s = 1.097

34. Taking logs and letting time be the independent variable yields, upon running Program
9-2, the estimates log a = .5581 or a = 1.7473 and b = .0239. The predicted value
after 15 hours is 1.22.

35. Using the results of Problem 21a on the model log(1 − P) = −αt yields the esti-
mate α = 1.05341. Solving the equation 1/2 = e−αt yields t = log 2/α = .658.

36. With Y being the bacterial count and x the days since inoculation Y = 64777e.1508x

37. The normal equations are

9.88 = 10α + 55β + 385γ

50.51 = 55α + 385β + 3025γ

352.33 = 385α + 3025β + 25333γ

which yield the solution: α = 1.8300 β = −.3396 γ = .0267

39. (a) y = −46.54051 + 32.02702x

40. y = .5250839 + 12.14343x at x = 7 y = 85.52909

41. y = 20.23334 + 3.93212x using ordinary least squares

y = 20.35098 + 3.913405x using weighted least squares

42. (a) The weighted least squares fit is y = −4.654 + .01027x at x = 3500
y = 31.29

(b) The variance stabilizing transformation yields the least squares solution √y =
2.0795 + .00098x at x = 3500 y = 30.35

43. Peak Discharge = 150.1415 + .362051x1 − 3163.567x2

44. y = −1.061 + .252x1 + 3.578 × 10−4x2

45. y = −606.77 + 59.14x1 − 111.64x2 + 14.00x3 − 19.25x4 SSR = 1973396

46. log(survival) = 7.956696 − 1.204655x1 − .02250433x2 SSR/9 = 2.453478 =
est. of σ 2

47. (a) y = −2.8277 + 5.3707x1 + 9.8157x2 + .448147x3 SSR = 201.97
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(b) p-value = 2P(T11 > .7635) = .46
(c) p-value = 2P(T11 > .934) = .37
(d) p-value = 2P(T11 > 1.66) = .125

48. (a) y = 177.697 + 1.035x1 + 10.721x2
(b) 238.03 ± 3.94

49. (a) y = 1108.68 + 8.64x1 + .26x2 − .71x3
(b) SSR/6 = 520.67
(c) 2309.6 ± 28.8

50. A prediction interval is always larger than the corresponding confidence interval for the
mean since it has to take into account not only the variance in the estimate of the mean
but also the variance of an observation. For instance, if one had an infinite number of
observations then the confidence interval for a mean response would shrink to a
single point whereas a prediction interval for an observation would still involve σ 2

the variance of an observation even when its mean is known.

51. (a) y = 5.239 + 5.697x1 + 9.550x2
(b) SSR/9 = 68.82
(c) 225.70 ± 20.07

52. (a) y = 6.144 − 3.764 × 10−2x1 + 8.504 × 10−2x2
(b) p-value = 2P{T9 > 12.4} ≈ 0
(c) 4.645 ± .615

53. y = 28.210 + .116x1 + .566x2
(a) p-value of “β1 = 0” = 2P{T6 > .2487} = .81
(b) 135.41 ± 17.24 or (118.17, 152.65)
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1. F -statistic = .048737 p-value = .954

2. F -statistic = .32 p-value = .727

3. The resulting test statistics would have complicated dependencies.

4. F = 10.204 p-value = .00245

5. F = 7.4738 p-value = .0043

6.
∑n

i=1(Xi − µ)2/σ 2 = ∑
(Xi − X̄ )2/σ 2 + n(X̄ − µ)2/σ 2. As the first term of the

right side of the equality sign has n − 1 and the second 1 degree of freedom the
result follows.

7. The value of the test statistics is 1.332, with a corresponding p-value of .285;
thus the hypothesis is not rejected at either significance level.

8. Since S2
i = ∑n

j=1(Xij − Xi.)
2/(n − 1), it follows that

SSw =
m∑

i=1

n∑

j=1

(Xij − Xi.)
2 = (n − 1)

m∑

i=1

S2
i

9. The result of Problem 8 shows that

SSw = 9[24 + 23.2 + 17.1] = 578.7

Since a simple computation yields that SSb = 388.866, the value of the test
statistic is

T = 388.866/2
578.7/27

= 9.072

As F.05,2,27 = 3.35 the hypothesis is rejected.

10. The value of the test statistic is 5.08, with a corresponding p-value of .01; thus the
hypothesis is rejected at the 5 percent significance level.

11. The value of the test statistic is 5.140. Since F.01,4,60 = 3.65 the hypothesis of
equal levels is rejected even at the 1 percent level of significance.

13. The value of the test statistic is .1666, with a corresponding p-value of .849;
thus the hypothesis of equal fat content is not rejected.

42
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14. The value of the test statistic is .07, with a corresponding p-value of .934; thus,
the data is consistent with the hypothesis.

17. 37 for both parts.

19. Use a two-way analysis of variance model.

20.

µ = 31.545

α̂1 = .180

α̂2 = −1.1295

α̂3 = .130

α̂4 = .205

α̂5 = .780

β̂1 = 3.075

β̂2 = −.065

β̂3 = −1.505

β̂4 = −1.505

The p-value for the hypothesis that the season is irrelevant is .027 (test statistic value
5.75), and the p-value for the hypothesis that the year has no effect is .56 (test statis-
tic value .793); hence the first hypothesis is rejected and the second accepted at the
5 percent level.

21. The p-value for the hypothesis that the methods of extraction are equivalent is .001,
and the p-value for the hypothesis that storage conditions have no effect is .017; hence
both hypotheses are rejected at the 5 percent level.

22. (a) –2, –4.67, 3.33
(b) 6.25, 7.75

The p-value for the hypothesis that the detergent used has no effect is .011 (test sta-
tistic value 9.23), and the p-value for the hypothesis that the machine used had no
effect is .0027 (test statistic value 18.29); hence both hypotheses are rejected at the 5
percent level.

23. F -stat for rows = .3798 p-value = .706
F -stat for columns = 11.533 p-value = .0214
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24. F -stat for rows = 2.643 p-value = .1001
F -stat for columns = .0155 p-value = .9995
F -stat for interaction = 2.5346 p-value = .1065

25. F -stat for rows = .0144 p-value = .9867
F -stat for columns = 34.0257 p-value < .0001
F -stat for interaction = 2.7170 p-value = .0445

26. F -stat for rows = 4.8065 p-value = .028
F -stat for columns = 50.406 p-value < .0001
F -stat for interactions = 3.440 p-value = .0278

27. F -stat for rows = 11.0848 p-value = .0003
F -stat for columns = 11.1977 p-value = .0003
F -stat for interactions = 7.0148 p-value = .00005

28. F -stat for rows = .3815 p-value = .5266
F -stat for columns = .3893 p-value = .7611
F -stat for interactions = .1168 p-value = .9497
(d) Using an F -statistic to see if there is a placebo effect yields the value 11.8035 for

the statistic; with a corresponding p-value of .0065. This, the hypothesis of no
placebo effect is rejected.
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1. T = .8617 p-value = .648 accept

2. T = 2.1796 p-value = .824 accept

3. T = 15.955 p-value = .143

4. T = 2.1144 p-value = .55

5. T = 23.13 p-value = .00004

6. T = 43.106 p-value = .0066

7. T = 37.709 using 6 regions p-value < .00001

8. TS = 4.063, p-value = .131

9. TS = 4.276, p-value = .639

10. TS = .0016, p-value = .968

The probability that a fit as good or better than obtained would occur by chance
is .032.

13. TS = 19.295, p-value = .0017

16. T = 3.4286 p-value = .052

17. T = 6.8571 p-value = .007

18. T = 4327.9 p-value < 10−6

19. T = 16.4858 p-value = .0003

20. TS = 1.250, p-value = .535

21. TS = .186, p-value = .666

22. TS = 9.442, p-value = .024

23. TS = 5.526, p-value = .063

24. TS = 27.370, p-value = .00005

45
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1. p-value = 2P{Bin(18, .5) ≤ 5} = .096

2. p-value = i

3. (a) p-value = .056
(b) p-value = 7.8 × 10−5

(c) p-value = 1.12 × 10−9

4. yes, p-value = .0028

5. p-value = .6

6. (a) p-value = .29
(b) the normal approximation gives p-value = .0498

7. p-value in 21 = 2P{T ≤ 23} = .0047
p-value in 22 = 2P{T ≤ 15} = .742

8. (a) p-value = 2P{Bin(11, .5) ≤ 2} = .0654 (b) p-value = 2P{T ≤ 13} =
.0424. Thus, at the 5% level we would accept when the sign test and reject when
the using the signed rank test.

9. p-value using sign = .02 p-value using sign rank = .0039 engineer’s claim is
upheld.

10. Using sign rank p-value = 2P{T ≤ 5} = .0195 so equivalence is rejected

11. (a) Determine the number of data values less than m0. If this value is k then
p-value = P{Bin(n, .5) ≥ k

(b) Let T be the sign rank statistic. If T = t then p-value = Pm0{T ≤ t} = Pn(t)

12. T = 36 p-value = .699

13. T = 66 p-value = .866

14. normal approximation gives p-value = 2P{Z > .088} = .93

15. (b) 2P(Z > 1.26) = .2076

18. The value of the test statistic is 7587.5 giving that

p−value ≈ P(χ2
2 ≥ 4.903) = .0862

46
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19. R = 11 p-value = .009

20. sample median = 122 R = 9 p-value = .14

21. Yes, but since you would not necessarily have an equal number of 1’s and



Chapter 13

1. Control limits are 35 ± 9/
√

5 which give LCL = 30.98 UCL = 39.03. Subgroup
3 falls outside these limits.

2. Suppose the mean jumps to 16.2. The probability that the next subgroup falls outside
is approximately P{X > 14 + 6/

√
5} = P{Z > (6/

√
52.2)/(2/

√
5)} = 1 −

φ(.54) = .2946. On average, it will take a geometric distributed number of subgroups
with mean 1/.2946 = 3.39 to detect a shift. The result is the same when the mean
falls by 2.2.

4. (a) X = 14.288 S̄ = .1952 LCL = 14.01 UCL = 14.57
(b) The estimate of σ is .1952/.94 = .2077. Hence with µ = 14.288, σ =

.2077 P{13.85 < X < 14.75} = φ(2.212) − φ(−2.115) = .969

5. X = 36.02 S̄ = 4.29 For X̄ : LCL = 29.9 UCL = 42.14
For S: LCL = 0 UCL = 8.96

6. LCL = 0 UCL = .4077

7. X = 36.23 S̄ = 5.43
(a) LCL = 28.48 UCL = 43.98
(b) LCL = 0 UCL = 11.34
(c) yes
(e) P{25 < X < 45} = φ(1.52) − φ(−1.94) = .91 when X is normal with mean

36.23 and standard deviation 5.43/.94(= 5.777).

8. X = 422 S̄ = 16.667 c(4) = .9213
(a) LCL = 394.86 UCL = 449.14
(b) LCL = 0 UCL = 37.77
(c) 16.667/.9213 = 18.09
(d) P{X < 400} = φ(−1.216) = .11

9. (a) LCL = 394.37 UCL = 467.63 LCL = 0 UCL = 28.5
(b) 22.5/.9213 = 24.4
(c) P{400 < X < 460} = φ(1.19 − φ(−1.27) = .78
(d) P{X̄ > 467.63} = P{Z > −(467.63 − 491)/12.2} = P{Z > 1.9} = .97

11. X = 19.4 S̄ = 1.7 1.7/c(6) = 1.79
(a) LCL = 17.2 UCL = 21.6 LCL = .051 UCL = 3.349
(b) P{15 < X < 23} = φ(2.011) − φ(−2.46) = .975

48



Instructor’s Manual 49

12. The estimate of p, the probability that assembly is defective, is .0445. Thus, the mean
number in a sample of size 100 should fall within 4.45 ± 3 × sqr(4.45 × .9555);
which means that there should never be more than 10 defectives, which is satisfied.

13. The estimate of p is .072 = number of defects + number of units. Thus if n are
produced on a day then the number of defects should be within np ± sqr{np(1 − p)}
where p is taken equal to .072. The data all satisfy this criteria.

14. Control limits are 20±3sqr(20× .96) which gives UCL = 33.1. The desired proba-
bility is thus P{Bin(500, .08) ≥ 34} = .86.

15. X = 90.8 As 3
√

90.8 = 28.59 LCL = 62.2 UCL = 119.5. The first 2
data points fall outside. Eliminating them and recomputing gives X = 85.23,
3
√

85.23 = 27.70 and so LCL = 57.53 UCL = 112.93. As all points fall within,
these limits can be used for future production.

16. X = 3.76 and so UCL = 9.57. The process appears to have been out of control when
number 14 was produced.



Chapter 14

1. λ(t) = αβtβ−1

2. P{Z > t} = P{X > t, Y > t} = [1 − FX (t)][1 − FY (t)]
λ2(t) = [1 − FX (t)]fY (t) + [1 − FY (t)]fX (t)

[1 − FX (t)][1 − FY (t)] = λy(t) + λx(t)

3. P{40 year old smoker reaches age t} = exp
{
−
∫ t

40 λ(y)dy
}

= exp
{
−[.027(t − 40) + .025(t − 40)5/50000]

}

.726 if t = 50

.118 if t = 60

= .004 if t = 65

.000002 if t = 70

4. 1 − F(t) = e−t4
/4 (a) .018316 (b) .6109 (c)

∫
t>0 e−t4

/4 dt = 1.277

(d) exp
{
−
∫ 2

1 s3ds
}

= e−15/4 = .0235

5. (b) Using the hint

λ(t) =
[∫

s>t
e−λ(s−t)(s/t)α−1ds

]−1

=
[∫

s>0
e−λu(1 + u/t)α−1du

]−1

by the substitution u = s − t

As the integrand in the above is decreasing in t when α − 1 > 0 and increasing
otherwise the result follows.

6. f (x) = 1/(b − a), a < x < b F(x) = (x − a)/(b − a), a < x < b

λ(x) = 1/(b − a)
(b − x)/(b − a)

= 1/(b − x), a < x < b

8. τ = 1541.5 (a) τ /10 = 154.15 (b)
(
3083/χ2

.025,20, χ2
.975,20

)
(c) 3083/χ2

.95,20
(d) p-value = 2p {χ2

20 > 41.107} = .007 so reject at α = .1.

9. The null hypothesis should be rejected either if Pθ0{2T /θ0 ≤ v} ≤ α/2 or if
Pθ0{2T /θ0 ≥ v} ≤ α/2. As, under H0, 2T /θ0 has a chi-square distribution with
2r degrees of freedom it follows that the hypothesis should be rejected if

Min(P{χ2
2r ≤ v}, 1 − P

{
χ2

2r ≥ v
}
) ≤ α/2
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or, equivalently, if

α ≥ 2Min(P{χ2
2r ≤ v}, 1 − P{χ2

2r ≤ v})

10. τ = 71.51 2τ /10 = 14.302 p-value = 2P{χ2
16 < 14.302} = .85

11. (a) 10
∑20

11 1/j (b) 100
∑20

11 1/j2

12. 20 log
(

n
n−9

)
= 3 or n/(n − 9) = e.15 or n = 9e.15/(e.15 − 1) which yield that

n = 65

13. (a) 300/16 (b) p-value = .864

14. Let X1, X2, . . . be independent exponentials with mean 1 and think of them as being
the interarrival times of a Poisson process with rate 1. Let N (t) be the number of
events of this process by time t. Then

P{N (x/2) ≥ n} = P{X1 + . . . + Xn ≤ x/2} = P{Gamma(n, 1) ≤ x/2}

= P
{

1
2
χ2

2n ≤ x/2
}

which proves the result since N (x/2) has a Poisson distribution with mean x/2.

15. Let the data be the times of failure x1, . . . , xk with k = r meaning that the test stopped
at the rth failure and k < r meaning that it ended at time T . Since the lifetimes are
x1 − x0, x2 − x1, . . . , xk − xk−1 (where x0 = 0) and in addition when k < r there is
an additional lifetime that exceeds T − xk . The likelihood can be written as

r∏

i=1

1/θe−(xi−xi−1)/θ = θ−re−x1/θ if k = r

L(x1, . . . , xk) =
k∏

i=1

1/θe−(xi−xi−1)/θ e−(T −xk)/θ = θ−re−T /θ if k < r

Hence,

− r log θ − xr/θ if k = r
log L =− r log θ − T /θ if k < r

Differentiation now yields that the maximum likelihood estimate is xr/r when k = r
and T /k when k < r. In either case this is equal to the total time on test divided
by the number of observed failures.

16. Log L = −r log θ −
(∑

xi +∑
yi
)

/θ + log K
d

dθ Log L = −r/θ +
(∑

xi +∑
yi
)

/θ2 and the result follows upon setting equal
to 0 and solving.
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17. Total time on test = 5 × 86 + 4(128 − 86) + 3(153 − 128) + 2(197 − 153) =
761. MLE = 761/9 = 84.556

18. 702.8/12 = 58.567

19. 10/861 = .0116

20. 13/732.8 = .0177

21. X̄ /Ȳ = 1.376 p-value = 2P{F7.7 > 1.376} = .684

22. (a) 2ri/θi , i = 1, 2 have chi-square distributions with 2ri degrees of freedom respec-
tively. Hence, when the means are equal (τ1/r1)/(τ2/r2) has an F -distribution
with r1 and r2 degrees of freedom.

(b) .7τ1/τ2 = 2.461 p-value − 2P{F20.14 > 2.461} = 0.89

23. E[X ] =
∫
(x/α)1/βxdx upon making the suggested substitution.

24. E[X 2] =
∫
(x/α)2/βxdx by the same substitution as in Problem 23. Now use Var(X ) =

E[X 2] − (E[X ])2.

26. P{αX β ≤ x} = P{X ≤ (x/α)1/β} = 1 − exp{−α(x/a)} = 11 − e−x

27. P{(−(1/α) log U )1/β < x} = P{−(1/α) log U < xβ} = P{U > e−αxβ } =
1 − e−αxβ

28. (a) P{F(X ) < a} = P{X < F−1(a)} = F(F−1(a)) = a, 0 < a < 1
(b) P{1 − F(X ) < a} = P{F(X ) > 1 − a} = a from part (a)

29. (a) In order for the ith smallest of n random variables to be equal to t i − 1 must be
less than t one equal to t and n−i greater than t. Since there are n!/(i−1)!(n−i)!
choices of these 3 sets the result follows.

(b) It follows from (a) that
∫ 1

0 ti−1(1 − t)n−idt = (n − i)!(i − 1)!/n!. Hence,
by substituting i + 1 for i and n + 1 for n we see that

∫ 1
0 ti(1 − t)n−idt =

(n − i)!i!(n + 1)! and so

E[U(i)] = n!(n − i)!i!
(n − i)!(i − 1)!(n + 1)! = i

n + 1

(c) Since F(X ) is uniform (0.1) the result follows from (b) since F(X(i)) has the
same distribution as the ith smallest of a set of n uniform (0.1) random variables.

30. P{− log U < x} = P{U > e−x} = 1 − e−x

Using this the left side of (10.5.7) would equal the expected time of the ith failure
when n exponentials with rate 1 are simultaneously put on test. But this is equal to
the mean time until the first failure (1/n) plus the mean time between the first and
second failure (1/(n − 1)) plus . . . plus the mean time between the (i − 1)st and ith
failure (1/[n − (i − 1)]).



Chapter 15

1. If x0 = 4, and
xn = 3 xn−1 mod 7

then x1, . . . , x10 are
5, 1, 3, 2, 6, 4, 5, 1, 3, 2, 6

2. It is immediate for n = 2. So, the permutation before the interchange is equally likely
to be either P1 = 1, 2, 3 or P2 = 2, 1, 3. So, with F being the final permutation

P(F = 1, 2, 3) = P(F = 1, 2, 3|P1)P(P1) = (1/3)(1/2) = 1/6

P(F = 2, 1, 3) = P(F = 2, 1, 3|P2)P(P2) = (1/3)(1/2) = 1/6

P(F = 1, 3, 2) = P(F = 1, 3, 2|P1)P(P1) = (1/3)(1/2) = 1/6

P(F = 2, 3, 1) = P(F = 2, 3, 1|P2)P(P2) = (1/3)(1/2) = 1/6

P(F = 3, 1, 2) = P(F = 3, 1, 2|P2)P(P2) = (1/3)(1/2) = 1/6

P(F = 3, 2, 1) = P(F = 3, 2, 1|P1)P(P1) = (1/3)(1/2) = 1/6

3. (a) The estimator is X̄n
Ȳn

.
(b) Suppose the observed data is Xi = xi , Yi = yi , i = 1, . . . , n. Let x̄ = ∑n

i=1 xi/n
and ȳ = ∑n

i=1 yi/n. Estimate the mean square error by

MSEe = Ee




( n∑

i=1

Xi

/ n∑

i=1

Yi − x̄/ȳ

)2




where the random vectors (Xi, Yi), i = 1, . . . , n are independent and have com-
mon mass function

P(Xi = xj , Yi = yj) = 1/n, j = 1, . . . , n

The quantity MSEe can then be estimated by a simulation.

4. (a) We need to compute Var
(∑2

i=1(Xi − X̄ )2
)

, where X1 and X2 are independent
and equally likely to be either 1 or 3. Consequently,

P

( 2∑

i=1

(Xi − X̄ )2 = 0

)
= P(X1 = X2) = 1/2
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P

( 2∑

i=1

(Xi − X̄ )2 = 2

)
= P(X1 -= X2) = 1/2

Hence,

E

[ 2∑

i=1

(Xi − X̄ )2

]

= 1

and

E




( 2∑

i=1

(Xi − X̄ )2

)2

 = 0(1/2) + 4(1/2) = 2

giving that

Var

( 2∑

i=1

(Xi − X̄ )2

)

= 1

(b) We want to compute Var
(∑15

i=1(Xi − X̄ )2
)

when Xi , i = 1, . . . , 15 are inde-
pendent with each equally likely to be any of the 15 given data values. A simulation
yields that this is approximately equal to 33.20.

5. Estimate p by P
(∑8

i=1 Xi/8 < 8
)

, when Xi, i = 1, . . . , 8, are independent with
each equally likely to be any of the 8 given data values. A simulation yields that this
is approximately equal to 0.525.

6. The value of the test statistic is T = ∑
j jXj = 4582. Under the null hypothesis that

all orderings are equally likely

EH0 [T ] = 4334,
√

VarH0(T ) = 81.44

Thus, using the normal approximation

p-value ≈ P
(

Z ≥ 4582 − 4334
81.44

)
= P(Z ≥ 3.045) < .0013

Hence, the data strongly support the hypothesis that the student improved as the
semester progressed.

7. The value of the test statistic is T = ∑
j jXj = 840. Under the null hypothesis that

all orderings are equally likely EH0 [T ] = 840, showing that the p-value is approxi-
mately .5, which is not a validation of the player’s reputation.
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8. The value of the test statistic T, equal to the sum of the group 1 lifetimes, is T = 1389.
Under the null hypothesis

EH0 [T ] = 1391.5,
√

VarH0(T ) = 112.44

Hence,

p-value = 2PH0(T ≤ 1389) ≈ 2P
(

Z ≤ 1389 − 1391.5
112.44

)
≈ 1

9. The value of the test statistic is T = 402. Under the null hypothesis

EH0 [T ] = 385.6,
√

VarH0(T ) = 32.85

Thus, in a two-sided test

p-value = 2PH0(T ≥ 402) ≈ 2P(Z ≥ .499) = .617

10. The value of the test statistic is T = 826. Under the null hypothesis

EH0 [T ] = 1450,
√

VarH0(T ) = 266.12

Thus,
p-value = PH0(T ≤ 826) ≈ P(Z ≤ −2.35) = .0094

11. Use that
P(X = i + 1) = λ

i + 1
P(X = i), i ≥ 0

This gives

(1) Set I = 0, P = F = e−λ

(2) Generate U
(3) If U ≤ F , set X = I and stop.
(4) I = I + 1, P = P ∗ λ

I , F = F + P
(5) Go to Step 3

12. For X being geometric with parameter p

F(n) = P(X ≤ n) = 1 − P(X > n) = 1 − (1 − p)n

Therefore, the inverse transform method is to generate a random number U and set
X = n if

F(n − 1) ≤ U < F(n)

which is equivalent to

(1 − p)n−1 ≥ 1 − U > (1 − p)n
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or, upon taking logarithms,

(n − 1) log(1 − p) ≥ log(1 − U ) > n log(p)

or

n − 1 ≤ log(1 − U )

log(1 − p)
< n

Thus, X is the smallest integer larger than log(1−U )
log(1−p) .

Another method is to continually generate random numbers U1, . . ., stopping and
setting

X = min(n : Un ≤ p)

13. Use the inverse transform method. To begin, we have

F(x) = ex − 1
e − 1

, 0 < x < 1

Thus, if X = F−1(U ), then

U = F(x) = eX − 1
e − 1

or
X = log(1 + (e − 1)U )

So, generate a random number U and set X = log(1 + (e − 1)U ).

14. Using the inverse transform method, generate a random number U and set
X = U 1/n.

15. Use inverse transform. If X = F−1(U ), then U = F(X ). Thus,

X 2 + X − 2U = 0

or

X = −1 ± √
1 + 8U

2

Because X ≥ 0, this yields that X =
(√

1 + 8U − 1
)
/2.



Chapter 1

INTRODUCTION TO STATISTICS

1.1 INTRODUCTION
It has become accepted in today’s world that in order to learn about something, you must
first collect data. Statistics is the art of learning from data. It is concerned with the collection
of data, its subsequent description, and its analysis, which often leads to the drawing of
conclusions.

1.2 DATA COLLECTION AND DESCRIPTIVE STATISTICS
Sometimes a statistical analysis begins with a given set of data: For instance, the government
regularly collects and publicizes data concerning yearly precipitation totals, earthquake
occurrences, the unemployment rate, the gross domestic product, and the rate of inflation.
Statistics can be used to describe, summarize, and analyze these data.

In other situations, data are not yet available; in such cases statistical theory can be
used to design an appropriate experiment to generate data. The experiment chosen should
depend on the use that one wants to make of the data. For instance, suppose that an
instructor is interested in determining which of two different methods for teaching com-
puter programming to beginners is most effective. To study this question, the instructor
might divide the students into two groups, and use a different teaching method for each
group. At the end of the class the students can be tested and the scores of the members
of the different groups compared. If the data, consisting of the test scores of members of
each group, are significantly higher in one of the groups, then it might seem reasonable to
suppose that the teaching method used for that group is superior.

It is important to note, however, that in order to be able to draw a valid conclusion
from the data, it is essential that the students were divided into groups in such a manner
that neither group was more likely to have the students with greater natural aptitude for
programming. For instance, the instructor should not have let the male class members be
one group and the females the other. For if so, then even if the women scored significantly
higher than the men, it would not be clear whether this was due to the method used to teach
them, or to the fact that women may be inherently better than men at learning programming

1
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skills. The accepted way of avoiding this pitfall is to divide the class members into the two
groups “at random.” This term means that the division is done in such a manner that all
possible choices of the members of a group are equally likely.

At the end of the experiment, the data should be described. For instance, the scores
of the two groups should be presented. In addition, summary measures such as the aver-
age score of members of each of the groups should be presented. This part of statistics,
concerned with the description and summarization of data, is called descriptive statistics.

1.3 INFERENTIAL STATISTICS AND
PROBABILITY MODELS

After the preceding experiment is completed and the data are described and summa-
rized, we hope to be able to draw a conclusion about which teaching method is superior.
This part of statistics, concerned with the drawing of conclusions, is called inferential
statistics.

To be able to draw a conclusion from the data, we must take into account the possibility
of chance. For instance, suppose that the average score of members of the first group is
quite a bit higher than that of the second. Can we conclude that this increase is due to the
teaching method used? Or is it possible that the teaching method was not responsible for
the increased scores but rather that the higher scores of the first group were just a chance
occurrence? For instance, the fact that a coin comes up heads 7 times in 10 flips does not
necessarily mean that the coin is more likely to come up heads than tails in future flips.
Indeed, it could be a perfectly ordinary coin that, by chance, just happened to land heads
7 times out of the total of 10 flips. (On the other hand, if the coin had landed heads
47 times out of 50 flips, then we would be quite certain that it was not an ordinary coin.)

To be able to draw logical conclusions from data, we usually make some assumptions
about the chances (or probabilities) of obtaining the different data values. The totality of
these assumptions is referred to as a probability model for the data.

Sometimes the nature of the data suggests the form of the probability model that is
assumed. For instance, suppose that an engineer wants to find out what proportion of
computer chips, produced by a new method, will be defective. The engineer might select
a group of these chips, with the resulting data being the number of defective chips in this
group. Provided that the chips selected were “randomly” chosen, it is reasonable to suppose
that each one of them is defective with probability p, where p is the unknown proportion
of all the chips produced by the new method that will be defective. The resulting data can
then be used to make inferences about p.

In other situations, the appropriate probability model for a given data set will not be
readily apparent. However, careful description and presentation of the data sometimes
enable us to infer a reasonable model, which we can then try to verify with the use of
additional data.

Because the basis of statistical inference is the formulation of a probability model to
describe the data, an understanding of statistical inference requires some knowledge of
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the theory of probability. In other words, statistical inference starts with the assumption
that important aspects of the phenomenon under study can be described in terms of
probabilities; it then draws conclusions by using data to make inferences about these
probabilities.

1.4 POPULATIONS AND SAMPLES
In statistics, we are interested in obtaining information about a total collection of elements,
which we will refer to as the population. The population is often too large for us to examine
each of its members. For instance, we might have all the residents of a given state, or all the
television sets produced in the last year by a particular manufacturer, or all the households
in a given community. In such cases, we try to learn about the population by choosing
and then examining a subgroup of its elements. This subgroup of a population is called
a sample.

If the sample is to be informative about the total population, it must be, in some sense,
representative of that population. For instance, suppose that we are interested in learning
about the age distribution of people residing in a given city, and we obtain the ages of the
first 100 people to enter the town library. If the average age of these 100 people is 46.2
years, are we justified in concluding that this is approximately the average age of the entire
population? Probably not, for we could certainly argue that the sample chosen in this case
is probably not representative of the total population because usually more young students
and senior citizens use the library than do working-age citizens.

In certain situations, such as the library illustration, we are presented with a sample and
must then decide whether this sample is reasonably representative of the entire population.
In practice, a given sample generally cannot be assumed to be representative of a population
unless that sample has been chosen in a random manner. This is because any specific
nonrandom rule for selecting a sample often results in one that is inherently biased toward
some data values as opposed to others.

Thus, although it may seem paradoxical, we are most likely to obtain a representative
sample by choosing its members in a totally random fashion without any prior consid-
erations of the elements that will be chosen. In other words, we need not attempt to
deliberately choose the sample so that it contains, for instance, the same gender percentage
and the same percentage of people in each profession as found in the general population.
Rather, we should just leave it up to “chance” to obtain roughly the correct percentages.
Once a random sample is chosen, we can use statistical inference to draw conclusions
about the entire population by studying the elements of the sample.

1.5 A BRIEF HISTORY OF STATISTICS
A systematic collection of data on the population and the economy was begun in the Italian
city-states of Venice and Florence during the Renaissance. The term statistics, derived from
the word state, was used to refer to a collection of facts of interest to the state. The idea of
collecting data spread from Italy to the other countries of Western Europe. Indeed, by the
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first half of the 16th century it was common for European governments to require parishes
to register births, marriages, and deaths. Because of poor public health conditions this last
statistic was of particular interest.

The high mortality rate in Europe before the 19th century was due mainly to epidemic
diseases, wars, and famines. Among epidemics, the worst were the plagues. Starting with
the Black Plague in 1348, plagues recurred frequently for nearly 400 years. In 1562, as a
way to alert the King’s court to consider moving to the countryside, the City of London
began to publish weekly bills of mortality. Initially these mortality bills listed the places
of death and whether a death had resulted from plague. Beginning in 1625 the bills were
expanded to include all causes of death.

In 1662 the English tradesman John Graunt published a book entitled Natural and
Political Observations Made upon the Bills of Mortality. Table 1.1, which notes the total
number of deaths in England and the number due to the plague for five different plague
years, is taken from this book.

TABLE 1.1 Total Deaths in England

Year Burials Plague Deaths

1592 25,886 11,503
1593 17,844 10,662
1603 37,294 30,561
1625 51,758 35,417
1636 23,359 10,400

Source: John Graunt, Observations Made upon the Bills of Mortality.
3rd ed. London: John Martyn and James Allestry (1st ed. 1662).

Graunt used London bills of mortality to estimate the city’s population. For instance,
to estimate the population of London in 1660, Graunt surveyed households in certain
London parishes (or neighborhoods) and discovered that, on average, there were approxi-
mately 3 deaths for every 88 people. Dividing by 3 shows that, on average, there was
roughly 1 death for every 88/3 people. Because the London bills cited 13,200 deaths in
London for that year, Graunt estimated the London population to be about

13,200 × 88/3 = 387,200

Graunt used this estimate to project a figure for all England. In his book he noted that
these figures would be of interest to the rulers of the country, as indicators of both the
number of men who could be drafted into an army and the number who could be
taxed.

Graunt also used the London bills of mortality — and some intelligent guesswork as to
what diseases killed whom and at what age — to infer ages at death. (Recall that the bills
of mortality listed only causes and places at death, not the ages of those dying.) Graunt
then used this information to compute tables giving the proportion of the population that
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TABLE 1.2 John Graunt’s Mortality Table

Age at Death Number of Deaths per 100 Births

0–6 36
6–16 24

16–26 15
26–36 9
36–46 6
46–56 4
56–66 3
66–76 2
76 and greater 1

Note: The categories go up to but do not include the right-hand value. For instance,
0–6 means all ages from 0 up through 5.

dies at various ages. Table 1.2 is one of Graunt’s mortality tables. It states, for instance,
that of 100 births, 36 people will die before reaching age 6, 24 will die between the age of
6 and 15, and so on.

Graunt’s estimates of the ages at which people were dying were of great interest to those
in the business of selling annuities. Annuities are the opposite of life insurance in that one
pays in a lump sum as an investment and then receives regular payments for as long as
one lives.

Graunt’s work on mortality tables inspired further work by Edmund Halley in 1693.
Halley, the discoverer of the comet bearing his name (and also the man who was most
responsible, by both his encouragement and his financial support, for the publication of
Isaac Newton’s famous Principia Mathematica), used tables of mortality to compute the
odds that a person of any age would live to any other particular age. Halley was influential
in convincing the insurers of the time that an annual life insurance premium should depend
on the age of the person being insured.

Following Graunt and Halley, the collection of data steadily increased throughout the
remainder of the 17th and on into the 18th century. For instance, the city of Paris began
collecting bills of mortality in 1667, and by 1730 it had become common practice through-
out Europe to record ages at death.

The term statistics, which was used until the 18th century as a shorthand for the descrip-
tive science of states, became in the 19th century increasingly identified with numbers. By
the 1830s the term was almost universally regarded in Britain and France as being synony-
mous with the “numerical science” of society. This change in meaning was caused by the
large availability of census records and other tabulations that began to be systematically
collected and published by the governments of Western Europe and the United States
beginning around 1800.

Throughout the 19th century, although probability theory had been developed by such
mathematicians as Jacob Bernoulli, Karl Friedrich Gauss, and Pierre-Simon Laplace, its
use in studying statistical findings was almost nonexistent, because most social statisticians
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at the time were content to let the data speak for themselves. In particular, statisticians of
that time were not interested in drawing inferences about individuals, but rather were
concerned with the society as a whole. Thus, they were not concerned with sampling but
rather tried to obtain censuses of the entire population. As a result, probabilistic inference
from samples to a population was almost unknown in 19th century social statistics.

Itwasnot until the late 1800s that statistics became concerned with inferring conclusions
from numerical data. The movement began with Francis Galton’s work on analyzing hered-
itary genius through the uses of what we would now call regression and correlation analysis
(see Chapter 9), and obtained much of its impetus from the work of Karl Pearson. Pearson,
who developed the chi-square goodness of fit tests (see Chapter 11), was the first director
of the Galton Laboratory, endowed by Francis Galton in 1904. There Pearson originated
a research program aimed at developing new methods of using statistics in inference. His
laboratory invited advanced students from science and industry to learn statistical methods
that could then be applied in their fields. One of his earliest visiting researchers was W. S.
Gosset, a chemist by training, who showed his devotion to Pearson by publishing his own
works under the name “Student.” (A famous story has it that Gosset was afraid to publish
under his own name for fear that his employers, the Guinness brewery, would be unhappy
to discover that one of its chemists was doing research in statistics.) Gosset is famous for
his development of the t-test (see Chapter 8).

Two of the most important areas of applied statistics in the early 20th century were
population biology and agriculture. This was due to the interest of Pearson and others at
his laboratory and also to the remarkable accomplishments of the English scientist Ronald
A. Fisher. The theory of inference developed by these pioneers, including among others

TABLE 1.3 The Changing Definition of Statistics

Statistics has then for its object that of presenting a faithful representation of a state at a determined
epoch. (Quetelet, 1849)

Statistics are the only tools by which an opening can be cut through the formidable thicket of
difficulties that bars the path of those who pursue the Science of man. (Galton, 1889)

Statistics may be regarded (i) as the study of populations, (ii) as the study of variation, and (iii) as the
study of methods of the reduction of data. (Fisher, 1925)

Statistics is a scientific discipline concerned with collection, analysis, and interpretation of data obtained
from observation or experiment. The subject has a coherent structure based on the theory of
Probability and includes many different procedures which contribute to research and development
throughout the whole of Science and Technology. (E. Pearson, 1936)

Statistics is the name for that science and art which deals with uncertain inferences — which uses
numbers to find out something about nature and experience. (Weaver, 1952)

Statistics has become known in the 20th century as the mathematical tool for analyzing experimental
and observational data. (Porter, 1986)

Statistics is the art of learning from data. (this book, 2014)
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Karl Pearson’s son Egon and the Polish born mathematical statistician Jerzy Neyman, was
general enough to deal with a wide range of quantitative and practical problems. As a
result, after the early years of the 20th century a rapidly increasing number of people
in science, business, and government began to regard statistics as a tool that was able to
provide quantitative solutions to scientific and practical problems (see Table 1.3).

Nowadays the ideas of statistics are everywhere. Descriptive statistics are featured in
every newspaper and magazine. Statistical inference has become indispensable to public
health and medical research, to engineering and scientific studies, to marketing and qual-
ity control, to education, to accounting, to economics, to meteorological forecasting, to
polling and surveys, to sports, to insurance, to gambling, and to all research that makes
any claim to being scientific. Statistics has indeed become ingrained in our intellectual
heritage.

Problems

1. An election will be held next week and, by polling a sample of the voting
population, we are trying to predict whether the Republican or Democratic
candidate will prevail. Which of the following methods of selection is likely to
yield a representative sample?

(a) Poll all people of voting age attending a college basketball game.
(b) Poll all people of voting age leaving a fancy midtown restaurant.
(c) Obtain a copy of the voter registration list, randomly choose 100 names, and

question them.
(d) Use the results of a television call-in poll, in which the station asked its listeners

to call in and name their choice.
(e) Choose names from the telephone directory and call these people.

2. The approach used in Problem 1(e) led to a disastrous prediction in the 1936
presidential election, in which Franklin Roosevelt defeated Alfred Landon by a
landslide. A Landon victory had been predicted by the Literary Digest. The maga-
zine based its prediction on the preferences of a sample of voters chosen from lists
of automobile and telephone owners.

(a) Why do you think the Literary Digest’s prediction was so far off ?
(b) Has anything changed between 1936 and now that would make you believe

that the approach used by the Literary Digest would work better today?

3. A researcher is trying to discover the average age at death for people in the United
States today. To obtain data, the obituary columns of the New York Times are read
for 30 days, and the ages at death of people in the United States are noted. Do you
think this approach will lead to a representative sample?
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4. To determine the proportion of people in your town who are smokers, it has been
decided to poll people at one of the following local spots:

(a) the pool hall;
(b) the bowling alley;
(c) the shopping mall;
(d) the library.

Which of these potential polling places would most likely result in a reasonable
approximation to the desired proportion? Why?

5. A university plans on conducting a survey of its recent graduates to determine
information on their yearly salaries. It randomly selected 200 recent graduates and
sent them questionnaires dealing with their present jobs. Of these 200, however,
only 86 were returned. Suppose that the average of the yearly salaries reported was
$75,000.

(a) Would the university be correct in thinking that $75,000 was a good approxi-
mation to the average salary level of all of its graduates? Explain the reasoning
behind your answer.

(b) If your answer to part (a) is no, can you think of any set of conditions relat-
ing to the group that returned questionnaires for which it would be a good
approximation?

6. An article reported that a survey of clothing worn by pedestrians killed at night in
traffic accidents revealed that about 80 percent of the victims were wearing dark-
colored clothing and 20 percent were wearing light-colored clothing. The conclu-
sion drawn in the article was that it is safer to wear light-colored clothing at night.

(a) Is this conclusion justified? Explain.
(b) If your answer to part (a) is no, what other information would be needed

before a final conclusion could be drawn?

7. Critique Graunt’s method for estimating the population of London. What
implicit assumption is he making?

8. The London bills of mortality listed 12,246 deaths in 1658. Supposing that a
survey of London parishes showed that roughly 2 percent of the population died
that year, use Graunt’s method to estimate London’s population in 1658.

9. Suppose you were a seller of annuities in 1662 when Graunt’s book was published.
Explain how you would make use of his data on the ages at which people were
dying.

10. Based on Graunt’s mortality table:

(a) What proportion of people survived to age 6?
(b) What proportion survived to age 46?
(c) What proportion died between the ages of 6 and 36?



Chapter 2

DESCRIPTIVE STATISTICS

2.1 INTRODUCTION
In this chapter we introduce the subject matter of descriptive statistics, and in doing so
learn ways to describe and summarize a set of data. Section 2.2 deals with ways of describ-
ing a data set. Subsections 2.2.1 and 2.2.2 indicate how data that take on only a relatively
few distinct values can be described by using frequency tables or graphs, whereas Subsec-
tion 2.2.3 deals with data whose set of values is grouped into different intervals. Section 2.3
discusses ways of summarizing data sets by use of statistics, which are numerical quantities
whose values are determined by the data. Subsection 2.3.1 considers three statistics that are
used to indicate the “center” of the data set: the sample mean, the sample median, and the
sample mode. Subsection 2.3.2 introduces the sample variance and its square root, called
the sample standard deviation. These statistics are used to indicate the spread of the values
in the data set. Subsection 2.3.3 deals with sample percentiles, which are statistics that tell
us, for instance, which data value is greater than 95 percent of all the data. In Section 2.4
we present Chebyshev’s inequality for sample data. This famous inequality gives an upper
bound to the proportion of the data that can differ from the sample mean by more than
k times the sample standard deviation. Whereas Chebyshev’s inequality holds for all data
sets, we can in certain situations, which are discussed in Section 2.5, obtain more precise
estimates of the proportion of the data that is within k sample standard deviations of the
sample mean. In Section 2.5 we note that when a graph of the data follows a bell-shaped
form the data set is said to be approximately normal, and more precise estimates are given
by the so-called empirical rule. Section 2.6 is concerned with situations in which the data
consist of paired values. A graphical technique, called the scatter diagram, for presenting
such data is introduced, as is the sample correlation coefficient, a statistic that indicates
the degree to which a large value of the first member of the pair tends to go along with a
large value of the second.

2.2 DESCRIBING DATA SETS
The numerical findings of a study should be presented clearly, concisely, and in such
a manner that an observer can quickly obtain a feel for the essential characteristics of

9
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the data. Over the years it has been found that tables and graphs are particularly useful
ways of presenting data, often revealing important features such as the range, the degree
of concentration, and the symmetry of the data. In this section we present some common
graphical and tabular ways for presenting data.

2.2.1 Frequency Tables and Graphs
A data set having a relatively small number of distinct values can be conveniently presented
in a frequency table. For instance, Table 2.1 is a frequency table for a data set consisting of the
starting yearly salaries (to the nearest thousand dollars) of 42 recently graduated students
with B.S. degrees in electrical engineering. Table 2.1 tells us, among other things, that
the lowest starting salary of $57,000 was received by four of the graduates, whereas the
highest salary of $70,000 was received by a single student. The most common starting
salary was $62,000, and was received by 10 of the students.

TABLE 2.1 Starting Yearly Salaries

Starting Salary Frequency

57 4
58 1
59 3
60 5
61 8
62 10
63 0
64 5
66 2
67 3
70 1

Data from a frequency table can be graphically represented by a line graph that plots the
distinct data values on the horizontal axis and indicates their frequencies by the heights of
vertical lines. A line graph of the data presented in Table 2.1 is shown in Figure 2.1.

When the lines in a line graph are given added thickness, the graph is called a bar graph.
Figure 2.2 presents a bar graph.

Another type of graph used to represent a frequency table is the frequency polygon, which
plots the frequencies of the different data values on the vertical axis, and then connects the
plotted points with straight lines. Figure 2.3 presents a frequency polygon for the data of
Table 2.1.

2.2.2 Relative Frequency Tables and Graphs
Consider a data set consisting of n values. If f is the frequency of a particular value, then
the ratio f /n is called its relative frequency. That is, the relative frequency of a data value is
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Starting salary

F
re

qu
en

cy

12

10

8

6

4

2

0
57 58 59 60 61 62 63 64 66 67 70

FIGURE 2.3 Frequency polygon for starting salary data.

the proportion of the data that have that value. The relative frequencies can be represented
graphically by a relative frequency line or bar graph or by a relative frequency polygon.
Indeed, these relative frequency graphs will look like the corresponding graphs of the
absolute frequencies except that the labels on the vertical axis are now the old labels (that
gave the frequencies) divided by the total number of data points.

EXAMPLE 2.2a Table 2.2 is a relative frequency table for the data of Table 2.1. The rela-
tive frequencies are obtained by dividing the corresponding frequencies of Table 2.1 by
42, the size of the data set. !

A pie chart is often used to indicate relative frequencies when the data are not numerical
in nature. A circle is constructed and then sliced into different sectors; one for each distinct
type of data value. The relative frequency of a data value is indicated by the area of its sector,
this area being equal to the total area of the circle multiplied by the relative frequency of
the data value.

EXAMPLE 2.2b The following data relate to the different types of cancers affecting the 200
most recent patients to enroll at a clinic specializing in cancer. These data are represented
in the pie chart presented in Figure 2.4. !
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TABLE 2.2

Starting Salary Frequency

47 4/42 = .0952
48 1/42 = .0238
49 3/42
50 5/42
51 8/42
52 10/42
53 0
54 5/42
56 2/42
57 3/42
60 1/42

Melanoma
4.5%

Bladder
6%

Lung
21%

Breast
25%

Colon
16%

Prostate
27.5%

FIGURE 2.4
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Type of Cancer Number of New Cases Relative Frequency

Lung 42 .21
Breast 50 .25
Colon 32 .16
Prostate 55 .275
Melanoma 9 .045
Bladder 12 .06

2.2.3 Grouped Data, Histograms, Ogives, and
Stem and Leaf Plots

As seen in Subsection 2.2.2, using a line or a bar graph to plot the frequencies of data values
is often an effective way of portraying a data set. However, for some data sets the number
of distinct values is too large to utilize this approach. Instead, in such cases, it is useful to
divide the values into groupings, or class intervals, and then plot the number of data values
falling in each class interval. The number of class intervals chosen should be a trade-off
between (1) choosing too few classes at a cost of losing too much information about the
actual data values in a class and (2) choosing too many classes, which will result in the
frequencies of each class being too small for a pattern to be discernible. Although 5 to 10

TABLE 2.3 Life in Hours of 200 Incandescent Lamps

Item Lifetimes

1,067 919 1,196 785 1,126 936 918 1,156 920 948
855 1,092 1,162 1,170 929 950 905 972 1,035 1,045

1,157 1,195 1,195 1,340 1,122 938 970 1,237 956 1,102
1,022 978 832 1,009 1,157 1,151 1,009 765 958 902

923 1,333 811 1,217 1,085 896 958 1,311 1,037 702

521 933 928 1,153 946 858 1,071 1,069 830 1,063
930 807 954 1,063 1,002 909 1,077 1,021 1,062 1,157
999 932 1,035 944 1,049 940 1,122 1,115 833 1,320
901 1,324 818 1,250 1,203 1,078 890 1,303 1,011 1,102
996 780 900 1,106 704 621 854 1,178 1,138 951

1,187 1,067 1,118 1,037 958 760 1,101 949 992 966
824 653 980 935 878 934 910 1,058 730 980
844 814 1,103 1,000 788 1,143 935 1,069 1,170 1,067

1,037 1,151 863 990 1,035 1,112 931 970 932 904
1,026 1,147 883 867 990 1,258 1,192 922 1,150 1,091

1,039 1,083 1,040 1,289 699 1,083 880 1,029 658 912
1,023 984 856 924 801 1,122 1,292 1,116 880 1,173
1,134 932 938 1,078 1,180 1,106 1,184 954 824 529

998 996 1,133 765 775 1,105 1,081 1,171 705 1,425
610 916 1,001 895 709 860 1,110 1,149 972 1,002
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class intervals are typical, the appropriate number is a subjective choice, and of course, you
can try different numbers of class intervals to see which of the resulting charts appears to
be most revealing about the data. It is common, although not essential, to choose class
intervals of equal length.

The endpoints of a class interval are called the class boundaries. We will adopt the left-
end inclusion convention, which stipulates that a class interval contains its left-end but not
its right-end boundary point. Thus, for instance, the class interval 20–30 contains all values
that are both greater than or equal to 20 and less than 30.

Table 2.3 presents the lifetimes of 200 incandescent lamps. A class frequency table for
the data of Table 2.3 is presented in Table 2.4. The class intervals are of length 100, with
the first one starting at 500.

TABLE 2.4 A Class Frequency Table

Frequency
(Number of Data Values in

Class Interval the Interval)

500–600 2
600–700 5
700–800 12
800–900 25
900–1000 58

1000–1100 41
1100–1200 43
1200–1300 7
1300–1400 6
1400–1500 1

Life in units of 100 hours

Number of
occurrences

60

50

40

30

20

10

0
5 6 7 8 9 10 11 12 13 14 150

FIGURE 2.5 A frequency histogram.
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FIGURE 2.6 A cumulative frequency plot.

A bar graph plot of class data, with the bars placed adjacent to each other, is called
a histogram. The vertical axis of a histogram can represent either the class frequency or the
relative class frequency; in the former case the graph is called a frequency histogram and
in the latter a relative frequency histogram. Figure 2.5 presents a frequency histogram of
the data in Table 2.4.

We are sometimes interested in plotting a cumulative frequency (or cumulative relative
frequency) graph. A point on the horizontal axis of such a graph represents a possible
data value; its corresponding vertical plot gives the number (or proportion) of the data
whose values are less than or equal to it. A cumulative relative frequency plot of the data
of Table 2.3 is given in Figure 2.6. We can conclude from this figure that 100 percent
of the data values are less than 1,500, approximately 40 percent are less than or equal to
900, approximately 80 percent are less than or equal to 1,100, and so on. A cumulative
frequency plot is called an ogive.

An efficient way of organizing a small- to moderate-sized data set is to utilize a stem
and leaf plot. Such a plot is obtained by first dividing each data value into two parts —
its stem and its leaf. For instance, if the data are all two-digit numbers, then we could let
the stem part of a data value be its tens digit and let the leaf be its ones digit. Thus, for
instance, the value 62 is expressed as

Stem Leaf
6 2

and the two data values 62 and 67 can be represented as

Stem Leaf
6 2, 7
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EXAMPLE 2.2c Table 2.5 gives the monthly and yearly average daily minimum temperatures
in 35 U.S. cities.

The annual average daily minimum temperatures from Table 2.5 are represented in the
following stem and leaf plot.

7 0.0
6 9.0
5 1.0, 1.3, 2.0, 5.5, 7.1, 7.4, 7.6, 8.5, 9.3
4 0.0, 1.0, 2.4, 3.6, 3.7, 4.8, 5.0, 5.2, 6.0, 6.7, 8.1, 9.0, 9.2
3 3.1, 4.1, 5.3, 5.8, 6.2, 9.0, 9.5, 9.5
2 9.0, 9.8 !

2.3 SUMMARIZING DATA SETS
Modern-day experiments often deal with huge sets of data. For instance, in an attempt
to learn about the health consequences of certain common practices, in 1951 the medical
statisticians R. Doll and A. B. Hill sent questionnaires to all doctors in the United Kingdom
and received approximately 40,000 replies. Their questions dealt with age, eating habits,
and smoking habits. The respondents were then tracked for the ensuing 10 years and the
causes of death for those who died were monitored. To obtain a feel for such a large amount
of data, it is useful to be able to summarize it by some suitably chosen measures. In this
section we present some summarizing statistics, where a statistic is a numerical quantity
whose value is determined by the data.

2.3.1 Sample Mean, Sample Median, and Sample Mode
In this section we introduce some statistics that are used for describing the center of a set of
data values. To begin, suppose that we have a data set consisting of the n numerical values
x1, x2, . . . , xn. The sample mean is the arithmetic average of these values.

Definition
The sample mean, designated by x̄, is defined by

x̄ =
n∑

i=1

xi/n

The computation of the sample mean can often be simplified by noting that if for constants
a and b

yi = axi + b, i = 1, . . . , n
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TABLE 2.5 Normal Daily Minimum Temperature — Selected Cities

[In Fahrenheit degrees. Airport data except as noted. Based on standard 30-year period, 1961 through
1990]

Annual
State Station Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. avg.

AL Mobile . . . . . . . . . . . . . . 40.0 42.7 50.1 57.1 64.4 70.7 73.2 72.9 68.7 57.3 49.1 43.1 57.4
AK Juneau . . . . . . . . . . . . . . 19.0 22.7 26.7 32.1 38.9 45.0 48.1 47.3 42.9 37.2 27.2 22.6 34.1
AZ Phoenix . . . . . . . . . . . . . 41.2 44.7 48.8 55.3 63.9 72.9 81.0 79.2 72.8 60.8 48.9 41.8 59.3
AR Little Rock . . . . . . . . . . . 29.1 33.2 42.2 50.7 59.0 67.4 71.5 69.8 63.5 50.9 41.5 33.1 51.0
CA Los Angeles . . . . . . . . . . 47.8 49.3 50.5 52.8 56.3 59.5 62.8 64.2 63.2 59.2 52.8 47.9 55.5

Sacramento . . . . . . . . . . 37.7 41.4 43.2 45.5 50.3 55.3 58.1 58.0 55.7 50.4 43.4 37.8 48.1
San Diego . . . . . . . . . . . 48.9 50.7 52.8 55.6 59.1 61.9 65.7 67.3 65.6 60.9 53.9 48.8 57.6
San Francisco . . . . . . . . 41.8 45.0 45.8 47.2 49.7 52.6 53.9 55.0 55.2 51.8 47.1 42.7 49.0

CO Denver . . . . . . . . . . . . . . 16.1 20.2 25.8 34.5 43.6 52.4 58.6 56.9 47.6 36.4 25.4 17.4 36.2
CT Hartford. . . . . . . . . . . . . 15.8 18.6 28.1 37.5 47.6 56.9 62.2 60.4 51.8 40.7 32.8 21.3 39.5
DE Wilmington . . . . . . . . . 22.4 24.8 33.1 41.8 52.2 61.6 67.1 65.9 58.2 45.7 37.0 27.6 44.8
DC Washington . . . . . . . . . . 26.8 29.1 37.7 46.4 56.6 66.5 71.4 70.0 62.5 50.3 41.1 31.7 49.2
FL Jacksonville . . . . . . . . . . 40.5 43.3 49.2 54.9 62.1 69.1 71.9 71.8 69.0 59.3 50.2 43.4 57.1

Miami . . . . . . . . . . . . . . 59.2 60.4 64.2 67.8 72.1 75.1 76.2 76.7 75.9 72.1 66.7 61.5 69.0
GA Atlanta . . . . . . . . . . . . . . 31.5 34.5 42.5 50.2 58.7 66.2 69.5 69.0 63.5 51.9 42.8 35.0 51.3
HI Honolulu . . . . . . . . . . . . 65.6 65.4 67.2 68.7 70.3 72.2 73.5 74.2 73.5 72.3 70.3 67.0 70.0
ID Boise . . . . . . . . . . . . . . . . 21.6 27.5 31.9 36.7 43.9 52.1 57.7 56.8 48.2 39.0 31.1 22.5 39.1
IL Chicago . . . . . . . . . . . . . 12.9 17.2 28.5 38.6 47.7 57.5 62.6 61.6 53.9 42.2 31.6 19.1 39.5

Peoria . . . . . . . . . . . . . . . 13.2 17.7 29.8 40.8 50.9 60.7 65.4 63.1 55.2 43.1 32.5 19.3 41.0
IN Indianapolis . . . . . . . . . . 17.2 20.9 31.9 41.5 51.7 61.0 65.2 62.8 55.6 43.5 34.1 23.2 42.4
IA Des Moines . . . . . . . . . . 10.7 15.6 27.6 40.0 51.5 61.2 66.5 63.6 54.5 42.7 29.9 16.1 40.0
KS Wichita . . . . . . . . . . . . . 19.2 23.7 33.6 44.5 54.3 64.6 69.9 67.9 59.2 46.6 33.9 23.0 45.0
KY Louisville . . . . . . . . . . . . 23.2 26.5 36.2 45.4 54.7 62.9 67.3 65.8 58.7 45.8 37.3 28.6 46.0
LA New Orleans . . . . . . . . . 41.8 44.4 51.6 58.4 65.2 70.8 73.1 72.8 69.5 58.7 51.0 44.8 58.5
ME Portland . . . . . . . . . . . . . 11.4 13.5 24.5 34.1 43.4 52.1 58.3 57.1 48.9 38.3 30.4 17.8 35.8
MD Baltimore . . . . . . . . . . . . 23.4 25.9 34.1 42.5 52.6 61.8 66.8 65.7 58.4 45.9 37.1 28.2 45.2
MA Boston . . . . . . . . . . . . . . 21.6 23.0 31.3 40.2 49.8 59.1 65.1 64.0 56.8 46.9 38.3 26.7 43.6
MI Detroit . . . . . . . . . . . . . . 15.6 17.6 27.0 36.8 47.1 56.3 61.3 59.6 52.5 40.9 32.2 21.4 39.0

Sault Ste. Marie . . . . . . 4.6 4.8 15.3 28.4 38.4 45.5 51.3 51.3 44.3 36.2 25.9 11.8 29.8
MN Duluth . . . . . . . . . . . . . . −2.2 2.8 15.7 28.9 39.6 48.5 55.1 53.3 44.5 35.1 21.5 4.9 29.0

Minneapolis-St. Paul . . 2.8 9.2 22.7 36.2 47.6 57.6 63.1 60.3 50.3 38.8 25.2 10.2 35.3
MS Jackson . . . . . . . . . . . . . . 32.7 35.7 44.1 51.9 60.0 67.1 70.5 69.7 63.7 50.3 42.3 36.1 52.0
MO Kansas City . . . . . . . . . . 16.7 21.8 32.6 43.8 53.9 63.1 68.2 65.7 56.9 45.7 33.6 21.9 43.7

St. Louis . . . . . . . . . . . . . 20.8 25.1 35.5 46.4 56.0 65.7 70.4 67.9 60.5 48.3 37.7 26.0 46.7
MT Great Falls . . . . . . . . . . . 11.6 17.2 22.8 31.9 40.9 48.6 53.2 52.2 43.5 35.8 24.3 14.6 33.1

Source: U.S. National Oceanic and Atmospheric Administration, Climatography of the United States, No. 81.
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then the sample mean of the data set y1, . . . , yn is

ȳ =
n∑

i=1

(axi + b)/n =
n∑

i=1

axi/n +
n∑

i=1

b/n = ax̄ + b

EXAMPLE 2.3a The winning scores in the U.S. Masters golf tournament in the years from
2004 to 2013 were as follows:

280, 278, 272, 276, 281, 279, 276, 281, 289, 280

Find the sample mean of these scores.

SOLUTION Rather than directly adding these values, it is easier to first subtract 280 from
each one to obtain the new values yi = xi − 280:

0, −2, −8, −4, 1, −1, −4, 1, 9, 0

Because the arithmetic average of the transformed data set is

ȳ = −8/10

it follows that
x̄ = ȳ + 280 = 279.2 !

Sometimes we want to determine the sample mean of a data set that is presented in
a frequency table listing the k distinct values v1, . . . , vk having corresponding frequencies
f1, . . . , fk. Since such a data set consists of n = ∑k

i=1 fi observations, with the value vi
appearing fi times, for each i = 1, . . . , k, it follows that the sample mean of these n data
values is

x̄ =
k∑

i=1

vifi/n

By writing the preceding as

x̄ = f1
n

v1 + f2
n

v2 + · · · + fk
n

vk

we see that the sample mean is a weighted average of the distinct values, where the weight
given to the value vi is equal to the proportion of the n data values that are equal to
vi , i = 1, . . . , k.
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EXAMPLE 2.3b The following is a frequency table giving the ages of members of a symphony
orchestra for young adults.

Age Frequency
15 2
16 5
17 11
18 9
19 14
20 13

Find the sample mean of the ages of the 54 members of the symphony.

SOLUTION

x̄ = (15 · 2 + 16 · 5 + 17 · 11 + 18 · 9 + 19 · 14 + 20 · 13)/54 ≈18.24 !

Another statistic used to indicate the center of a data set is the sample median; loosely
speaking, it is the middle value when the data set is arranged in increasing order.

Definition
Order the values of a data set of size n from smallest to largest. If n is odd, the sample
median is the value in position (n + 1)/2; if n is even, it is the average of the values in
positions n/2 and n/2 + 1.

Thus the sample median of a set of three values is the second smallest; of a set of four
values, it is the average of the second and third smallest.

EXAMPLE 2.3c Find the sample median for the data described in Example 2.3b.

SOLUTION Since there are 54 data values, it follows that when the data are put in increasing
order, the sample median is the average of the values in positions 27 and 28. Thus, the
sample median is 18.5. !

The sample mean and sample median are both useful statistics for describing the central
tendency of a data set. The sample mean makes use of all the data values and is affected by
extreme values that are much larger or smaller than the others; the sample median makes
use of only one or two of the middle values and is thus not affected by extreme values.
Which of them is more useful depends on what one is trying to learn from the data. For
instance, if a city government has a flat rate income tax and is trying to estimate its total
revenue from the tax, then the sample mean of its residents’ income would be a more useful
statistic. On the other hand, if the city was thinking about constructing middle-income
housing, and wanted to determine the proportion of its population able to afford it, then
the sample median would probably be more useful.
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EXAMPLE 2.3d In a study reported in Hoel, D. G., “A representation of mortality data by
competing risks,” Biometrics, 28, pp. 475–488, 1972, a group of 5-week-old mice were
each given a radiation dose of 300 rad. The mice were then divided into two groups;
the first group was kept in a germ-free environment, and the second in conventional
laboratory conditions. The numbers of days until death were then observed. The data for
those whose death was due to thymic lymphoma are given in the following stem and leaf
plots (whose stems are in units of hundreds of days); the first plot is for mice living in the
germ-free conditions and the second for mice living under ordinary laboratory conditions.

Germ-Free Mice

1 58, 92, 93, 94, 95
2 02, 12, 15, 29, 30, 37, 40, 44, 47, 59
3 01, 01, 21, 37
4 15, 34, 44, 85, 96
5 29, 37
6 24
7 07
8 00

Conventional Mice

1 59, 89, 91, 98
2 35, 45, 50, 56, 61, 65, 66, 80
3 43, 56, 83
4 03, 14, 28, 32

Determine the sample means and the sample medians for the two sets of mice.

SOLUTION It is clear from the stem and leaf plots that the sample mean for the set of
mice put in the germ-free setting is larger than the sample mean for the set of mice in the
usual laboratory setting; indeed, a calculation gives that the former sample mean is 344.07,
whereas the latter one is 292.32. On the other hand, since there are 29 data values for the
germ-free mice, the sample median is the 15th largest data value, namely, 259; similarly,
the sample median for the other set of mice is the 10th largest data value, namely, 265.
Thus, whereas the sample mean is quite a bit larger for the first data set, the sample medians
are approximately equal. The reason for this is that whereas the sample mean for the first
set is greatly affected by the five data values greater than 500, these values have a much
smaller effect on the sample median. Indeed, the sample median would remain unchanged
if these values were replaced by any other five values greater than or equal to 259. It appears
from the stem and leaf plots that the germ-free conditions probably improved the life span
of the five longest living rats, but it is unclear what, if any, effect it had on the life spans
of the other rats. !
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Another statistic that has been used to indicate the central tendency of a data set is the
sample mode, defined to be the value that occurs with the greatest frequency. If no single
value occurs most frequently, then all the values that occur at the highest frequency are
called modal values.

EXAMPLE 2.3e The following frequency table gives the values obtained in 40 rolls of a die.

Value Frequency
1 9
2 8
3 5
4 5
5 6
6 7

Find (a) the sample mean, (b) the sample median, and (c) the sample mode.

SOLUTION (a) The sample mean is

x̄ = (9 + 16 + 15 + 20 + 30 + 42)/40 = 3.05

(b) The sample median is the average of the 20th and 21st smallest values, and is thus
equal to 3. (c) The sample mode is 1, the value that occurred most frequently. !

2.3.2 Sample Variance and Sample Standard Deviation
Whereas we have presented statistics that describe the central tendencies of a data set, we
are also interested in ones that describe the spread or variability of the data values. A statistic
that could be used for this purpose would be one that measures the average value of the
squares of the distances between the data values and the sample mean. This is accomplished
by the sample variance, which for technical reasons divides the sum of the squares of the
differences by n − 1 rather than n, where n is the size of the data set.

Definition
The sample variance, call it s2, of the data set x1, . . . , xn is defined by

s2 =
n∑

i=1

(xi − x̄)2/(n − 1)

EXAMPLE 2.3f Find the sample variances of the data sets A and B given below.

A : 3, 4, 6, 7, 10 B : −20, 5, 15, 24
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SOLUTION As the sample mean for data set A is x̄ = (3 + 4 + 6 + 7 + 10)/5 = 6, it follows
that its sample variance is

s2 = [(−3)2 + (−2)2 + 02 + 12 + 42]/4 = 7.5

The sample mean for data set B is also 6; its sample variance is

s2 =[(−26)2 + (−1)2 + 92 + (18)2]/3 ≈ 360.67

Thus, although both data sets have the same sample mean, there is a much greater
variability in the values of the B set than in the A set. !

The following algebraic identity is often useful for computing the sample variance:

An Algebraic Identity

n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2

The identity is proven as follows:
n∑

i=1

(xi − x̄)2 =
n∑

i=1

(
x2

i − 2xix̄ + x̄2)

=
n∑

i=1

x2
i − 2x̄

n∑

i=1

xi +
n∑

i=1

x̄2

=
n∑

i=1

x2
i − 2nx̄2 + nx̄2

=
n∑

i=1

x2
i − nx̄2

The computation of the sample variance can also be eased by noting that if

yi = a + bxi, i = 1, . . . , n

then ȳ = a + bx̄, and so
n∑

i=1

(yi − ȳ)2 = b2
n∑

i=1

(xi − x̄)2

That is, if s2y and s2x are the respective sample variances, then

s2y = b2s2x
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In other words, adding a constant to each data value does not change the sample variance;
whereas multiplying each data value by a constant results in a new sample variance that is
equal to the old one multiplied by the square of the constant. !

EXAMPLE 2.3g The following data give the worldwide number of fatal airline accidents
of commercially scheduled air transports in the years from 1997 to 2005.

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005
Accidents 25 20 21 18 13 13 7 9 18
Source: National Safety Council.

Find the sample variance of the number of accidents in these years.

SOLUTION Let us start by subtracting 18 from each value, to obtain the new data set:

7, 2, 3, 0, −5, −5, −11, −9, 0

Calling the transformed data y1, . . . , y9, we have

ȳ =
9∑

i=1

yi/9 = −2,
n∑

i=1

y2
i = 49 + 4 + 9 + 25 + 25 + 121 + 81 = 314

Hence, since the sample variance of the transformed data is equal to that of the original
data, upon using the algebraic identity we obtain

s2 = 314 −9(4)

8
= 34.75 !

Program 2.3 on the text disk can be used to obtain the sample variance for large data
sets.

The positive square root of the sample variance is called the sample standard deviation.

Definition
The quantity s, defined by

s =

√√√√
n∑

i=1

(xi − x̄)2/(n − 1)

is called the sample standard deviation.

The sample standard deviation is measured in the same units as the data.

2.3.3 Sample Percentiles and Box Plots
Loosely speaking, the sample 100p percentile of a data set is that value such that 100p
percent of the data values are less than or equal to it, 0 ≤ p ≤ 1. More formally, we have
the following definition.
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Definition
The sample 100p percentile is that data value such that at least 100p percent of the data
are less than or equal to it and at least 100(1 − p) percent are greater than or equal to it.
If two data values satisfy this condition, then the sample 100p percentile is the arithmetic
average of these two values.

To determine the sample 100p percentile of a data set of size n, we need to determine
the data values such that

1. At least np of the values are less than or equal to it.
2. At least n(1 − p) of the values are greater than or equal to it.

To accomplish this, first arrange the data in increasing order. Then, note that if np is
not an integer, then the only data value that satisfies the preceding conditions is the one
whose position when the data are ordered from smallest to largest is the smallest integer
exceeding np. For instance, if n = 22, p = .8, then we require a data value such that at
least 17.6 of the values are less than or equal to it, and at least 4.4 of them are greater
than or equal to it. Clearly, only the 18th smallest value satisfies both conditions and this
is the sample 80 percentile. On the other hand, if np is an integer, then it is easy to check
that both the values in positions np and np + 1 satisfy the preceding conditions, and so
the sample 100p percentile is the average of these values. For instance, if we wanted the
90 percentile of a data set of size 20, then both the (18)th and (19)th smallest values
would be such that at least 90 percent of the data values are less than or equal to them,
and at least 10 percent of the data values are greater than or equal to them. Thus, the 90
percentile is the average of these two values.

EXAMPLE 2.3h Table 2.6 lists the populations of the 25 most populous U.S. cities for
the year 1994. For this data set, find (a) the sample 10 percentile and (b) the sample 80
percentile.

SOLUTION (a) Because the sample size is 25 and 25(.10) =2.5, the sample 10 percentile
is the third smallest value, equal to 590, 763.

(b) Because 25(.80) =20, the sample 80 percentile is the average of the twentieth and
the twenty-first smallest values. Hence, the sample 80 percentile is

1,512,986 +1,448,394
2

= 1,480,690 !

The sample 50 percentile is, of course, just the sample median. Along with the sample
25 and 75 percentiles, it makes up the sample quartiles.

Definition
The sample 25 percentile is called the first quartile; the sample 50 percentile is called
the sample median or the second quartile; the sample 75 percentile is called the third
quartile.
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TABLE 2.6 Population of 25 Largest U.S. Cities, July 2006

Rank City Population

1 New York, NY . . . . . . . . . . . . . . . . . 8,250,567
2 Los Angeles, CA . . . . . . . . . . . . . . . 3,849,378
3 Chicago, IL . . . . . . . . . . . . . . . . . . . 2,833,321
4 Houston, TX . . . . . . . . . . . . . . . . . . 2,144,491
5 Phoenix, AR. . . . . . . . . . . . . . . . . . . 1,512,986
6 Philadelphia, PA . . . . . . . . . . . . . . . 1,448,394
7 San Antonio, TX. . . . . . . . . . . . . . . 1,296,682
8 San Diego, CA. . . . . . . . . . . . . . . . . 1,256,951
9 Dallas, TX . . . . . . . . . . . . . . . . . . . . 1,232,940

10 San Jose, CA . . . . . . . . . . . . . . . . . . 929,936
11 Detroit, MI . . . . . . . . . . . . . . . . . . . 918,849
12 Jacksonville, FL . . . . . . . . . . . . . . . . 794,555
13 Indianapolis, IN . . . . . . . . . . . . . . . 785,597
14 San Francisco, CA . . . . . . . . . . . . . . 744,041
15 Columbus, OH . . . . . . . . . . . . . . . . 733,203
16 Austin, TX . . . . . . . . . . . . . . . . . . . . 709,893
17 Memphis, TN . . . . . . . . . . . . . . . . . 670,902
18 Fort Worth, TX. . . . . . . . . . . . . . . . 653,320
19 Baltimore, MD . . . . . . . . . . . . . . . . 640,961
20 Charlotte, NC . . . . . . . . . . . . . . . . . 630,478
21 El Paso, TX . . . . . . . . . . . . . . . . . . . 609,415
22 Milwaukee, WI . . . . . . . . . . . . . . . . 602,782
23 Boston, MA . . . . . . . . . . . . . . . . . . . 590,763
24 Seattle, WA . . . . . . . . . . . . . . . . . . . 582,454
25 Washington, DC . . . . . . . . . . . . . . . 581,530

The quartiles break up a data set into four parts, with roughly 25 percent of the
data being less than the first quartile, 25 percent being between the first and second quartile,
25 percent being between the second and third quartile, and 25 percent being greater than
the third quartile.

EXAMPLE 2.3i Noise is measured in decibels, denoted as dB. One decibel is about the level
of the weakest sound that can be heard in a quiet surrounding by someone with good
hearing; a whisper measures about 30 dB; a human voice in normal conversation is about
70 dB; a loud radio is about 100 dB. Ear discomfort usually occurs at a noise level of about
120 dB.

The following data give noise levels measured at 36 different times directly outside of
Grand Central Station in Manhattan.

82, 89, 94, 110, 74, 122, 112, 95, 100, 78, 65, 60, 90, 83, 87, 75, 114, 85

69, 94, 124, 115, 107, 88, 97, 74, 72, 68, 83, 91, 90, 102, 77, 125, 108, 65

Determine the quartiles.
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60 61.5 64
7057

FIGURE 2.7 A box plot.

SOLUTION A stem and leaf plot of the data is as follows:

6 0, 5, 5, 8, 9
7 2, 4, 4, 5, 7, 8
8 2, 3, 3, 5, 7, 8, 9
9 0, 0, 1, 4, 4, 5, 7

10 0, 2, 7, 8
11 0, 2, 4, 5
12 2, 4, 5

Because 36/4 = 9, the first quartile is 74.5, the average of the 9th and 10th smallest data
values; the second quartile is 89.5, the average of the 18th and 19th smallest values; the
third quartile is 104.5, the average of the 27th and 28th smallest values. !

A box plot is often used to plot some of the summarizing statistics of a data set. A straight
line segment stretching from the smallest to the largest data value is drawn on a horizontal
axis; imposed on the line is a “box,” which starts at the first and continues to the third
quartile, with the value of the second quartile indicated by a vertical line. For instance, the
42 data values presented in Table 2.1 go from a low value of 57 to a high value of 70. The
value of the first quartile (equal to the value of the 11th smallest on the list) is 60; the
value of the second quartile (equal to the average of the 21st and 22nd smallest values) is
61.5; and the value of the third quartile (equal to the value of the 32nd smallest on the
list) is 64. The box plot for this data set is shown in Figure 2.7.

The length of the line segment on the box plot, equal to the largest minus the smallest
data value, is called the range of the data. Also, the length of the box itself, equal to the
third quartile minus the first quartile, is called the interquartile range.

2.4 CHEBYSHEV’S INEQUALITY
Let x̄ and s be the sample mean and sample standard deviation of a data set. Assuming that
s > 0, Chebyshev’s inequality states that for any value of k ≥ 1, greater than 100(1 − 1/k2)
percent of the data lie within the interval from x̄ − ks to x̄ + ks. Thus, by letting k = 3/2,
we obtain from Chebyshev’s inequality that greater than 100(5/9) =55.56 percent of the
data from any data set lies within a distance 1.5s of the sample mean x̄; letting k = 2
shows that greater than 75 percent of the data lies within 2s of the sample mean; and
letting k = 3 shows that greater than 800/9 ≈88.9 percent of the data lies within 3 sample
standard deviations of x̄.
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When the size of the data set is specified, Chebyshev’s inequality can be sharpened, as
indicated in the following formal statement and proof.

Chebyshev’s Inequality

Let x̄ and s be the sample mean and sample standard deviation of the data set consisting
of the data x1, . . . , xn, where s > 0. Let

Sk = {i, 1 ≤ i ≤ n : |xi − x̄| < ks}

and let |Sk| be the number of elements in the set Sk. Then, for any k ≥ 1,

|Sk|
n

≥ 1 − n − 1

nk2 > 1 − 1
k2

Proof

(n − 1)s2 =
n∑

i=1

(xi − x̄)2

=
∑

i∈Sk

(xi − x̄)2 +
∑

i &∈Sk

(xi − x̄)2

≥
∑

i &∈Sk

(xi − x̄)2

≥
∑

i &∈Sk

k2s2

= k2s2(n − |Sk|)

where the first inequality follows because all terms being summed are nonnegative, and the
second follows since (x1 − x̄)2 ≥ k2s2 when i &∈ Sk. Dividing both sides of the preceding
inequality by nk2s2 yields that

n − 1
nk2 ≥ n − |Sk|

n
= 1 − |Sk|

n

and the result is proven. !

Because Chebyshev’s inequality holds universally, it might be expected for given data
that the actual percentage of the data values that lie within the interval from x̄ − ks to
x̄ + ks might be quite a bit larger than the bound given by the inequality.

EXAMPLE 2.4a Table 2.7 lists the 10 top-selling passenger cars in the United States in the
month of June, 2013.
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TABLE 2.7 Top Selling Vehicles

June 2013 Sales (in thousands of vehicles)

Ford F Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 68.0
Chevrolet Silverado . . . . . . . . . . . . . . . . . . . . . . 43.3
Toyoto Camry . . . . . . . . . . . . . . . . . . . . . . . . . . 35.9
Chevrolet Cruze . . . . . . . . . . . . . . . . . . . . . . . . 32.9
Honda Accord . . . . . . . . . . . . . . . . . . . . . . . . . . 31.7
Honda Civic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.7
Dodge Ram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.6
Ford Escape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.7
Nissan Altima . . . . . . . . . . . . . . . . . . . . . . . . . . 26.9
Honda CR – V . . . . . . . . . . . . . . . . . . . . . . . . . 26.6

A simple calculation yields that the sample mean and sample standard deviation of these
data are

x̄ = 35.33 s = 11.86

Thus Chebyshev’s Inequality states that at least 100(5/9) = 55.55 percent of the data lies
in the interval (

x̄ − 3
2

s, x̄ + 3
2

s
)

= (17.54, 53.12)

whereas, in actuality, 90 percent of the data falls within these limits. !

Suppose now that we are interested in the fraction of data values that exceed the sample
mean by at least k sample standard deviations, where k is positive. That is, suppose that x̄
and s are the sample mean and the sample standard deviation of the data set x1, x2, . . . , xn.
Then, with

N (k) = number of i : xi − x̄ ≥ ks

what can we say about N (k)/n? Clearly,

N (k)
n

≤ number of i : |xi − x̄| ≥ ks
n

≤ 1
k2 by Chebyshev’s inequality

However, we can make a stronger statement, as is shown in the following one-sided version
of Chebyshev’s inequality.

The One-Sided Chebyshev Inequality

Let x̄ and s be the sample mean and sample standard deviation of the data set consisting
of the data x1, . . . , xn. Suppose s > 0, and let N (k) = number of i : xi − x̄ ≥ ks. Then,
for any k > 0,
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N (k)
n

≤ 1
1 + k2

Proof

Let yi = xi − x̄, i = 1, . . . , n. For any b > 0, we have that

n∑

i=1

( yi + b)2 ≥
∑

i:yi≥ks

( yi + b)2

≥
∑

i:yi≥ks

(ks + b)2

= N (k)(ks + b)2 (2.4.1)

where the first inequality follows because ( yi + b)2 ≥ 0, the second because both ks and
b are positive, and the final equality because N (k) is equal to the number of i such that
yi ≥ ks. However,

n∑

i=1

(yi + b)2 =
n∑

i=1

(y2
i + 2byi + b2)

=
n∑

i=1

y2
i + 2b

n∑

i=1

yi + nb2

=
n∑

i=1

y2
i + nb2

= (n − 1)s2 + nb2

where the next to last equation used that
∑n

i=1 yi = ∑n
i=1(xi − x̄) = ∑n

i=1 xi − nx̄ = 0.
Therefore, we obtain from Equation (2.4.1) that

N (k) ≤ (n − 1)s2 + nb2

(ks + b)2 <
ns2 + nb2

(ks + b)2

implying that
N (k)

n
≤ s2 + b2

(ks + b)2

Because the preceding is valid for all b > 0, we can set b = s/k (which is the value of b
that minimizes the right-hand side of the preceding) to obtain that

N (k)
n

≤ s2 + s2/k2

(ks + s/k)2
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Multiplying the numerator and the denominator of the right side of the preceding by
k2/s2 gives

N (k)
n

≤ k2 + 1
(k2 + 1)2 = 1

k2 + 1

and the result is proven. Thus, for instance, where the usual Chebyshev inequality shows
that at most 25 percent of data values are at least 2 standard deviations greater than
the sample mean, the one-sided Chebyshev inequality lowers the bound to “at most
20 percent.” !

2.5 NORMAL DATA SETS
Many of the large data sets observed in practice have histograms that are similar in shape.
These histograms often reach their peaks at the sample median and then decrease on both
sides of this point in a bell-shaped symmetric fashion. Such data sets are said to be normal
and their histograms are called normal histograms. Figure 2.8 is the histogram of a normal
data set.

If the histogram of a data set is close to being a normal histogram, then we say that
the data set is approximately normal. For instance, we would say that the histogram given
in Figure 2.9 is from an approximately normal data set, whereas the ones presented in
Figures 2.10 and 2.11 are not (because each is too nonsymmetric). Any data set that is
not approximately symmetric about its sample median is said to be skewed. It is “skewed
to the right” if it has a long tail to the right and “skewed to the left” if it has a long tail
to the left. Thus the data set presented in Figure 2.10 is skewed to the left and the one of
Figure 2.11 is skewed to the right.

It follows from the symmetry of the normal histogram that a data set that is approxi-
mately normal will have its sample mean and sample median approximately equal.

FIGURE 2.8 Histogram of a normal data set.
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FIGURE 2.9 Histogram of an approximately normal data set.

FIGURE 2.10 Histogram of a data set skewed to the left.

FIGURE 2.11 Histogram of a data set skewed to the right.
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Suppose that x̄ and s are the sample mean and sample standard deviation of an approxi-
mately normal data set. The following rule, known as the empirical rule, specifies the
approximate proportions of the data observations that are within s, 2s, and 3s of the
sample mean x̄.

The Empirical Rule

If a data set is approximately normal with sample mean x̄ and sample standard devia-
tion s, then the following statements are true.

1. Approximately 68 percent of the observations lie within

x̄ ± s

2. Approximately 95 percent of the observations lie within

x̄ ± 2s

3. Approximately 99.7 percent of the observations lie within

x̄ ± 3s

EXAMPLE 2.5a The following stem and leaf plot gives the scores on a statistics exam taken
by industrial engineering students.

9 0, 1, 4
8 3, 5, 5, 7, 8
7 2, 4, 4, 5, 7, 7, 8
6 0, 2, 3, 4, 6, 6
5 2, 5, 5, 6, 8
4 3, 6

By standing the stem and leaf plot on its side we can see that the corresponding histogram
is approximately normal. Use it to assess the empirical rule.

SOLUTION A calculation gives that

x̄ ≈ 70.571, s ≈ 14.354

Thus the empirical rule states that approximately 68 percent of the data are between 56.2
and 84.9; the actual percentage is 1,500/28 ≈53.6. Similarly, the empirical rule gives that
approximately 95 percent of the data are between 41.86 and 99.28, whereas the actual
percentage is 100. !

A data set that is obtained by sampling from a population that is itself made up of
subpopulations of different types is usually not normal. Rather, the histogram from such
a data set often appears to resemble a combining, or superposition, of normal histograms
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FIGURE 2.12 Histogram of a bimodal data set.

and thus will often have more than one local peak or hump. Because the histogram will
be higher at these local peaks than at their neighboring values, these peaks are similar to
modes. A data set whose histogram has two local peaks is said to be bimodal. The data set
represented in Figure 2.12 is bimodal.

2.6 PAIRED DATA SETS AND THE SAMPLE
CORRELATION COEFFICIENT

We are often concerned with data sets that consist of pairs of values that have some
relationship to each other. If each element in such a data set has an x value and a y value,
then we represent the ith data point by the pair (xi, yi). For instance, in an attempt to
determine the relationship between the daily midday temperature (measured in degrees
Celsius) and the number of defective parts produced during that day, a company recorded
the data presented in Table 2.8. For this data set, xi represents the temperature in degrees
Celsius and yi the number of defective parts produced on day i.

A useful way of portraying a data set of paired values is to plot the data on a two-
dimensional graph, with the x-axis representing the x value of the data and the y-axis
representing the y value. Such a plot is called a scatter diagram. Figure 2.13 presents a
scatter diagram for the data of Table 2.8.

A question of interest concerning paired data sets is whether large x values tend to be
paired with large y values, and small x values with small y values; if this is not the case,
then we might question whether large values of one of the variables tend to be paired
with small values of the other. A rough answer to these questions can often be provided
by the scatter diagram. For instance, Figure 2.13 indicates that there appears to be some
connection between high temperatures and large numbers of defective items. To obtain
a quantitative measure of this relationship, we now develop a statistic that attempts to
measure the degree to which larger x values go with larger y values and smaller x values
with smaller y values.
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TABLE 2.8 Temperature and Defect Data

Day Temperature Number of Defects

1 24.2 25
2 22.7 31
3 30.5 36
4 28.6 33
5 25.5 19
6 32.0 24
7 28.6 27
8 26.5 25
9 25.3 16

10 26.0 14
11 24.4 22
12 24.8 23
13 20.6 20
14 25.1 25
15 21.4 25
16 23.7 23
17 23.9 27
18 25.2 30
19 27.4 33
20 28.3 32
21 28.8 35
22 26.6 24

Suppose that the data set consists of the paired values (xi, yi), i = 1, . . . , n. To obtain a
statistic that can be used to measure the association between the individual values of a set
of paired data, let x̄ and ȳ denote the sample means of the x values and the y values, respec-
tively. For data pair i, consider xi − x̄ the deviation of its x value from the sample mean, and
yi − ȳ the deviation of its y value from the sample mean. Now if xi is a large x value, then it
will be larger than the average value of all the x’s, so the deviation xi − x̄ will be a positive
value. Similarly, when xi is a small x value, then the deviation xi − x̄ will be a negative
value. Because the same statements are true about the y deviations, we can conclude the
following:

When large values of the x variable tend to be associated with large values
of the y variable and small values of the x variable tend to be associated with
small values of the y variable, then the signs, either positive or negative, of
xi − x̄ and yi − ȳ will tend to be the same.
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FIGURE 2.13 A scatter diagram.

Now, if xi − x̄ and yi − ȳ both have the same sign (either positive or negative), then
their product (xi − x̄)( yi − ȳ) will be positive. Thus, it follows that when large x values
tend to be associated with large y values and small x values are associated with small y
values, then

∑n
i=1(xi − x̄)( yi − ȳ) will tend to be a large positive number. [In fact, not

only will all the products have a positive sign when large (small) x values are paired with
large (small) y values, but it also follows from a mathematical result known as Hardy’s
lemma that the largest possible value of the sum of paired products will be obtained when
the largest xi − x̄ is paired with the largest yi − ȳ, the second largest xi − x̄ is paired
with the second largest yi − ȳ, and so on.] In addition, it similarly follows that when
large values of xi tend to be paired with small values of yi then the signs of xi − x̄
and yi − ȳ will be opposite and so

∑n
i=1(xi − x̄)(yi − ȳ) will be a large negative

number.
To determine what it means for

∑n
i=1(xi − x̄)( yi − ȳ) to be “large,” we standardize

this sum first by dividing by n − 1 and then by dividing by the product of the two sample
standard deviations. The resulting statistic is called the sample correlation coefficient.
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Definition
Consider the data pairs (xi, yi), i = 1, . . . , n. and let sx and sy denote, respectively, the
sample standard deviations of the x values and the y values. The sample correlation
coefficient, call it r, of the data pairs (xi, yi), i = 1, . . . , n is defined by

r =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n − 1)sxsy

=

n∑
i=1

(xi − x̄)(yi − ȳ)
√

n∑
i=1

(xi − x̄)2
n∑

i=1
(yi − ȳ)2

When r > 0 we say that the sample data pairs are positively correlated, and when r < 0 we
say that they are negatively correlated.

The following are properties of the sample correlation coefficient.

Properties of r

1. −1 ≤ r ≤ 1
2. If for constants a and b, with b > 0,

yi = a + bxi , i = 1, . . . , n

then r = 1.
3. If for constants a and b, with b < 0,

yi = a + bxi , i = 1, . . . , n

then r =−1.
4. If r is the sample correlation coefficient for the data pairs xi, yi, i = 1, . . . , n then

it is also the sample correlation coefficient for the data pairs

a + bxi, c + dyi, i = 1, . . . , n

provided that b and d are both positive or both negative.

Property 1 says that the sample correlation coefficient r is always between −1 and +1.
Property 2 says that r will equal +1 when there is a straight line (also called a linear)
relation between the paired data such that large y values are attached to large x values.
Property 3 says that r will equal −1 when the relation is linear and large y values are
attached to small x values. Property 4 states that the value of r is unchanged when a



38 Chapter 2: Descriptive Statistics

constant is added to each of the x variables (or to each of the y variables) or when each
x variable (or each y variable) is multiplied by a positive constant. This property implies
that r does not depend on the dimensions chosen to measure the data. For instance, the
sample correlation coefficient between a person’s height and weight does not depend on
whether the height is measured in feet or in inches or whether the weight is measured
in pounds or in kilograms. Also, if one of the values in the pair is temperature, then
the sample correlation coefficient is the same whether it is measured in Fahrenheit or in
Celsius.

The absolute value of the sample correlation coefficient r (that is, |r|, its value without
regard to its sign) is a measure of the strength of the linear relationship between the x and
the y values of a data pair. A value of |r| equal to 1 means that there is a perfect linear
relation — that is, a straight line can pass through all the data points (xi, yi), i = 1, . . . , n.
A value of |r| of around .8 means that the linear relation is relatively strong; although
there is no straight line that passes through all of the data points, there is one that is
“close” to them all. A value for |r| of around .3 means that the linear relation is relatively
weak.

The sign of r gives the direction of the relation. It is positive when the linear relation is
such that smaller y values tend to go with smaller x values and larger y values with larger x
values (and so a straight line approximation points upward), and it is negative when larger
y values tend to go with smaller x values and smaller y values with larger x values (and so
a straight line approximation points downward). Figure 2.14 displays scatter diagrams for
data sets with various values of r.

EXAMPLE 2.6a Find the sample correlation coefficient for the data presented in Table 2.8.

SOLUTION A computation gives the solution

r = .4189

thus indicating a relatively weak positive correlation between the daily temperature and
the number of defective items produced that day. !

EXAMPLE 2.6b The following data give the resting pulse rates (in beats per minute) and
the years of schooling of 10 individuals. A scatter diagram of these data is presented in
Figure 2.15. The sample correlation coefficient for these data is r =−.7638. This negative
correlation indicates that for this data set a high pulse rate is strongly associated with a small
number of years in school, and a low pulse rate with a large number of years in school. !

Person 1 2 3 4 5 6 7 8 9 10
Years of School 12 16 13 18 19 12 18 19 12 14
Pulse Rate 73 67 74 63 73 84 60 62 76 71
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FIGURE 2.15 Scatter diagram of years in school and pulse rate.
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!

Correlation Measures Association, Not Causation

The data set of Example 2.6b only considers 10 students and, as such,
is not large enough for one to draw any firm conclusions about the
relationship between years of school and pulse rate. Moreover, even if
the data set were of larger size and with the same strong negative cor-
relation between an individual’s years of education and that individual’s
resting pulse rate, we would not be justified to conclude that additional
years of school will directly reduce one’s pulse rate. That is, whereas
additional years of school tend to be associated with a lower resting
pulse rate, this does not mean that it is a direct cause of it. Often, the
explanation for such an association lies with an unexpressed factor that
is related to both variables under consideration. In this instance, it may
be that a person who has spent additional time in school is more aware
of the latest findings in the area of health, and thus may be more aware
of the importance of exercise and good nutrition; or it may be that it is
not knowledge that is making the difference but rather it is that people
who have had more education tend to end up in jobs that allow them
more time for exercise and money for good nutrition. The strong nega-
tive correlation between years in school and resting pulse rate probably
results from a combination of these as well as other underlying factors.

!

We will now prove the first three properties of the sample correlation coefficient r.
That is, we will prove that |r| ≤ 1 with equality when the data lie on a straight line. To
begin, note that

∑ (
xi − x̄

sx
− yi − ȳ

sy

)2

≥ 0 (2.6.1)

or
∑ (xi − x̄)2

s2x
+

∑ (yi − ȳ)
s2y

2
− 2

∑ (xi − x̄)(yi − ȳ)
sxsy

≥ 0

or
n − 1 + n − 1 − 2(n − 1)r ≥ 0

showing that
r ≤ 1
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To see when r = 1, suppose first that the points (xi, yi), i = 1, . . . , n lie on the straight line

yi = a + bxi, i = 1, . . . , n

with positive slope b. If this is so, then

s2y = b2s2x , ȳ = a + bx̄

showing that

b = sy
sx

, a = ȳ − sy
sx

x̄

Now, note also that r = 1 if and only if there is equality in Equation 2.6.1. That is, r = 1
if and only if for all i,

yi − ȳ
sy

= xi − x̄
sx

or, equivalently,

yi = ȳ − sy
sx

x̄ + sy
sx

xi

Consequently, r = 1 if and only if the data values (xi, yi) lie on a straight line having a
positive slope.

To show that r ≥ −1, with equality if and only if the data values (xi, yi) lie on a
straight line having a negative slope, start with

∑ (
xi − x̄

sx
+ yi − ȳ

sy

)2

≥ 0

and use an argument analogous to the one just given.

Problems

1. The following is a sample of prices, rounded to the nearest cent, charged per
gallon of standard unleaded gasoline in the San Francisco Bay area in June 1997.

3.88, 3.90, 3.93, 3.90, 3.93, 3.96, 3.88, 3.94, 3.96, 3.88, 3.94, 3.99, 3.98

Represent these data in

(a) a frequency table;
(b) a relative frequency line graph.

2. Explain how a pie chart can be constructed. If a data value had relative frequency
r, at what angle would the lines defining its sector meet?
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3. The following are the estimated oil reserves, in billions of barrels, for four regions
in the Western Hemisphere.

United States 38.7
South America 22.6
Canada 8.8
Mexico 60.0

Represent these data in a pie chart.

4. The following table gives the average travel time to work for workers in each of the
50 states as well as the percentage of those workers who use public transportation.

(a) Represent the data relating to the average travel times in a histogram.
(b) Represent the data relating to the percentage of workers using public

transportation in a stem and leaf plot.

Means of Transportation
to Work Average Travel

Region, Division, Percent Using Public Time to Work1

and State Transportation (minutes)

United States . . 5.3 22.4
Northeast . . . . . . 12.8 24.5

New England. . . . 5.1 21.5
Maine . . . . . . 0.9 19.0
New Hampshire . 0.7 21.9
Vermont . . . . . 0.7 18.0
Massachusetts . . 8.3 22.7
Rhode Island . . . 2.5 19.2
Connecticut . . . 3.9 21.1

Middle Atlantic . . . 15.7 25.7
New York . . . . 24.8 28.6
New Jersey . . . . 8.8 25.3
Pennsylvania . . . 6.4 21.6

Midwest . . . . . . . 3.5 20.7
East North Central . . . 4.3 21.7

Ohio . . . . . . 2.5 20.7
Indiana . . . . . 1.3 20.4
Illinois . . . . . 10.1 25.1
Michigan . . . . 1.6 21.2
Wisconsin . . . . 2.5 18.3

West North Central . 1.9 18.4
Minnesota . . . . 3.6 19.1
Iowa . . . . . . 1.2 16.2
Missouri . . . . . 2.0 21.6

(continued )
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Means of Transportation
to Work Average Travel

Region, Division, Percent Using Public Time to Work1

and State Transportation (minutes)

North Dakota . . . . . 0.6 13.0
South Dakota . . . . . 0.3 13.8
Nebraska. . . . . . . . . . 1.2 15.8
Kansas . . . . . . . . . . . . 0.6 17.2

South . . . . . . . . . . . . . . . . . 2.6 22.0
South Atlantic . . . . . . . 3.4 22.5

Delaware . . . . . . . . . 2.4 20.0
Maryland . . . . . . . . . 8.1 27.0
Virginia . . . . . . . . . . . 4.0 24.0
West Virginia . . . . . . 1.1 21.0
North Carolina . . . . 1.0 19.8
South Carolina . . . . 1.1 20.5
Georgia . . . . . . . . . . . 2.8 22.7
Florida . . . . . . . . . . . 2.0 21.8

East South Central . . . 1.2 21.1
Kentucky . . . . . . . . . 1.6 20.7
Tennessee . . . . . . . . . 1.3 21.5
Alabama . . . . . . . . . . 0.8 21.2
Mississippi . . . . . . . . 0.8 20.6

West South Central . . . 2.0 21.6
Arkansas . . . . . . . . . . 0.5 19.0
Louisiana . . . . . . . . . 3.0 22.3
Oklahoma . . . . . . . . 0.6 19.3
Texas . . . . . . . . . . . . . 2.2 22.2

West . . . . . . . . . . . . . . . . . . 4.1 22.7
Mountain . . . . . . . . . . . 2.1 19.7

Montana . . . . . . . . . . 0.6 14.8
Idaho . . . . . . . . . . . . . 1.9 17.3
Wyoming . . . . . . . . . 1.4 15.4
Colorado . . . . . . . . . 2.9 20.7
New Mexico . . . . . . 1.0 19.1
Arizona . . . . . . . . . . . 2.1 21.6
Utah . . . . . . . . . . . . . 2.3 18.9
Nevada . . . . . . . . . . . 2.7 19.8

Pacific . . . . . . . . . . . . . . 4.8 23.8
Washington . . . . . . . 4.5 22.0
Oregon . . . . . . . . . . . 3.4 19.6
California . . . . . . . . . 4.9 24.6
Alaska . . . . . . . . . . . . 2.4 16.7
Hawaii . . . . . . . . . . . 7.4 23.8

1Excludes persons who worked at home.
Source: U.S. Bureau of the Census. Census of Population and Housing, 1990.
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5. Choose a book or article and count the number of words in each of the first 100
sentences. Present the data in a stem and leaf plot. Now choose another book or
article, by a different author, and do the same. Do the two stem and leaf plots
look similar? Do you think this could be a viable method for telling whether
different articles were written by different authors?

6. The following table gives the number of commercial airline accidents and the total
number of resulting fatalities in the United States in the years from 1985 to 2006.

(a) Represent the number of yearly airline accidents in a frequency table.
(b) Give a frequency polygon graph of the number of yearly airline accidents.
(c) Give a cumulative relative frequency plot of the number of yearly airline

accidents.
(d) Find the sample mean of the number of yearly airline accidents.
(e) Find the sample median of the number of yearly airline accidents.
(f ) Find the sample mode of the number of yearly airline accidents.
(g) Find the sample standard deviation of the number of yearly airline accidents.

U.S. Airline Safety, Scheduled Commercial Carriers, 1985–2006

Departures Acci- Fatal- Departures Acci- Fatal-
Year (millions) dents ities Year (millions) dents ities

1985 6.1 4 197 1996 7.9 3 342
1986 6.4 2 5 1997 9.9 3 3
1987 6.6 4 231 1998 10.5 1 1
1988 6.7 3 285 1999 10.9 2 12
1989 6.6 11 278 2000 11.1 2 89
1990 7.8 6 39 2001 10.6 6 531
1991 7.5 4 62 2002 10.3 0 0
1992 7.5 4 33 2003 10.2 2 22
1993 7.7 1 1 2004 10.8 1 13
1994 7.8 4 239 2005 10.9 3 22
1995 8.1 2 166 2006 11.2 2 50

Source: National Transportation Safety Board.

7. (Use the table from Problem 6.)

(a) Represent the number of yearly airline fatalities in a histogram.
(b) Represent the number of yearly airline fatalities in a stem and leaf plot.
(c) Find the sample mean of the number of yearly airline fatalities.
(d) Find the sample median of the number of yearly airline fatalities.
(e) Find the sample standard deviation of the number of yearly airline fatalities.

8. The sample mean of the weights of the adult women of town A is larger than the
sample mean of the weights of the adult women of town B. Moreover, the sample
mean of the weights of the adult men of town A is larger than the sample mean
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of the weights of the adult men of town B. Can we conclude that the sample
mean of the weights of the adults of town A is larger than the sample mean of
the weights of the adults of town B? Explain your answer.

9. Using the table given in Problem 4, find the sample mean and sample median of
the average travel time for those states in the

(a) northeast;
(b) midwest;
(c) south;
(d) west.

10. A total of 100 people work at company A, whereas a total of 110 work at company
B. Suppose the total employee payroll is larger at company A than at company B.

(a) What does this imply about the median of the salaries at company A with
regard to the median of the salaries at company B?

(b) What does this imply about the average of the salaries at company A with
regard to the average of the salaries at company B?

11. The sample mean of the initial 99 values of a data set consisting of 198 values
is equal to 120, whereas the sample mean of the final 99 values is equal to 100.
What can you conclude about the sample mean of the entire data set

(a) Repeat when “sample mean” is replaced by “sample median.”
(b) Repeat when “sample mean” is replaced by “sample mode.”

12. The following table gives the number of pedestrians, classified according to age
group and sex, killed in fatal road accidents in England in 1922.

(a) Approximate the sample means of the ages of the males.
(b) Approximate the sample means of the ages of the females.
(c) Approximate the quartiles of the males killed.
(d) Approximate the quartiles of the females killed.

Age Number of Males Number of Females

0–5 120 67
5–10 184 120

10–15 44 22
15–20 24 15
20–30 23 25
30–40 50 22
40–50 60 40
50–60 102 76
60–70 167 104
70–80 150 90
80–100 49 27
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13. The following are the percentages of ash content in 12 samples of coal found in
close proximity:

9.2, 14.1, 9.8, 12.4, 16.0, 12.6, 22.7, 18.9, 21.0, 14.5, 20.4, 16.9

Find the

(a) sample mean, and
(b) sample standard deviation of these percentages.

14. The sample mean and sample variance of five data values are, respectively,
x̄ = 104 and s2 = 16. If three of the data values are 102, 100, 105, what are the
other two data values?

15. Suppose you are given the average pay of all working people in each of the 50
states of the United States.

(a) Do you think that the sample mean of the averages for the 50 states will
equal the value given for the entire United States?

(b) If the answer to part (a) is no, explain what other information aside from
just the 50 averages would be needed to determine the sample mean salary
for the entire country. Also, explain how you would use the additional
information to compute this quantity.

16. The following data represent the lifetimes (in hours) of a sample of 40 transistors:

112, 121, 126, 108, 141, 104, 136, 134

121, 118, 143, 116, 108, 122, 127, 140

113, 117, 126, 130, 134, 120, 131, 133

118, 125, 151, 147, 137, 140, 132, 119

110, 124, 132, 152, 135, 130, 136, 128

(a) Determine the sample mean, median, and mode.
(b) Give a cumulative relative frequency plot of these data.

17. An experiment measuring the percent shrinkage on drying of 50 clay specimens
produced the following data:

18.2 21.2 23.1 18.5 15.6
20.8 19.4 15.4 21.2 13.4
16.4 18.7 18.2 19.6 14.3
16.6 24.0 17.6 17.8 20.2
17.4 23.6 17.5 20.3 16.6
19.3 18.5 19.3 21.2 13.9
20.5 19.0 17.6 22.3 18.4
21.2 20.4 21.4 20.3 20.1
19.6 20.6 14.8 19.7 20.5
18.0 20.8 15.8 23.1 17.0
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(a) Draw a stem and leaf plot of these data.
(b) Compute the sample mean, median, and mode.
(c) Compute the sample variance.
(d) Group the data into class intervals of size 1 percent starting with the value

13.0, and draw the resulting histogram.
(e) For the grouped data acting as if each of the data points in an interval was

actually located at the midpoint of that interval, compute the sample mean
and sample variance and compare this with the results obtained in parts (b)
and (c). Why do they differ?

18. A computationally efficient way to compute the sample mean and sample
variance of the data set x1, x2, . . . , xn is as follows. Let

x̄j =

j∑
i=1

xi

j
, j = 1, . . . , n

be the sample mean of the first j data values, and let

s2j =

j∑
i=1

(xi − x̄j)
2

j − 1
, j = 2, . . . , n

be the sample variance of the first j, j ≥ 2, values. Then, with s21 = 0, it can be
shown that

x̄j+1 = x̄j +
xj+1 − x̄j

j + 1

and

s2j+1 =
(

1 − 1
j

)
s2j + (j + 1)(x̄j+1 − x̄j)

2

(a) Use the preceding formulas to compute the sample mean and sample
variance of the data values 3, 4, 7, 2, 9, 6.

(b) Verify your results in part (a) by computing as usual.
(c) Verify the formula given above for x̄j+1 in terms of x̄j .

19. Use the data of Table 2.5 to find the

(a) 90 percentile of the average temperature for January;
(b) 75 percentile of the average temperature for July.
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20. Find the quartiles of the following ages at death as given in obituaries of the New
York Times in the 2 weeks preceding 1 August 2013.

92, 90, 92, 74, 69, 80, 94, 98, 65, 96, 84, 69, 86, 91, 88

74, 97, 85, 88, 68, 77, 94, 88, 65, 76, 75, 60

69, 97, 92, 85, 70, 80, 93, 91, 68, 82, 78, 89

21. The universities having the largest number of months in which they ranked in
the top 10 for the number of google searches over the past 114 months (as of
June 2013) are as follows.

University Number of Months in Top 10

Harvard University 114
University of Texas, Austin 114
University of Michigan 114
Stanford University 113
University of California Los Angeles (UCLA) 111
University of California Berkeley 97
Penn State University 94
Massachusetts Institute of Technology (MIT) 66
University of Southern California (USC) 63
Ohio State University 52
Yale University 48
University of Washington 33

(a) Find the sample mean of the data.
(b) Find the sample variance of the data.
(c) Find the sample quartiles of the data.

22. Use the part of the table given in Problem 4 that gives the percentage of workers
in each state that use public transportation to get to work to draw a box plot of
these 50 percentages.

23. Represent the data of Problem 20 in a box plot.

24. The average particulate concentration, in micrograms per cubic meter, was
measured in a petrochemical complex at 36 randomly chosen times, with the
following concentrations resulting:

5, 18, 15, 7, 23, 220, 130, 85, 103, 25, 80, 7, 24, 6, 13, 65, 37, 25,

24, 65, 82, 95, 77, 15, 70, 110, 44, 28, 33, 81, 29, 14, 45, 92, 17, 53
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(a) Represent the data in a histogram.
(b) Is the histogram approximately normal?

25. A chemical engineer desiring to study the evaporation rate of water from brine
evaporation beds obtained data on the number of inches of evaporation in each
of 55 July days spread over 4 years. The data are given in the following stem and
leaf plot, which shows that the smallest data value was .02 inches, and the largest
.56 inches.

.0 2, 6

.1 1, 4

.2 1, 1, 1, 3, 3, 4, 5, 5, 5, 6, 9

.3 0, 0, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 8, 9

.4 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 7, 8, 8, 8, 9, 9

.5 2, 5, 6

Find the

(a) sample mean;
(b) sample median;
(c) sample standard deviation of these data.
(d) Do the data appear to be approximately normal?
(e) What percentage of data values are within 1 standard deviation of the mean?

26. The following are the grade point averages of 30 students recently admitted to the
graduate program in the Department of Industrial Engineering and Operations
Research at the University of California at Berkeley.

3.46, 3.72, 3.95, 3.55, 3.62, 3.80, 3.86, 3.71, 3.56, 3.49, 3.96, 3.90, 3.70, 3.61,

3.72, 3.65, 3.48, 3.87, 3.82, 3.91, 3.69, 3.67, 3.72, 3.66, 3.79, 3.75, 3.93, 3.74,

3.50, 3.83

(a) Represent the preceding data in a stem and leaf plot.
(b) Calculate the sample mean x̄.
(c) Calculate the sample standard deviation s.
(d) Determine the proportion of the data values that lies within x̄ ± 1.5s and

compare with the lower bound given by Chebyshev’s inequality.
(e) Determine the proportion of the data values that lies within x̄ ± 2s and

compare with the lower bound given by Chebyshev’s inequality.

27. Do the data in Problem 26 appear to be approximately normal? For parts (c) and
(d) of this problem, compare the approximate proportions given by the empirical
rule with the actual proportions.

28. Would you expect that a histogram of the weights of all the members of a health
club would be approximately normal?



50 Chapter 2: Descriptive Statistics

29. Use the data of Problem 16.

(a) Compute the sample mean and sample median.
(b) Are the data approximately normal?
(c) Compute the sample standard deviation s.
(d) What percentage of the data fall within x̄ ± 1.5s?
(e) Compare your answer in part (d) to that given by the empirical rule.
(f ) Compare your answer in part (d) to the bound given by Chebyshev’s

inequality.

30. The following are the heights and starting salaries of 12 law school classmates
whose law school examination scores were roughly the same.

Height Salary

64 91
65 94
66 88
67 103
69 77
70 96
72 105
72 88
74 122
74 102
75 90
76 114

(a) Represent these data in a scatter diagram.
(b) Find the sample correlation coefficient.

31. A random sample of individuals were rated as to their standing posture. In
addition, the numbers of days of back pain each had experienced during the
past year were also recorded. Surprisingly to the researcher these data indicated
a positive correlation between good posture and number of days of back pain.
Does this indicate that good posture causes back pain?

32. If for each of the fifty states we plot the paired data consisting of the average
income of residents of the state and the number of foreign-born immigrants
who reside in the state, then the data pairs will have a positive correlation. Can
we conclude that immigrants tend to have higher incomes than native-born
Americans? If not, how else could this phenomenon be explained?
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33. A random group of 12 high school juniors were asked to estimate the average
number of hours they study each week. The following give these hours along
with the student’s grade point average.

Hours GPA

6 2.8
14 3.2
3 3.1
22 3.6
9 3.0
11 3.3
12 3.4
5 2.7
18 3.1
24 3.8
15 3.0
17 3.9

Find the sample correlation coefficient between hours reported and GPA.

34. Verify property 3 of the sample correlation coefficient.

35. Verify property 4 of the sample correlation coefficient.

36. In a study of children in grades 2 through 4, a researcher gave each student
a reading test. When looking at the resulting data the researcher noted a positive
correlation between a student’s reading test score and height. The researcher
concluded that taller children read better because they can more easily see the
blackboard. What do you think?

37. A recent study yielded a positive correlation between breast-fed babies and
scores on a vocabulary test taken at age 6. Discuss the potential difficulties in
interpreting the results of this study.



Chapter 3

ELEMENTS OF PROBABILITY

3.1 INTRODUCTION
The concept of the probability of a particular event of an experiment is subject to various
meanings or interpretations. For instance, if a geologist is quoted as saying that “there is
a 60 percent chance of oil in a certain region,” we all probably have some intuitive idea
as to what is being said. Indeed, most of us would probably interpret this statement in
one of two possible ways: either by imagining that

1. the geologist feels that, over the long run, in 60 percent of the regions whose
outward environmental conditions are very similar to the conditions that prevail
in the region under consideration, there will be oil; or

2. the geologist believes that it is more likely that the region will contain oil than it is
that it will not; and in fact .6 is a measure of the geologist’s belief in the hypothesis
that the region will contain oil.

The two foregoing interpretations of the probability of an event are referred to as being
the frequency interpretation and the subjective (or personal) interpretation of probability.
In the frequency interpretation, the probability of a given outcome of an experiment is
considered as being a “property” of that outcome. It is imagined that this property can be
operationally determined by continual repetition of the experiment — the probability of
the outcome will then be observable as being the proportion of the experiments that result
in the outcome. This is the interpretation of probability that is most prevalent among
scientists.

In the subjective interpretation, the probability of an outcome is not thought of as being
a property of the outcome but rather is considered a statement about the beliefs of the
person who is quoting the probability, concerning the chance that the outcome will occur.
Thus, in this interpretation, probability becomes a subjective or personal concept and has
no meaning outside of expressing one’s degree of belief. This interpretation of probability
is often favored by philosophers and certain economic decision makers.

53
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Regardless of which interpretation one gives to probability, however, there is a consensus
that the mathematics of probability are the same in either case. For instance, if you think
that the probability that it will rain tomorrow is .3 and you feel that the probability that it
will be cloudy but without any rain is .2, then you should feel that the probability that it
will either be cloudy or rainy is .5 independently of your individual interpretation of the
concept of probability. In this chapter, we present the accepted rules, or axioms, used in
probability theory. As a preliminary to this, however, we need to study the concept of the
sample space and the events of an experiment.

3.2 SAMPLE SPACE AND EVENTS
Consider an experiment whose outcome is not predictable with certainty in advance.
Although the outcome of the experiment will not be known in advance, let us suppose that
the set of all possible outcomes is known. This set of all possible outcomes of an experiment
is known as the sample space of the experiment and is denoted by S. Some examples are
the following.

1. If the outcome of an experiment consists in the determination of the sex of a
newborn child, then

S = { g , b}

where the outcome g means that the child is a girl and b that it is a boy.
2. If the experiment consists of the running of a race among the seven horses having

post positions 1, 2, 3, 4, 5, 6, 7, then

S = {all orderings of (1, 2, 3, 4, 5, 6, 7)}

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse is
first, then the number 3 horse, then the number 1 horse, and so on.

3. Suppose we are interested in determining the amount of dosage that must be given
to a patient until that patient reacts positively. One possible sample space for this
experiment is to let S consist of all the positive numbers. That is, let

S = (0, ∞)

where the outcome would be x if the patient reacts to a dosage of value x but not to
any smaller dosage.

Any subset E of the sample space is known as an event. That is, an event is a set
consisting of possible outcomes of the experiment. If the outcome of the experiment
is contained in E, then we say that E has occurred. Some examples of events are the
following.
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In Example 1 if E = { g}, then E is the event that the child is a girl. Similarly, if
F = {b}, then F is the event that the child is a boy.

In Example 2 if

E = {all outcomes in S starting with a 3}

then E is the event that the number 3 horse wins the race.
For any two events E and F of a sample space S, we define the new event E ∪ F , called

the union of the events E and F, to consist of all outcomes that are either in E or in F or
in both E and F. That is, the event E ∪ F will occur if either E or F occurs. For instance,
in Example 1 if E = { g} and F = {b}, then E ∪ F = { g , b}. That is, E ∪ F would be the
whole sample space S. In Example 2 if E = {all outcomes starting with 6} is the event that
the number 6 horse wins and F = {all outcomes having 6 in the second position} is the
event that the number 6 horse comes in second, then E ∪ F is the event that the number
6 horse comes in either first or second.

Similarly, for any two events E and F, we may also define the new event EF, sometimes
written as E ∩ F , called the intersection of E and F, to consist of all outcomes that are in
both E and F. That is, the event EF will occur only if both E and F occur. For instance, in
Example 3 if E = (0, 5) is the event that the required dosage is less than 5 and F =(2, 10)

is the event that it is between 2 and 10, then EF = (2, 5) is the event that the required
dosage is between 2 and 5. In Example 2 if E = {all outcomes ending in 5} is the event
that horse number 5 comes in last and F = {all outcomes starting with 5} is the event
that horse number 5 comes in first, then the event EF does not contain any outcomes and
hence cannot occur. To give such an event a name, we shall refer to it as the null event and
denote it by ∅. Thus ∅ refers to the event consisting of no outcomes. If EF = ∅, implying
that E and F cannot both occur, then E and F are said to be mutually exclusive.

For any event E, we define the event Ec , referred to as the complement of E, to consist
of all outcomes in the sample space S that are not in E. That is, Ec will occur if and only
if E does not occur. In Example 1 if E = {b} is the event that the child is a boy, then
Ec = { g} is the event that it is a girl. Also note that since the experiment must result in
some outcome, it follows that Sc = ∅.

For any two events E and F, if all of the outcomes in E are also in F, then we say that
E is contained in F and write E ⊂ F (or equivalently, F ⊃ E). Thus if E ⊂ F , then the
occurrence of E necessarily implies the occurrence of F. If E ⊂ F and F ⊂ E , then we say
that E and F are equal (or identical) and we write E = F .

We can also define unions and intersections of more than two events. In particular,
the union of the events E1, E2, . . . , En, denoted either by E1 ∪ E2 ∪ · · · ∪ En or by
∪n

1Ei , is defined to be the event consisting of all outcomes that are in Ei for at least one
i = 1, 2, . . . , n. Similarly, the intersection of the events Ei , i = 1, 2, . . . , n, denoted by
E1E2 · · · En, is defined to be the event consisting of those outcomes that are in all of the
events Ei, i = 1, 2, . . . , n. In other words, the union of the Ei occurs when at least one of
the events Ei occurs; the intersection occurs when all of the events Ei occur.
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3.3 VENN DIAGRAMS AND THE ALGEBRA OF EVENTS
A graphical representation of events that is very useful for illustrating logical relations
among them is the Venn diagram. The sample space S is represented as consisting of all
the points in a large rectangle, and the events E , F , G, . . . , are represented as consisting of
all the points in given circles within the rectangle. Events of interest can then be indicated
by shading appropriate regions of the diagram. For instance, in the three Venn diagrams
shown in Figure 3.1, the shaded areas represent respectively the events E ∪ F , EF, and Ec .
The Venn diagram of Figure 3.2 indicates that E ⊂ F .

The operations of forming unions, intersections, and complements of events obey cer-
tain rules not dissimilar to the rules of algebra. We list a few of these.

Commutative law E ∪ F = F ∪ E EF =FE
Associative law (E ∪ F ) ∪ G = E ∪ (F ∪ G ) (EF )G = E(FG )
Distributive law (E ∪ F )G = EG ∪ FG EF ∪ G = (E ∪ G )(F ∪ G )

These relations are verified by showing that any outcome that is contained in the event on
the left side of the equality is also contained in the event on the right side and vice versa.
One way of showing this is by means of Venn diagrams. For instance, the distributive law
may be verified by the sequence of diagrams shown in Figure 3.3.

S

E F

S

(a) Shaded region: E !F

S

E F

(b) Shaded region: EF (c) Shaded region: E c

FIGURE 3.1 Venn diagrams.

S

E
F

E ,F

FIGURE 3.2 Venn diagram.
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E F

G

E F

G

E F

G

(a) Shaded region: EG (b) Shaded region: FG (c) Shaded region: (E <F )G
(E <F )G 5EG <FG

FIGURE 3.3 Proving the distributive law.

The following useful relationship between the three basic operations of forming unions,
intersections, and complements of events is known as DeMorgan’s laws.

(E ∪ F )c = EcF c

(EF )c = Ec ∪ Fc

3.4 AXIOMS OF PROBABILITY
It appears to be an empirical fact that if an experiment is continually repeated under the
exact same conditions, then for any event E, the proportion of time that the outcome is
contained in E approaches some constant value as the number of repetitions increases. For
instance, if a coin is continually flipped, then the proportion of flips resulting in heads will
approach some value as the number of flips increases. It is this constant limiting frequency
that we often have in mind when we speak of the probability of an event.

From a purely mathematical viewpoint, we shall suppose that for each event E of an
experiment having a sample space S there is a number, denoted by P(E), that is in accord
with the following three axioms:
AXIOM 1

0 ≤ P(E) ≤ 1
AXIOM 2

P(S) = 1
AXIOM 3
For any sequence of mutually exclusive events E1, E2, . . . (that is, events for which
EiEj = ∅ when i (= j),

P

( n⋃

i=1

Ei

)
=

n∑

i=1

P(Ei), n = 1, 2, . . . , ∞

We call P(E ) the probability of the event E.

Thus, Axiom 1 states that the probability that the outcome of the experiment is con-
tained in E is some number between 0 and 1. Axiom 2 states that, with probability 1,



58 Chapter 3: Elements of Probability

the outcome will be a member of the sample space S. Axiom 3 states that for any set of
mutually exclusive events the probability that at least one of these events occurs is equal to
the sum of their respective probabilities.

It should be noted that if we interpret P(E) as the relative frequency of the event E
when a large number of repetitions of the experiment are performed, then P(E) would
indeed satisfy the above axioms. For instance, the proportion (or frequency) of time that
the outcome is in E is clearly between 0 and 1, and the proportion of time that it is in S
is 1 (since all outcomes are in S ). Also, if E and F have no outcomes in common, then
the proportion of time that the outcome is in either E or F is the sum of their respective
frequencies. As an illustration of this last statement, suppose the experiment consists of the
rolling of a pair of dice and suppose that E is the event that the sum is 2, 3, or 12 and F
is the event that the sum is 7 or 11. Then if outcome E occurs 11 percent of the time and
outcome F 22 percent of the time, then 33 percent of the time the outcome will be either
2, 3, 12, 7, or 11.

These axioms will now be used to prove two simple propositions concerning prob-
abilities. We first note that E and Ec are always mutually exclusive, and since E ∪ Ec = S,
we have by Axioms 2 and 3 that

1 = P(S) = P(E ∪ Ec) = P(E) + P(Ec)

Or equivalently, we have the following:

PROPOSITION 3.4.1

P(Ec) = 1 − P(E)

In other words, Proposition 3.4.1 states that the probability that an event does not occur
is 1 minus the probability that it does occur. For instance, if the probability of obtaining
a head on the toss of a coin is 3

8 , the probability of obtaining a tail must be 5
8 .

Our second proposition gives the relationship between the probability of the union of two
events in terms of the individual probabilities and the probability of the intersection.

PROPOSITION 3.4.2

P(E ∪ F ) = P(E) + P(F) − P(EF)

Proof

This proposition is most easily proven by the use of a Venn diagram as shown in Figure 3.4.
As the regions I, II, and III are mutually exclusive, it follows that

P(E ∪ F ) = P(I) + P(II) + P(III)

P(E) = P(I) + P(II)

P(F ) = P(II) + P(III)
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S

E F

III III

FIGURE 3.4 Venn diagram.

which shows that

P(E ∪ F ) = P(E) + P(F ) − P(II)

and the proof is complete since II = EF. !

EXAMPLE 3.4a A total of 28 percent of males living in Nevada smoke cigarettes, 6 percent
smoke cigars, and 3 percent smoke both cigars and cigarettes. What percentage of males
smoke neither cigars nor cigarettes?

SOLUTION Let E be the event that a randomly chosen male is a cigarette smoker and let F
be the event that he is a cigar smoker. Then, the probability this person is either a cigarette
or a cigar smoker is

P(E ∪ F ) = P(E ) + P(F ) − P(EF ) = .28 + .06 − .03 = .31

Thus the probability that the person is not a smoker is 1 − .31 = .69, implying that 69
percent of males smoke neither cigarettes nor cigars. !

The odds of an event A is defined by

P(A)

P(Ac)
= P(A)

1 − P(A)

Thus the odds of an event A tells how much more likely it is that A occurs than that it does
not occur. For instance, if P(A) = 3/4, then P(A)/(1 − P(A)) = 3, so the odds are 3.
Consequently, it is 3 times as likely that A occurs as it is that it does not. (Common
terminology is to say that the odds are 3 to 1 in favor of the event A.)

3.5 SAMPLE SPACES HAVING EQUALLY
LIKELY OUTCOMES

For a large number of experiments, it is natural to assume that each point in the sample
space is equally likely to occur. That is, for many experiments whose sample space S is a
finite set, say S = {1, 2, . . . , N }, it is often natural to assume that

P({1}) = P({2}) = · · · = P({N })= p (say)
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Now it follows from Axioms 2 and 3 that

1 = P(S ) = P({1}) + · · · + P({N }) = Np

which shows that

P({i})= p = 1/N

From this it follows from Axiom 3 that for any event E,

P(E) = Number of points in E
N

In words, if we assume that each outcome of an experiment is equally likely to occur, then
the probability of any event E equals the proportion of points in the sample space that are
contained in E.

Thus, to compute probabilities it is often necessary to be able to effectively count the
number of different ways that a given event can occur. To do this, we will make use of the
following rule.

BASIC PRINCIPLE OF COUNTING

Suppose that two experiments are to be performed. Then if experiment 1 can result in
any one of m possible outcomes and if, for each outcome of experiment 1, there are n
possible outcomes of experiment 2, then together there are mn possible outcomes of the
two experiments.

Proof of the Basic Principle

The basic principle can be proven by enumerating all the possible outcomes of the two
experiments as follows:

(1, 1), (1, 2), . . . , (1, n)

(2, 1), (2, 2), . . . , (2, n)
...

(m, 1), (m, 2), . . . , (m, n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible out-
come and experiment 2 then results in the jth of its possible outcomes. Hence, the set of
possible outcomes consists of m rows, each row containing n elements, which proves the
result. !

EXAMPLE 3.5a Two balls are “randomly drawn” from a bowl containing 6 white and 5
black balls. What is the probability that one of the drawn balls is white and the other
black?
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SOLUTION If we regard the order in which the balls are selected as being significant, then as
the first drawn ball may be any of the 11 and the second any of the remaining 10, it follows
that the sample space consists of 11 · 10 = 110 points. Furthermore, there are 6 · 5 = 30
ways in which the first ball selected is white and the second black, and similarly there are
5 · 6 = 30 ways in which the first ball is black and the second white. Hence, assuming
that “randomly drawn” means that each of the 110 points in the sample space is equally
likely to occur, then we see that the desired probability is

30 + 30
110

= 6
11

!

When there are more than two experiments to be performed the basic principle can be
generalized as follows:

!

Generalized Basic Principle of Counting

If r experiments that are to be performed are such that the first one may
result in any of n1 possible outcomes, and if for each of these n1 possible
outcomes there are n2 possible outcomes of the second experiment, and
if for each of the possible outcomes of the first two experiments there
are n3 possible outcomes of the third experiment, and if, . . . , then there
are a total of n1 · n2 · · · nr possible outcomes of the r experiments.

!

As an illustration of this, let us determine the number of different ways n distinct objects
can be arranged in a linear order. For instance, how many different ordered arrangements
of the letters a, b, c are possible? By direct enumeration we see that there are 6; namely, abc,
acb, bac, bca, cab, cba. Each one of these ordered arrangements is known as a permutation.
Thus, there are 6 possible permutations of a set of 3 objects. This result could also have
been obtained from the basic principle, since the first object in the permutation can be
any of the 3, the second object in the permutation can then be chosen from any of the
remaining 2, and the third object in the permutation is then chosen from the remaining
one. Thus, there are 3 · 2 · 1 = 6 possible permutations.

Suppose now that we have n objects. Similar reasoning shows that there are

n(n − 1)(n −2) · · · 3 · 2 · 1

different permutations of the n objects. It is convenient to introduce the notation n!, which
is read “n factorial,” for the foregoing expression. That is,

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1
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Thus, for instance, 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2 · 1 = 6, 4! = 4 · 3 · 2 · 1 = 24, and
so on. It is convenient to define 0! = 1.

EXAMPLE 3.5b Mr. Jones has 10 books that he is going to put on his bookshelf. Of these,
4 are mathematics books, 3 are chemistry books, 2 are history books, and 1 is a language
book. Jones wants to arrange his books so that all the books dealing with the same subject
are together on the shelf. How many different arrangements are possible?

SOLUTION There are 4! 3! 2! 1! arrangements such that the mathematics books are first
in line, then the chemistry books, then the history books, and then the language book.
Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! possible arrange-
ments. Hence, as there are 4! possible orderings of the subjects, the desired answer is
4! 4! 3! 2! 1! = 6,912. !

EXAMPLE 3.5c A class in probability theory consists of 6 men and 4 women. An exam is
given and the students are ranked according to their performance. Assuming that no two
students obtain the same score, (a) how many different rankings are possible? (b) If all
rankings are considered equally likely, what is the probability that women receive the top
4 scores?

SOLUTION

(a) Because each ranking corresponds to a particular ordered arrangement of the 10
people, we see the answer to this part is 10! = 3,628,800.

(b) Because there are 4! possible rankings of the women among themselves and 6!
possible rankings of the men among themselves, it follows from the basic principle
that there are (6!)(4!) = (720)(24) = 17, 280 possible rankings in which the
women receive the top 4 scores. Hence, the desired probability is

6!4!
10! = 4 · 3 · 2 · 1

10 · 9 · 8 · 7
= 1

210
!

Suppose now that we are interested in determining the number of different groups of r
objects that could be formed from a total of n objects. For instance, how many different
groups of three could be selected from the five items A, B, C , D, E? To answer this, reason
as follows. Since there are 5 ways to select the initial item, 4 ways to then select the next
item, and 3 ways to then select the final item, there are thus 5 · 4 · 3 ways of selecting the
group of 3 when the order in which the items are selected is relevant. However, since every
group of 3, say the group consisting of items A, B, and C, will be counted 6 times (that
is, all of the permutations ABC, ACB, BAC, BCA, CAB, CBA will be counted when the
order of selection is relevant), it follows that the total number of different groups that can
be formed is (5 · 4 · 3)/(3 ·2 · 1) = 10.

In general, as n(n − 1) · · · (n − r + 1) represents the number of different ways that a
group of r items could be selected from n items when the order of selection is considered
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relevant (since the first one selected can be any one of the n, and the second selected any
one of the remaining n − 1, etc.), and since each group of r items will be counted r! times
in this count, it follows that the number of different groups of r items that could be formed
from a set of n items is

n(n − 1) · · · (n − r + 1)

r! = n!
(n − r)!r!

NOTATION AND TERMINOLOGY

We define
(n

r

)
, for r ≤ n, by

(
n
r

)
= n!

(n − r)!r!

and call
(n

r

)
the number of combinations of n objects taken r at a time.

Thus
(n

r

)
represents the number of different groups of size r that can be selected from a

set of size n when the order of selection is not considered relevant. For example, there are
(

8
2

)
= 8 · 7

2 · 1
= 28

different groups of size 2 that can be chosen from a set of 8 people, and
(

10
2

)
= 10 · 9

2 · 1
= 45

different groups of size 2 that can be chosen from a set of 10 people. Also, since 0! = 1,
note that

(
n
0

)
=
(

n
n

)
= 1

EXAMPLE 3.5d A committee of size 5 is to be selected from a group of 6 men and 9 women.
If the selection is made randomly, what is the probability that the committee consists of
3 men and 2 women?

SOLUTION Let us assume that “randomly selected” means that each of the
(15

5

)
possible

combinations is equally likely to be selected. Hence, since there are
(6

3

)
possible choices of

3 men and
(9

2

)
possible choices of 2 women, it follows from the basic principle of counting

that the desired probability is given by
(

6
3

)(
9
2

)

(
15
5

) = 240
1001

!
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EXAMPLE 3.5e From a set of n items a random sample of size k is to be selected. What is
the probability a given item will be among the k selected?

SOLUTION Because there is
(1

1

)
way of choosing the given item and

(n−1
k−1

)
different choices

of k −1 of the other n−1 items, it follows from the basic principle of counting that there
are

(1
1

)(n−1
k−1

)
=
(n−1

k−1

)
different subsets of k of the n items that include the given item. As

there are a total of
(n

k

)
different choices of k of the n items, it follows that the probability

that a particular item is among the k selected is
(

n − 1
k − 1

) (
n
k

)
= (n − 1)!

(n − k)!(k − 1)!
n!

(n − k)!k! = k
n

!

EXAMPLE 3.5f A basketball team consists of 6 black and 6 white players. The players are
to be paired in groups of two for the purpose of determining roommates. If the pairings
are done at random, what is the probability that none of the black players will have a white
roommate?

SOLUTION Let us start by imagining that the 6 pairs are numbered — that is, there is a
first pair, a second pair, and so on. Since there are

(12
2

)
different choices of a first pair; and

for each choice of a first pair there are
(10

2

)
different choices of a second pair; and for each

choice of the first 2 pairs there are
(8

2

)
choices for a third pair; and so on, it follows from

the generalized basic principle of counting that there are
(

12
2

)(
10
2

)(
8
2

)(
6
2

)(
4
2

)(
2
2

)
= 12!

(2!)6

ways of dividing the players into a first pair, a second pair, and so on. Hence there are
(12)!/266! ways of dividing the players into 6 (unordered) pairs of 2 each. Furthermore,
since there are, by the same reasoning, 6!/233! ways of pairing the white players among
themselves and 6!/233! ways of pairing the black players among themselves, it follows that
there are (6!/233!)2 pairings that do not result in any black–white roommate pairs. Hence,
if the pairings are done at random (so that all outcomes are equally likely), then the desired
probability is

(
6!

233!

)2 (12)!
266! = 5

231
= .0216

Hence, there are roughly only two chances in a hundred that a random pairing will not
result in any of the white and black players rooming together. !

EXAMPLE 3.5g If n people are present in a room, what is the probability that no two of
them celebrate their birthday on the same day of the year? How large need n be so that
this probability is less than 1

2 ?

SOLUTION Because each person can celebrate his or her birthday on any one of 365 days,
there are a total of (365)n possible outcomes. (We are ignoring the possibility of someone
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having been born on February 29.) Furthermore, there are (365)(364)(363)·(365−n+1)

possible outcomes that result in no two of the people having the same birthday. This is so
because the first person could have any one of 365 birthdays, the next person any of the
remaining 364 days, the next any of the remaining 363, and so on. Hence, assuming that
each outcome is equally likely, we see that the desired probability is

(365)(364)(363) · · ·(365 − n + 1)

(365)n

It is a rather surprising fact that when n ≥ 23, this probability is less than 1
2 . That is, if

there are 23 or more people in a room, then the probability that at least two of them have
the same birthday exceeds 1

2 . Many people are initially surprised by this result, since 23
seems so small in relation to 365, the number of days of the year. However, every pair of
individuals has probability 365

(365)2 = 1
365 of having the same birthday, and in a group of

23 people there are
(23

2

)
= 253 different pairs of individuals. Looked at this way, the result

no longer seems so surprising. !

3.6 CONDITIONAL PROBABILITY
In this section, we introduce one of the most important concepts in all of probability
theory — that of conditional probability. Its importance is twofold. In the first place, we
are often interested in calculating probabilities when some partial information concerning
the result of the experiment is available, or in recalculating them in light of additional
information. In such situations, the desired probabilities are conditional ones. Second, as
a kind of a bonus, it often turns out that the easiest way to compute the probability of an
event is to first “condition” on the occurrence or nonoccurrence of a secondary event.

As an illustration of a conditional probability, suppose that one rolls a pair of dice. The
sample space S of this experiment can be taken to be the following set of 36 outcomes

S = {(i, j), i = 1, 2, 3, 4, 5, 6, j = 1, 2, 3, 4, 5, 6}

where we say that the outcome is (i, j) if the first die lands on side i and the second on
side j. Suppose now that each of the 36 possible outcomes is equally likely to occur and
thus has probability 1

36 . (In such a situation we say that the dice are fair.) Suppose further
that we observe that the first die lands on side 3. Then, given this information, what is the
probability that the sum of the two dice equals 8? To calculate this probability, we reason
as follows: Given that the initial die is a 3, there can be at most 6 possible outcomes of our
experiment, namely, (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6). In addition, because
each of these outcomes originally had the same probability of occurring, they should still
have equal probabilities. That is, given that the first die is a 3, then the (conditional)
probability of each of the outcomes (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) is 1

6 , whereas
the (conditional) probability of the other 30 points in the sample space is 0. Hence, the
desired probability will be 1

6 .
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E F

EF

FIGURE 3.5 P(E |F ) = P(EF )
P(F ) .

If we let E and F denote, respectively, the event that the sum of the dice is 8 and the
event that the first die is a 3, then the probability just obtained is called the conditional
probability of E given that F has occurred, and is denoted by

P(E |F )

A general formula for P(E |F ) that is valid for all events E and F is derived in the same
manner as just described. Namely, if the event F occurs, then in order for E to occur it
is necessary that the actual occurrence be a point in both E and F; that is, it must be in EF.
However, because we know that F has occurred, it follows that we can regard F as the new
sample space and hence the probability that the event EF occurs will equal the probability
of EF relative to the probability of F. That is,

P(E |F ) = P(EF )

P(F )
(3.6.1)

Note that Equation 3.6.1 is well defined only when P(F ) > 0 and hence P(E |F ) is
defined only when P(F ) > 0. (See Figure 3.5.)

The definition of conditional probability given by Equation 3.6.1 is consistent with the
interpretation of probability as being a long-run relative frequency. To see this, suppose
that a large number n of repetitions of the experiment are performed. Then, since P(F )

is the long-run proportion of experiments in which F occurs, it follows that F will occur
approximately nP(F ) times. Similarly, in approximately nP(EF ) of these experiments,
both E and F will occur. Hence, of the approximately nP(F ) experiments whose outcome
is in F, approximately nP(EF ) of them will also have their outcome in E. That is, for
those experiments whose outcome is in F, the proportion whose outcome is also in E is
approximately

nP(EF)

nP(F )
= P(EF)

P(F )

Since this approximation becomes exact as n becomes larger and larger, it follows that
(3.6.1) gives the appropriate definition of the conditional probability of E given that F has
occurred.

EXAMPLE 3.6a A bin contains 5 defective (that immediately fail when put in use), 10
partially defective (that fail after a couple of hours of use), and 25 acceptable transistors.
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A transistor is chosen at random from the bin and put into use. If it does not immediately
fail, what is the probability it is acceptable?

SOLUTION Since the transistor did not immediately fail, we know that it is not one of the
5 defectives and so the desired probability is:

P{acceptable|not defective}

= P{acceptable, not defective}
P{not defective}

= P{acceptable}
P{not defective}

where the last equality follows since the transistor will be both acceptable and not defective
if it is acceptable. Hence, assuming that each of the 40 transistors is equally likely to be
chosen, we obtain that

P{acceptable|not defective} = 25/40
35/40

= 5/7

It should be noted that we could also have derived this probability by working directly
with the reduced sample space. That is, since we know that the chosen transistor is not
defective, the problem reduces to computing the probability that a transistor, chosen at
random from a bin containing 25 acceptable and 10 partially defective transistors, is
acceptable. This is clearly equal to 25

35 . !

EXAMPLE 3.6b The organization that Jones works for is running a father–son dinner for
those employees having at least one son. Each of these employees is invited to attend along
with his youngest son. If Jones is known to have two children, what is the conditional
probability that they are both boys given that he is invited to the dinner? Assume that the
sample space S is given by S = {(b, b), (b, g), ( g, b), ( g , g)} and all outcomes are equally
likely [(b, g) means, for instance, that the younger child is a boy and the older child is
a girl].

SOLUTION The knowledge that Jones has been invited to the dinner is equivalent to knowing
that he has at least one son. Hence, letting B denote the event that both children are boys,
and A the event that at least one of them is a boy, we have that the desired probability
P(B|A) is given by

P(B|A) = P(BA)

P(A)

= P({(b, b)})
P({(b, b), (b, g), ( g , b)})

=
1
4
3
4

= 1
3
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Many readers incorrectly reason that the conditional probability of two boys given at least
one is 1

2 , as opposed to the correct 1
3 , since they reason that the Jones child not attending

the dinner is equally likely to be a boy or a girl. Their mistake, however, is in assuming that
these two possibilities are equally likely. Remember that initially there were four equally
likely outcomes. Now the information that at least one child is a boy is equivalent to
knowing that the outcome is not ( g , g). Hence we are left with the three equally likely
outcomes (b, b), (b, g), ( g , b), thus showing that the Jones child not attending the dinner
is twice as likely to be a girl as a boy. !

By multiplying both sides of Equation 3.6.1 by P(F ) we obtain that

P(EF ) = P(F )P(E |F ) (3.6.2)

In words, Equation 3.6.2 states that the probability that both E and F occur is equal to
the probability that F occurs multiplied by the conditional probability of E given that
F occurred. Equation 3.6.2 is often quite useful in computing the probability of the
intersection of events. This is illustrated by the following example.

EXAMPLE 3.6c Ms. Perez figures that there is a 30 percent chance that her company will
set up a branch office in Phoenix. If it does, she is 60 percent certain that she will be
made manager of this new operation. What is the probability that Perez will be a Phoenix
branch office manager?

SOLUTION If we let B denote the event that the company sets up a branch office in Phoenix
and M the event that Perez is made the Phoenix manager, then the desired probability is
P(BM), which is obtained as follows:

P(BM ) = P(B)P(M |B)

= (.3)(.6)

= .18

Hence, there is an 18 percent chance that Perez will be the Phoenix manager. !

3.7 BAYES’ FORMULA
Let E and F be events. We may express E as

E = EF ∪EF c

for, in order for a point to be in E, it must either be in both E and F or be in E but not in F.
(See Figure 3.6.) As EF and EF c are clearly mutually exclusive, we have by Axiom 3 that

P(E) = P(EF) + P(EF c)

= P(E |F )P(F ) + P(E |Fc)P(Fc)

= P(E |F )P(F ) + P(E |Fc)[1 − P(F )] (3.7.1)
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E F

EF c EF

FIGURE 3.6 E = EF ∪EF c.

Equation 3.7.1 states that the probability of the event E is a weighted average of the
conditional probability of E given that F has occurred and the conditional probability of
E given that F has not occurred, with each conditional probability being given as much
weight as the event it is conditioned on has of occurring. It is an extremely useful formula,
for its use often enables us to determine the probability of an event by first “conditioning”
on whether or not some second event has occurred. That is, there are many instances
where it is difficult to compute the probability of an event directly, but it is straightforward
to compute it once we know whether or not some second event has occurred.

EXAMPLE 3.7a An insurance company believes that people can be divided into two
classes — those that are accident prone and those that are not. Their statistics show that
an accident-prone person will have an accident at some time within a fixed 1-year period
with probability .4, whereas this probability decreases to .2 for a non-accident-prone per-
son. If we assume that 30 percent of the population is accident prone, what is the proba-
bility that a new policy holder will have an accident within a year of purchasing a policy?

SOLUTION We obtain the desired probability by first conditioning on whether or not the
policy holder is accident prone. Let A1 denote the event that the policy holder will have
an accident within a year of purchase; and let A denote the event that the policy holder is
accident prone. Hence, the desired probability, P(A1), is given by

P(A1) = P(A1|A)P(A) + P(A1|Ac)P(Ac)

= (.4)(.3) + (.2)(.7) = .26 !

In the next series of examples, we will indicate how to reevaluate an initial probability
assessment in the light of additional (or new) information. That is, we will show how to
incorporate new information with an initial probability assessment to obtain an updated
probability.

EXAMPLE 3.7b Twins can either be identical or fraternal. Identical, also called monozy-
gotic, twins form when a single fertilized egg splits into two genetically identical parts.
Consequently, identical twins always have the same set of genes. Fraternal, also called
dizygotic, twins develop when two separate eggs are fertilized and implant in the uterus.
The genetic connection of fraternal twins is no more or less the same as siblings born at
separate times. A Los Angeles county scientist wishing to know the current fraction of
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twin pairs born in the county that are identical twins has assigned a county statistician to
study this issue. The statistician initially requested each hospital in the county to record
all twin births, indicating whether the resulting twins were identical or not. The hospitals,
however, told her that to determine whether newborn twins were identical was not a
simple task, as it involved the permission of the twins’s parents to perform complicated and
expensive DNA studies that the hospitals could not afford. After some deliberation, the
statistician just asked the hospitals for data listing all twin births along with an indication
as to whether the twins were of the same sex. When such data indicated that approximately
64 percent of twin births were same-sexed, the statistician declared that approximately
28 percent of all twins were identical. How did she come to this conclusion?

SOLUTION The statistician reasoned that identical twins are always of the same sex,
whereas fraternal twins, having the same relationship to each other as any pair of sib-
lings, will have probability 1

2 of being of the same sex. Letting I be the event that a pair
of twins are identical, and SS be the event that a pair of twins are of the same sex, she
computed the probability P(SS) by conditioning on whether the twin pair was identical.
This gave

P(SS) = P(SS|I)P(I) + P(SS|I c)P(I c)

or
P(SS) = 1 × P(I) + 1

2
× [1 − P(I)] = 1

2
+ 1

2
P(I)

which, using that P(SS) ≈ .64 yielded the result

P(I) ≈ .28 !

EXAMPLE 3.7c Reconsider Example 3.7a and suppose that a new policy holder has an
accident within a year of purchasing his policy. What is the probability that he is accident
prone?

SOLUTION Initially, at the moment when the policy holder purchased his policy, we
assumed there was a 30 percent chance that he was accident prone. That is, P(A) = .3.
However, based on the fact that he has had an accident within a year, we now reevaluate
his probability of being accident prone as follows.

P(A|A1) = P(AA1)

P(A1)

= P(A)P(A1|A)

P(A1)

= (.3)(.4)

.26
= 6

13
= .4615 !

EXAMPLE 3.7d In answering a question on a multiple-choice test, a student either knows
the answer or she guesses. Let p be the probability that she knows the answer and 1 − p
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the probability that she guesses. Assume that a student who guesses at the answer will
be correct with probability 1/m, where m is the number of multiple-choice alternatives.
What is the conditional probability that a student knew the answer to a question given
that she answered it correctly?

SOLUTION Let C and K denote, respectively, the events that the student answers the ques-
tion correctly and the event that she actually knows the answer. To compute

P(K |C) = P(KC )

P(C)

we first note that

P(KC ) = P(K )P(C |K )

= p · 1

= p

To compute the probability that the student answers correctly, we condition on whether
or not she knows the answer. That is,

P(C) = P(C |K )P(K ) + P(C |K c)P(K c)

= p + (1/m)(1 −p)

Hence, the desired probability is given by

P(K |C) = p
p + (1/m)(1 −p)

= mp
1 + (m − 1)p

Thus, for example, if m = 5, p = 1
2 , then the probability that a student knew the answer

to a question she correctly answered is 5
6 . !

EXAMPLE 3.7e A laboratory blood test is 99 percent effective in detecting a certain dis-
ease when it is, in fact, present. However, the test also yields a “false positive” result for
1 percent of the healthy persons tested. (That is, if a healthy person is tested, then, with
probability .01, the test result will imply he or she has the disease.) If .5 percent of the
population actually has the disease, what is the probability a person has the disease given
that his test result is positive?

SOLUTION Let D be the event that the tested person has the disease and E the event that
his test result is positive. The desired probability P(D|E) is obtained by
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P(D|E) = P(DE )

P(E)

= P(E |D)P(D)

P(E |D)P(D) + P(E |Dc)P(Dc)

= (.99)(.005)

(.99)(.005) + (.01)(.995)

= .3322

Thus, only 33 percent of those persons whose test results are positive actually have the
disease. Since many students are often surprised at this result (because they expected this
figure to be much higher since the blood test seems to be a good one), it is probably
worthwhile to present a second argument which, though less rigorous than the foregoing,
is probably more revealing. We now do so.

Since .5 percent of the population actually has the disease, it follows that, on the average,
1 person out of every 200 tested will have it. The test will correctly confirm that this person
has the disease with probability .99. Thus, on the average, out of every 200 persons tested,
the test will correctly confirm that .99 person has the disease. On the other hand, out of
the (on the average) 199 healthy people, the test will incorrectly state that (199) (.01) of
these people have the disease. Hence, for every .99 diseased person that the test correctly
states is ill, there are (on the average) 1.99 healthy persons that the test incorrectly states
are ill. Hence, the proportion of time that the test result is correct when it states that
a person is ill is

.99
.99 + 1.99

= .3322 !

Equation 3.7.1 is also useful when one has to reassess one’s (personal) probabilities in
the light of additional information. For instance, consider the following examples.

EXAMPLE 3.7f At a certain stage of a criminal investigation, the inspector in charge is
60 percent convinced of the guilt of a certain suspect. Suppose now that a new piece of
evidence that shows that the criminal has a certain characteristic (such as left-handedness,
baldness, brown hair, etc.) is uncovered. If 20 percent of the population possesses this
characteristic, how certain of the guilt of the suspect should the inspector now be if it
turns out that the suspect is among this group?

SOLUTION Letting G denote the event that the suspect is guilty and C the event that he
possesses the characteristic of the criminal, we have

P(G|C) = P(GC)

P(C )
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Now

P(GC ) = P(G)P(C |G)

= (.6)(1)

= .6

To compute the probability that the suspect has the characteristic, we condition on whether
or not he is guilty. That is,

P(C) = P(C |G)P(G) + P(C |Gc)P(Gc)

= (1)(.6) + (.2)(.4)

= .68

where we have supposed that the probability of the suspect having the characteristic if
he is, in fact, innocent is equal to .2, the proportion of the population possessing the
characteristic. Hence

P(G|C) = 60
68

= .882

and so the inspector should now be 88 percent certain of the guilt of the suspect. !

EXAMPLE 3.7f (continued) Let us now suppose that the new evidence is subject to different
possible interpretations, and in fact only shows that it is 90 percent likely that the criminal
possesses this certain characteristic. In this case, how likely would it be that the suspect is
guilty (assuming, as before, that he has this characteristic)?

SOLUTION In this case, the situation is as before with the exception that the probability
of the suspect having the characteristic given that he is guilty is now .9 (rather than 1).
Hence,

P(G|C) = P(GC )

P(C)

= P(G)P(C |G)

P(C |G)P(G) + P(C |Gc)P(Gc)

= (.6)(.9)

(.9)(.6) + (.2)(.4)

= 54
62

= .871

which is slightly less than in the previous case (why?). !
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Equation 3.7.1 may be generalized in the following manner. Suppose that F1, F2, . . . , Fn
are mutually exclusive events such that

n⋃

i=1

Fi = S

In other words, exactly one of the events F1, F2, . . . , Fn must occur. By writing

E =
n⋃

i=1

EFi

and using the fact that the events EFi, i = 1, . . . , n are mutually exclusive, we obtain that

P(E) =
n∑

i=1

P(EFi)

=
n∑

i=1

P(E |Fi)P(Fi) (3.7.2)

Thus, Equation 3.7.2 shows how, for given events F1, F2, . . . , Fn of which one and only
one must occur, we can compute P(E) by first “conditioning” on which one of the Fi
occurs. That is, it states that P(E) is equal to a weighted average of P(E |Fi), each term
being weighted by the probability of the event on which it is conditioned.

Suppose now that E has occurred and we are interested in determining which one of
Fj also occurred. By Equation 3.7.2, we have that

P(Fj|E) = P(EFj)

P(E)

= P(E |Fj)P(Fj)
n∑

i=1
P(E |Fi)P(Fi)

(3.7.3)

Equation 3.7.3 is known as Bayes’ formula, after the English philosopher Thomas Bayes. If
we think of the events Fj as being possible “hypotheses” about some subject matter, then
Bayes’ formula may be interpreted as showing us how opinions about these hypotheses
held before the experiment [that is, the P(Fj)] should be modified by the evidence of the
experiment.

EXAMPLE 3.7g A plane is missing and it is presumed that it was equally likely to have
gone down in any of three possible regions. Let 1 −αi denote the probability the plane
will be found upon a search of the ith region when the plane is, in fact, in that region,
i = 1, 2, 3. (The constants αi are called overlook probabilities because they represent the
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probability of overlooking the plane; they are generally attributable to the geographical
and environmental conditions of the regions.) What is the conditional probability that
the plane is in the ith region, given that a search of region 1 is unsuccessful, i = 1, 2, 3?

SOLUTION Let Ri , i = 1, 2, 3, be the event that the plane is in region i; and let E be the
event that a search of region 1 is unsuccessful. From Bayes’ formula, we obtain

P(R1|E) = P(ER1)

P(E)

= P(E |R1)P(R1)

3∑
i=1

P(E |Ri)P(Ri)

= (α1)(1/3)

(α1)(1/3) + (1)(1/3) + (1)(1/3)

= α1

α1 + 2

For j = 2, 3,

P(Rj|E) = P(E |Rj)P(Rj)

P(E)

= (1)(1/3)

(α1)1/3 + 1/3 +1/3

= 1
α1 + 2

, j = 2, 3

Thus, for instance, if α1 = .4, then the conditional probability that the plane is in
region 1 given that a search of that region did not uncover it is 1

6 , whereas the con-
ditional probabilities that it is in region 2 and that it is in region 3 are both equal to

1
2.4 = 5

12 . !

3.8 INDEPENDENT EVENTS
The previous examples in this chapter show that P(E |F ), the conditional probability of
E given F, is not generally equal to P(E), the unconditional probability of E. In other
words, knowing that F has occurred generally changes the chances of E ’s occurrence. In
the special cases where P(E |F ) does in fact equal P(E), we say that E is independent
of F. That is, E is independent of F if knowledge that F has occurred does not change
the probability that E occurs.

Since P(E |F ) = P(EF )/P(F ), we see that E is independent of F if

P(EF ) = P(E)P(F ) (3.8.1)
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Since this equation is symmetric in E and F, it shows that whenever E is independent of F
so is F of E. We thus have the following.

Definition
Two events E and F are said to be independent if Equation 3.8.1 holds. Two events E
and F that are not independent are said to be dependent.

EXAMPLE 3.8a A card is selected at random from an ordinary deck of 52 playing cards. If
A is the event that the selected card is an ace and H is the event that it is a heart, then A
and H are independent, since P(AH ) = 1

52 , while P(A) = 4
52 and P(H) = 13

52 . !

EXAMPLE 3.8b If we let E denote the event that the next president is a Republican and
F the event that there will be a major earthquake within the next year, then most people
would probably be willing to assume that E and F are independent. However, there would
probably be some controversy over whether it is reasonable to assume that E is independent
of G, where G is the event that there will be a recession within the next two years. !

We now show that if E is independent of F then E is also independent of Fc .

PROPOSITION 3.8.1 If E and F are independent, then so are E and Fc .

Proof

Assume that E and F are independent. Since E = EF ∪ EF c , and EF and EF c are obvi-
ously mutually exclusive, we have that

P(E) = P(EF ) + P(EF c)

= P(E)P(F ) + P(EF c) by the independence of E and F

or equivalently,

P(EF c) = P(E)(1 −P(F ))

= P(E)P(Fc)

and the result is proven. !

Thus if E is independent of F, then the probability of E ’s occurrence is unchanged by
information as to whether or not F has occurred.

Suppose now that E is independent of F and is also independent of G. Is E then
necessarily independent of FG ? The answer, somewhat surprisingly, is no. Consider the
following example.

EXAMPLE 3.8c Two fair dice are thrown. Let E7 denote the event that the sum of the dice
is 7. Let F denote the event that the first die equals 4 and let T be the event that the
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second die equals 3. Now it can be shown (see Problem 36) that E7 is independent of
F and that E7 is also independent of T; but clearly E7 is not independent of FT [since
P(E7|FT ) = 1]. !

It would appear to follow from the foregoing example that an appropriate definition
of the independence of three events E, F, and G would have to go further than merely
assuming that all of the

(3
2

)
pairs of events are independent. We are thus led to the following

definition.

Definition
The three events E, F, and G are said to be independent if

P(EFG) = P(E)P(F)P(G)

P(EF) = P(E)P(F)

P(EG) = P(E)P(G)

P(FG) = P(F)P(G)

It should be noted that if the events E, F, G are independent, then E will be independent
of any event formed from F and G. For instance, E is independent of F ∪ G since

P(E(F ∪ G )) = P(EF ∪ EG )

= P(EF ) + P(EG ) − P(EFG )

= P(E )P(F ) + P(E )P(G ) −P(E)P(FG )

= P(E )[P(F ) + P(G ) − P(FG )]
= P(E )P(F ∪ G )

Of course we may also extend the definition of independence to more than three
events. The events E1, E2, . . . , En are said to be independent if for every subset
E1′ , E2′ , . . . , Er ′ , r ≤ n, of these events

P(E1′E2′ · · · Er ′) = P(E1′)P(E2′) · · · P(Er ′)

It is sometimes the case that the probability experiment under consideration consists of
performing a sequence of subexperiments. For instance, if the experiment consists of con-
tinually tossing a coin, then we may think of each toss as being a subexperiment. In many
cases it is reasonable to assume that the outcomes of any group of the subexperiments have
no effect on the probabilities of the outcomes of the other subexperiments. If such is the
case, then we say that the subexperiments are independent.
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FIGURE 3.7 Parallel system: functions if current flows from A to B.

EXAMPLE 3.8d A system composed of n separate components is said to be a parallel system
if it functions when at least one of the components functions. (See Figure 3.7.) For such
a system, if component i, independent of other components, functions with probability
pi , i = 1, . . . , n, what is the probability the system functions?

SOLUTION Let Ai denote the event that component i functions. Then

P{system functions} = 1 − P{system does not function}
= 1 − P{all components do not function}
= 1 − P

(
Ac

1Ac
2 · · · Ac

n
)

= 1 −
n∏

i=1

(1 − pi) by independence !

EXAMPLE 3.8e A set of k coupons, each of which is independently a type j coupon
with probability pj ,

∑n
j=1 pj = 1, is collected. Find the probability that the set contains

a type j coupon given that it contains a type i, i (= j.

SOLUTION Let Ar be the event that the set contains a type r coupon. Then

P(Aj|Ai) = P(AjAi)

P(Ai)

To compute P(Ai) and P(AjAi), consider the probability of their complements:

P(Ai) = 1 − P(Ac
i )

= 1 − P{no coupon is type i}
= 1 − (1 − pi)

k

P(AiAj) = 1 − P(Ac
i ∪ Ac

j )

= 1 − [P(Ac
i ) + P(Ac

j ) − P(Ac
i A

c
j )]

= 1 − (1 − pi)
k − (1 − pj)

k + P{no coupon is type i or type j}
= 1 − (1 − pi)

k − (1 − pj)
k + (1 − pi − pj)

k
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where the final equality follows because each of the k coupons is, independently, neither
of type i or of type j with probability 1 − pi − pj . Consequently,

P(Aj|Ai) = 1 − (1 − pi)
k − (1 − pj)

k + (1 − pi − pj)
k

1 − (1 − pi)k
!

Problems

1. A box contains three marbles — one red, one green, and one blue. Consider an
experiment that consists of taking one marble from the box, then replacing it in
the box and drawing a second marble from the box. Describe the sample space.
Repeat for the case in which the second marble is drawn without first replacing
the first marble.

2. An experiment consists of tossing a coin three times. What is the sample space
of this experiment? Which event corresponds to the experiment resulting in more
heads than tails?

3. Let S = {1, 2, 3, 4, 5, 6, 7}, E = {1, 3, 5, 7}, F = {7, 4, 6}, G = {1, 4}. Find
(a) EF ; (c) EG c ; (e) Ec(F ∪ G);
(b) E ∪ FG ; (d) EF c ∪ G; (f ) EG ∪ FG.

4. Two dice are thrown. Let E be the event that the sum of the dice is odd, let F be
the event that the first die lands on 1, and let G be the event that the sum is 5.
Describe the events EF, E ∪ F, FG, EF c , EFG.

5. A system is composed of four components, each of which is either working
or failed. Consider an experiment that consists of observing the status of each
component, and let the outcome of the experiment be given by the vector
(x1, x2, x3, x4) where xi is equal to 1 if component i is working and is equal to 0
if component i is failed.

(a) How many outcomes are in the sample space of this experiment?
(b) Suppose that the system will work if components 1 and 2 are both working,

or if components 3 and 4 are both working. Specify all the outcomes in the
event that the system works.

(c) Let E be the event that components 1 and 3 are both failed. How many
outcomes are contained in event E?

6. Let E, F, G be three events. Find expressions for the events that of E, F, G

(a) only E occurs;
(b) both E and G but not F occur;
(c) at least one of the events occurs;
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(d) at least two of the events occur;
(e) all three occur;
(f ) none of the events occurs;
(g) at most one of them occurs;
(h) at most two of them occur;
(i) exactly two of them occur;
( j) at most three of them occur.

7. Find simple expressions for the events

(a) E ∪ Ec ;
(b) EE c ;
(c) (E ∪ F )(E ∪ Fc);
(d) (E ∪ F )(Ec ∪ F )(E ∪ Fc);
(e) (E ∪ F )(F ∪ G).

8. Use Venn diagrams (or any other method) to show that

(a) EF ⊂ E , E ⊂ E ∪ F ;
(b) if E ⊂ F then Fc ⊂ Ec ;
(c) the commutative laws are valid;
(d) the associative laws are valid;
(e) F = FE ∪ FE c ;
(f ) E ∪ F = E ∪ EcF ;
(g) DeMorgan’s laws are valid.

9. For the following Venn diagram, describe in terms of E, F, and G the events
denoted in the diagram by the Roman numerals I through VII.

E F

G

S

I
II

IV
III

VVII

VI

10. Show that if E⊂F then P(E) ≤ P(F ). (Hint: Write F as the union of two mutually
exclusive events, one of them being E.)

11. Prove Boole’s inequality, namely that

P

( n⋃

i=1

Ei

)

≤
n∑

i=1

P(Ei)



Problems 81

12. If P(E) = .9 and P(F ) = .9, show that P(EF ) ≥ .8. In general, prove Bonferroni’s
inequality, namely that

P(EF) ≥ P(E) + P(F ) − 1

13. Prove that

(a) P(EF c) = P(E) − P(EF )

(b) P(EcF c) = 1 − P(E) − P(F ) + P(EF )

14. Show that the probability that exactly one of the events E or F occurs is equal to
P(E) + P(F ) − 2P(EF ).

15. Calculate
(9

3

)
,
(9

6

)
,
(7

2

)
,
(7

5

)
,
(10

7

)
.

16. Show that
(

n
r

)
=
(

n
n − r

)

Now present a combinatorial argument for the foregoing by explaining why a
choice of r items from a set of size n is equivalent to a choice of n − r items from
that set.

17. Show that
(

n
r

)
=
(

n − 1
r − 1

)
+
(

n − 1
r

)

For a combinatorial argument, consider a set of n items and fix attention on one
of these items. How many different sets of size r contain this item, and how many
do not?

18. A group of 5 boys and 10 girls is lined up in random order — that is, each of the
15! permutations is assumed to be equally likely.

(a) What is the probability that the person in the 4th position is a boy?
(b) What about the person in the 12th position?
(c) What is the probability that a particular boy is in the 3rd position?

19. Consider a set of 23 unrelated people. Because each pair of people shares the same
birthday with probability 1/365, and there are

(23
2

)
= 253 pairs, why isn’t the

probability that at least two people have the same birthday equal to 253/365?

20. Suppose that distinct integer values are written on each of 3 cards. These cards are
then randomly given the designations A, B, and C. The values on cards A and B
are then compared. If the smaller of these values is then compared with the value
on card C, what is the probability that it is also smaller than the value on card C?

21. There is a 60 percent chance that the event A will occur. If A does not occur, then
there is a 10 percent chance that B will occur.
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(a) What is the probability that at least one of the events A or B occurs?
(b) If A is the event that the democratic candidate wins the presidential election

in 2012 and B is the event that there is a 6.2 or higher earthquake in Los
Angeles sometime in 2013, what would you take as the probability that both
A and B occur? What assumption are you making?

22. The sample mean of the annual salaries of a group of 100 accountants who work at
a large accounting firm is $130,000 with a sample standard deviation of $20,000.
If a member of this group is randomly chosen, what can we say about

(a) the probability that his or her salary is between $90,000 and $170,000?
(b) the probability that his or her salary exceeds $150,000?

Hint: Use the Chebyshev inequality.

23. Of three cards, one is painted red on both sides; one is painted black on both sides;
and one is painted red on one side and black on the other. A card is randomly
chosen and placed on a table. If the side facing up is red, what is the probability
that the other side is also red?

24. A couple has 2 children. What is the probability that both are girls if the eldest is
a girl?

25. Fifty-two percent of the students at a certain college are females. Five percent
of the students in this college are majoring in computer science. Two percent of
the students are women majoring in computer science. If a student is selected at
random, find the conditional probability that

(a) this student is female, given that the student is majoring in computer science;
(b) this student is majoring in computer science, given that the student is

female.

26. A total of 500 married working couples were polled about their annual salaries,
with the following information resulting.

Husband
Wife Less than $50,000 More than $50,000

Less than $50,000 212 198
More than $50,000 36 54

Thus, for instance, in 36 of the couples the wife earned more and the husband
earned less than $50,000. If one of the couples is randomly chosen, what is

(a) the probability that the husband earns less than $50,000;
(b) the conditional probability that the wife earns more than $50,000 given that

the husband earns more than this amount;
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(c) the conditional probability that the wife earns more than $50,000 given that
the husband earns less than this amount?

27. There are two local factories that produce microwaves. Each microwave produced
at factory A is defective with probability .05, whereas each one produced at factory
B is defective with probability .01. Suppose you purchase two microwaves that
were produced at the same factory, which is equally likely to have been either
factory A or factory B. If the first microwave that you check is defective, what is
the conditional probability that the other one is also defective?

28. A red die, a blue die, and a yellow die (all six-sided) are rolled. We are interested
in the probability that the number appearing on the blue die is less than that
appearing on the yellow die which is less than that appearing on the red die. (That
is, if B (R) [Y ] is the number appearing on the blue (red) [yellow] die, then we
are interested in P(B < Y < R).)

(a) What is the probability that no two of the dice land on the same number?
(b) Given that no two of the dice land on the same number, what is the conditional

probability that B < Y < R?
(c) What is P(B < Y < R)?
(d) If we regard the outcome of the experiment as the vector B, R, Y, how many

outcomes are there in the sample space?
(e) Without using the answer to (c), determine the number of outcomes that

result in B < Y < R.
(f ) Use the results of parts (d) and (e) to verify your answer to part (c).

29. You ask your neighbor to water a sickly plant while you are on vacation. Without
water it will die with probability .8; with water it will die with probability .15. You
are 90 percent certain that your neighbor will remember to water the plant.

(a) What is the probability that the plant will be alive when you return?
(b) If it is dead, what is the probability your neighbor forgot to water it?

30. Two balls, each equally likely to be colored either red or blue, are put in an urn.
At each stage one of the balls is randomly chosen, its color is noted, and it is
then returned to the urn. If the first two balls chosen are colored red, what is the
probability that

(a) both balls in the urn are colored red;
(b) the next ball chosen will be red?

31. A total of 600 of the 1,000 people in a retirement community classify themselves as
Republicans, while the others classify themselves as Democrats. In a local election
in which everyone voted, 60 Republicans voted for the Democratic candidate,
and 50 Democrats voted for the Republican candidate. If a randomly chosen
community member voted for the Republican, what is the probability that she or
he is a Democrat?



84 Chapter 3: Elements of Probability

32. Each of 2 balls is painted black or gold and then placed in an urn. Suppose that each
ball is colored black with probability 1

2 , and that these events are independent.

(a) Suppose that you obtain information that the gold paint has been used (and
thus at least one of the balls is painted gold). Compute the conditional prob-
ability that both balls are painted gold.

(b) Suppose, now, that the urn tips over and 1 ball falls out. It is painted gold.
What is the probability that both balls are gold in this case? Explain.

33. Each of 2 cabinets identical in appearance has 2 drawers. Cabinet A contains a
silver coin in each drawer, and cabinet B contains a silver coin in one of its drawers
and a gold coin in the other. A cabinet is randomly selected, one of its drawers is
opened, and a silver coin is found. What is the probability that there is a silver
coin in the other drawer?

34. Prostate cancer is the most common type of cancer found in males. As an indicator
of whether a male has prostate cancer, doctors often perform a test that measures
the level of the PSA protein (prostate specific antigen) that is produced only by
the prostate gland. Although higher PSA levels are indicative of cancer, the test
is notoriously unreliable. Indeed, the probability that a noncancerous man will
have an elevated PSA level is approximately .135, with this probability increasing
to approximately .268 if the man does have cancer. If, based on other factors,
a physician is 70 percent certain that a male has prostate cancer, what is the
conditional probability that he has the cancer given that

(a) the test indicates an elevated PSA level;
(b) the test does not indicate an elevated PSA level?

Repeat the preceding, this time assuming that the physician initially believes there
is a 30 percent chance the man has prostate cancer.

35. Suppose that an insurance company classifies people into one of three classes —
good risks, average risks, and bad risks. Their records indicate that the probabilities
that good, average, and bad risk persons will be involved in an accident over a
1-year span are, respectively, .05, .15, and .30. If 20 percent of the population are
“good risks,” 50 percent are “average risks,” and 30 percent are “bad risks,” what
proportion of people have accidents in a fixed year? If policy holder A had no
accidents in 1987, what is the probability that he or she is a good (average) risk?

36. A pair of fair dice is rolled. Let E denote the event that the sum of the dice is
equal to 7.

(a) Show that E is independent of the event that the first die lands on 4.
(b) Show that E is independent of the event that the second die lands on 3.

37. The probability of the closing of the ith relay in the circuits shown is given by
pi , i = 1, 2, 3, 4, 5. If all relays function independently, what is the probability
that a current flows between A and B for the respective circuits?
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(a)

A
1

B
2 3

54

(b)

A
1

3

2

4

5 B

(c)

A
1

3

2

4

5

B

38. An engineering system consisting of n components is said to be a k-out-of-n
system (k ≤ n) if the system functions if and only if at least k of the n components
function. Suppose that all components function independently of each other.

(a) If the ith component functions with probability Pi , i = 1, 2, 3, 4, compute
the probability that a 2-out-of-4 system functions.

(b) Repeat (a) for a 3-out-of-5 system.

39. Five independent flips of a fair coin are made. Find the probability that

(a) the first three flips are the same;
(b) either the first three flips are the same, or the last three flips are the same;
(c) there are at least two heads among the first three flips, and at least two tails

among the last three flips.

40. Suppose that n independent trials, each of which results in any of the outcomes
0, 1, or 2, with respective probabilities .3, .5, and .2, are performed. Find the
probability that both outcome 1 and outcome 2 occur at least once. (Hint: Consider
the complementary probability.)

41. A parallel system functions whenever at least one of its components works.
Consider a parallel system of n components, and suppose that each component
independently works with probability 1

2 . Find the conditional probability that
component 1 works, given that the system is functioning.

42. A certain organism possesses a pair of each of 5 different genes (which we will
designate by the first 5 letters of the English alphabet). Each gene appears in 2
forms (which we designate by lowercase and capital letters). The capital letter will
be assumed to be the dominant gene in the sense that if an organism possesses
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the gene pair xX, then it will outwardly have the appearance of the X gene. For
instance, if X stands for brown eyes and x for blue eyes, then an individual having
either gene pair XX or xX will have brown eyes, whereas one having gene pair xx
will be blue-eyed. The characteristic appearance of an organism is called its pheno-
type, whereas its genetic constitution is called its genotype. (Thus 2 organisms with
respective genotypes aA, bB, cc, dD, ee and AA, BB, cc, DD, ee would have different
genotypes but the same phenotype.) In a mating between 2 organisms each one
contributes, at random, one of its gene pairs of each type. The 5 contributions
of an organism (one of each of the 5 types) are assumed to be independent
and are also independent of the contributions of its mate. In a mating between
organisms having genotypes aA, bB, cC, dD, eE, and aa, bB, cc, Dd, ee, what is the
probability that the progeny will (1) phenotypically, (2) genotypically resemble

(a) the first parent;
(b) the second parent;
(c) either parent;
(d) neither parent?

43. Three prisoners are informed by their jailer that one of them has been chosen at
random to be executed, and the other two are to be freed. Prisoner A asks the jailer
to tell him privately which of his fellow prisoners will be set free, claiming that
there would be no harm in divulging this information because he already knows
that at least one of the two will go free. The jailer refuses to answer this question,
pointing out that if A knew which of his fellow prisoners were to be set free, then
his own probability of being executed would rise from 1

3 to 1
2 because he would

then be one of two prisoners. What do you think of the jailer’s reasoning?

44. Although both my parents have brown eyes, I have blue eyes. What is the
probability that my sister has blue eyes? (As stated in Problem 42, an individual
who receives a blue-eyed gene from each parent will have blue eyes, whereas one
who receives one blue-eyed and one brown-eyed gene will have brown eyes.)

45. In a 7 game series played with two teams, the first team to win a total of 4 games
is the winner. Suppose that each game played is independently won by team A
with probability p.

(a) Given that one team leads 3 to 0, what is the probability that it is team A
that is leading?

(b) Given that one team leads 3 to 0, what is the probability that team wins the
series?

(c) If p = 1
2 , what is the probability that the team that wins the first game wins

the series?

46. Suppose that distinct integer values are written on each of 3 cards. Suppose you
are to be offered these cards in a random order. When you are offered a card you
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must immediately either accept it or reject it. If you accept a card, the process
ends. If you reject a card, then the next card (if a card remains) is offered. If you
reject the first two cards offered, then you must accept the final card.

(a) If you plan to accept the first card offered, what is the probability that you
will accept the highest valued card?

(b) If you plan to reject the first card offered, and to then accept the second card
if and only if its value is greater than the value of the first card, what is the
probability that you will accept the highest valued card?

47. Let A, B, C be events such that P(A) = .2, P(B) = .3, P(C) = .4.
Find the probability that at least one of the events A and B occurs if

(a) A and B are mutually exclusive;
(b) A and B are independent.

Find the probability that all of the events A, B, C occur if

(c) A, B, C are independent;
(d) A, B, C are mutually exclusive.

48. Two percent of woman of age 45 who participate in routine screening have breast
cancer. Ninety percent of those with breast cancer have positive mammographies.
Ten percent of the women who do not have breast cancer will also have positive
mammographies. Given a woman has a positive mammography, what is the
probability she has breast cancer?

49. Twelve percent of all US households are in California. A total of 3.3 percent
of all US households earn over 250, 000 per year, while a total of 6.3 percent
of California households earn over 250, 000 per year. If a randomly chosen
US household earns over 250, 000 per year, what is the probability it is from
California?

50. There is a 60 percent chance that the event A will occur. If A does not occur,
there is a 10 percent chance that B will occur. What is the probability that at least
one of the events A or B occur?

51. Suppose distinct values are written on each of three cards, which are then
randomly given the designations A, B, and C . The values on cards A and B are
then compared. What is the probability that the smaller of these values is also
smaller than the value on card C ?
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RANDOM VARIABLES AND
EXPECTATION

4.1 RANDOM VARIABLES
When a random experiment is performed, we are often not interested in all of the details
of the experimental result but only in the value of some numerical quantity determined
by the result. For instance, in tossing dice we are often interested in the sum of the two
dice and are not really concerned about the values of the individual dice. That is, we may
be interested in knowing that the sum is 7 and not be concerned over whether the actual
outcome was (1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1). Also, a civil engineer
may not be directly concerned with the daily risings and declines of the water level of
a reservoir (which we can take as the experimental result) but may only care about the
level at the end of a rainy season. These quantities of interest that are determined by the
result of the experiment are known as random variables.

Since the value of a random variable is determined by the outcome of the experiment,
we may assign probabilities of its possible values.

EXAMPLE 4.1a Letting X denote the random variable that is defined as the sum of two
fair dice, then

P{X = 2} = P{(1, 1)} = 1
36 (4.1.1)

P{X = 3} = P{(1, 2), (2, 1)} = 2
36

P{X = 4} = P{(1, 3), (2, 2), (3, 1)} = 3
36

P{X = 5} = P{(1, 4), (2, 3), (3, 2), (4, 1)} = 4
36

P{X = 6} = P{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} = 5
36

P{X = 7} = P{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} = 6
36

P{X = 8} = P{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} = 5
36

89
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P{X = 9} = P{(3, 6), (4, 5), (5, 4), (6, 3)} = 4
36

P{X = 10} = P{(4, 6), (5, 5), (6, 4)} = 3
36

P{X = 11} = P{(5, 6), (6, 5)} = 2
36

P{X = 12} = P{(6, 6)} = 1
36

In other words, the random variable X can take on any integral value between 2 and 12
and the probability that it takes on each value is given by Equation 4.1.1. Since X must
take on some value, we must have

1 = P(S) = P

( 12⋃

i=2

{X = i}
)

=
12∑

i=2

P{X = i}

which is easily verified from Equation 4.1.1.
Another random variable of possible interest in this experiment is the value of the first

die. Letting Y denote this random variable, then Y is equally likely to take on any of the
values 1 through 6. That is,

P{Y = i} = 1/6, i = 1, 2, 3, 4, 5, 6 !

EXAMPLE 4.1b Suppose that an individual purchases two electronic components, each of
which may be either defective or acceptable. In addition, suppose that the four possible
results — (d, d ), (d, a), (a, d ), (a, a) — have respective probabilities .09, .21, .21, .49
[where (d, d ) means that both components are defective, (d, a) that the first component
is defective and the second acceptable, and so on]. If we let X denote the number of
acceptable components obtained in the purchase, then X is a random variable taking on
one of the values 0, 1, 2 with respective probabilities

P{X = 0} = .09

P{X = 1} = .42

P{X = 2} = .49

If we were mainly concerned with whether there was at least one acceptable component,
we could define the random variable I by

I =
{

1 if X = 1 or 2

0 if X = 0

If A denotes the event that at least one acceptable component is obtained, then the random
variable I is called the indicator random variable for the event A, since I will equal 1
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or 0 depending upon whether A occurs. The probabilities attached to the possible values
of I are

P{I =1} = .91

P{I =0} = .09 !

In the two foregoing examples, the random variables of interest took on a finite num-
ber of possible values. Random variables whose set of possible values can be written either
as a finite sequence x1, . . . , xn, or as an infinite sequence x1, . . . are said to be discrete. For
instance, a random variable whose set of possible values is the set of nonnegative integers is
a discrete random variable. However, there also exist random variables that take on a con-
tinuum of possible values. These are known as continuous random variables. One example
is the random variable denoting the lifetime of a car, when the car’s lifetime is assumed to
take on any value in some interval (a, b).

The cumulative distribution function, or more simply the distribution function, F of the
random variable X is defined for any real number x by

F(x) = P{X ≤ x}

That is, F(x) is the probability that the random variable X takes on a value that is less than
or equal to x.

Notation: We will use the notation X ∼ F to signify that F is the distribution function
of X .

All probability questions about X can be answered in terms of its distribution function
F . For example, suppose we wanted to compute P{a < X ≤ b}. This can be accomplished
by first noting that the event {X ≤ b} can be expressed as the union of the two mutually
exclusive events {X ≤ a} and {a < X ≤ b}. Therefore, applying Axiom 3, we obtain that

P{X ≤ b} = P{X ≤ a} + P{a < X ≤ b}

or

P{a < X ≤ b} = F(b) − F(a)

EXAMPLE 4.1c Suppose the random variable X has distribution function

F(x) =
{

0 x ≤ 0

1 − exp{−x2} x > 0

What is the probability that X exceeds 1?
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SOLUTION The desired probability is computed as follows:

P{X > 1} = 1 − P{X ≤ 1}
= 1 − F(1)

= e−1

= .368 !

4.2 TYPES OF RANDOM VARIABLES
As was previously mentioned, a random variable whose set of possible values is a sequence
is said to be discrete. For a discrete random variable X , we define the probability mass function
p(a) of X by

p(a) = P{X = a}

The probability mass function p(a) is positive for at most a countable number of values
of a. That is, if X must assume one of the values x1, x2, . . . , then

p(xi) > 0, i = 1, 2, . . .

p(x) = 0, all other values of x

Since X must take on one of the values xi , we have
∞∑

i=1

p(xi) = 1

EXAMPLE 4.2a Consider a random variable X that is equal to 1, 2, or 3. If we know that

p(1) = 1
2 and p(2) = 1

3

then it follows (since p(1) + p(2) + p(3) = 1) that

p(3) = 1
6

A graph of p(x) is presented in Figure 4.1. !

The cumulative distribution function F can be expressed in terms of p(x) by

F(a) =
∑

all x ≤ a

p(x)

If X is a discrete random variable whose set of possible values are x1, x2, x3, . . . , where
x1 < x2 < x3 < · · · , then its distribution function F is a step function. That is, the value
of F is constant in the intervals [xi−1, xi) and then takes a step (or jump) of size p(xi) at xi.
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FIGURE 4.1 Graph of p(x), Example 4.2a.
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FIGURE 4.2 Graph of F (x).

For instance, suppose X has a probability mass function given (as in Example 4.2a) by

p(1) = 1
2 , p(2) = 1

3 , p(3) = 1
6

Then the cumulative distribution function F of X is given by

F(a) =






0 a < 1
1
2 1 ≤ a < 2
5
6 2 ≤ a < 3
1 3 ≤ a

This is graphically presented in Figure 4.2.
Whereas the set of possible values of a discrete random variable is a sequence, we

often must consider random variables whose set of possible values is an interval. Let X
be such a random variable. We say that X is a continuous random variable if there exists a
nonnegative function f (x), defined for all real x ∈ (−∞, ∞), having the property that
for any set B of real numbers

P{X ∈ B} =
∫

B
f (x) dx (4.2.1)



94 Chapter 4: Random Variables and Expectation

The function f (x) is called the probability density function of the random variable X .
In words, Equation 4.2.1 states that the probability that X will be in B may be obtained

by integrating the probability density function over the set B. Since X must assume some
value, f (x) must satisfy

1 = P{X ∈ (−∞, ∞)} =
∫ ∞

−∞
f (x) dx

All probability statements about X can be answered in terms of f (x). For instance, letting
B = [a, b], we obtain from Equation 4.2.1 that

P{a ≤ X ≤ b} =
∫ b

a
f (x) dx (4.2.2)

If we let a = b in the above, then

P{X = a} =
∫ a

a
f (x) dx = 0

In words, this equation states that the probability that a continuous random variable will
assume any particular value is zero. (See Figure 4.3.)

The relationship between the cumulative distribution F(·) and the probability density
f (·) is expressed by

F(a) = P{X ∈ (−∞, a]} =
∫ a

−∞
f (x) dx

Differentiating both sides yields

d
da

F(a) = f (a)

x
a

1

Area of shaded region 5 Pha , X , bj

f (x) 5 e2x

b

FIGURE 4.3 The probability density function f (x) =
{

e−x x ≥ 0
0 x < 0

.
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That is, the density is the derivative of the cumulative distribution function. A somewhat
more intuitive interpretation of the density function may be obtained from Equation 4.2.2
as follows:

P
{

a − ε

2
≤ X ≤ a + ε

2

}
=
∫ a+ε/2

a−ε/2
f (x) dx ≈ εf (a)

when ε is small. In other words, the probability that X will be contained in an interval
of length ε around the point a is approximately εf (a). From this, we see that f (a) is
a measure of how likely it is that the random variable will be near a.

EXAMPLE 4.2b Suppose that X is a continuous random variable whose probability density
function is given by

f (x) =
{

C(4x − 2x2) 0 < x < 2

0 otherwise

(a) What is the value of C ?
(b) Find P{X > 1}.

SOLUTION (a) Since f is a probability density function, we must have that∫∞
−∞ f (x) dx = 1, implying that

C
∫ 2

0
(4x − 2x2) dx = 1

or

C
[

2x2 − 2x3

3

] ∣∣∣
x=2

x=0
= 1

or

C = 3
8

(b) Hence

P{X > 1} =
∫ ∞

1
f (x) dx = 3

8

∫ 2

1
(4x − 2x2) dx = 1

2 !

4.3 JOINTLY DISTRIBUTED RANDOM VARIABLES
For a given experiment, we are often interested not only in probability distribution func-
tions of individual random variables but also in the relationships between two or more
random variables. For instance, in an experiment into the possible causes of cancer, we
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might be interested in the relationship between the average number of cigarettes
smoked daily and the age at which an individual contracts cancer. Similarly, an engineer
might be interested in the relationship between the shear strength and the diameter of a
spot weld in a fabricated sheet steel specimen.

To specify the relationship between two random variables, we define the joint cumula-
tive probability distribution function of X and Y by

F(x, y) = P{X ≤ x, Y ≤ y}

A knowledge of the joint probability distribution function enables one, at least in the-
ory, to compute the probability of any statement concerning the values of X and Y . For
instance, the distribution function of X — call it FX — can be obtained from the joint
distribution function F of X and Y as follows:

FX (x) = P{X ≤ x}
= P{X ≤ x, Y < ∞}
= F(x, ∞)

Similarly, the cumulative distribution function of Y is given by

FY ( y) = F(∞, y)

In the case where X and Y are both discrete random variables whose possible values
are, respectively, x1, x2, . . . , and y1, y2, . . . , we define the joint probability mass function of
X and Y , p(xi, yj), by

p(xi, yj) = P{X = xi , Y = yj}

The individual probability mass functions of X and Y are easily obtained from the
joint probability mass function by the following reasoning. Since Y must take on some
value yj , it follows that the event {X = xi} can be written as the union, over all j, of the
mutually exclusive events {X = xi, Y = yj}. That is,

{X = xi} =
⋃

j

{X = xi, Y = yj}

and so, using Axiom 3 of the probability function, we see that

P{X = xi} = P




⋃

j

{X = xi, Y = yj}



 (4.3.1)

=
∑

j

P{X = xi, Y = yj}

=
∑

j

p(xi, yj)
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Similarly, we can obtain P{Y = yj} by summing p(xi, yj) over all possible values of xi,
that is,

P{Y = yj} =
∑

i

P{X = xi, Y = yj} (4.3.2)

=
∑

i

p(xi, yj)

Hence, specifying the joint probability mass function always determines the individual
mass functions. However, it should be noted that the reverse is not true. Namely, knowl-
edge of P{X = xi} and P{Y = yj} does not determine the value of P{X = xi, Y = yj}.
EXAMPLE 4.3a Suppose that 3 batteries are randomly chosen from a group of 3 new, 4
used but still working, and 5 defective batteries. If we let X and Y denote, respectively,
the number of new and used but still working batteries that are chosen, then the joint
probability mass function of X and Y , p(i, j) = P{X = i, Y = j}, is given by

p(i, j) =
(3

i

)(4
j

)( 5
3−i−j

)

(12
3

)

where the preceding follows because of the
(12

3

)
equally likely outcomes, there are, by the

basic principle of counting,
(3

i

)(4
j

)( 5
3−i−j

)
possible choices that contain exactly i new, j

used, and 3 − i − j defective batteries. Consequently,

p(0, 0) =
(

5
3

)/(
12
3

)
= 10/220

p(0, 1) =
(

4
1

)(
5
2

)/(
12
3

)
= 40/220

p(0, 2) =
(

4
2

)(
5
1

)/(
12
3

)
= 30/220

p(0, 3) =
(

4
3

)/(
12
3

)
= 4/220

p(1, 0) =
(

3
1

)(
5
2

)/(
12
3

)
= 30/220

p(1, 1) =
(

3
1

)(
4
1

)(
5
1

)/(
12
3

)
= 60/220

p(1, 2) =
(

3
1

)(
4
2

)/(
12
3

)
= 18/220

p(2, 0) =
(

3
2

)(
5
1

)/(
12
3

)
= 15/220
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TABLE 4.1 P{X = i, Y = j }
j Row Sum

i 0 1 2 3 = P {X = i }

0 10
220

40
220

30
220

4
220

84
220

1 30
220

60
220

18
220 0 108

220

2 15
220

12
220 0 0 27

220

3 1
220 0 0 0 1

220

Column
Sums =
P{Y = j} 56

220
112
220

48
220

4
220

p(2, 1) =
(

3
2

)(
4
1

)/(
12
3

)
= 12/220

p(3, 0) =
(

3
3

)/(
12
3

)
= 1/220

These probabilities can most easily be expressed in tabular form as shown in Table 4.1.
The reader should note that the probability mass function of X is obtained by comput-

ing the row sums, in accordance with the Equation 4.3.1, whereas the probability mass
function of Y is obtained by computing the column sums, in accordance with Equa-
tion 4.3.2. Because the individual probability mass functions of X and Y thus appear in
the margin of such a table, they are often referred to as being the marginal probability
mass functions of X and Y , respectively. It should be noted that to check the correct-
ness of such a table we could sum the marginal row (or the marginal column) and verify
that its sum is 1. (Why must the sum of the entries in the marginal row (or column)
equal 1?) !

EXAMPLE 4.3b Suppose that 15 percent of the families in a certain community have no
children, 20 percent have 1, 35 percent have 2, and 30 percent have 3 children; suppose
further that each child is equally likely (and independently) to be a boy or a girl. If a
family is chosen at random from this community, then B, the number of boys, and G,
the number of girls, in this family will have the joint probability mass function shown
in Table 4.2.

These probabilities are obtained as follows:

P{B = 0, G = 0} = P{no children}
= .15

P{B = 0, G = 1} = P{1 girl and total of 1 child}
= P{1 child}P{1 girl|1 child}
= (.20)

(1
2

)
= .1
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TABLE 4.2 P{B = i, G = j }
j Row Sum

i 0 1 2 3 = P {B = i }

0 .15 .10 .0875 .0375 .3750
1 .10 .175 .1125 0 .3875
2 .0875 .1125 0 0 .2000
3 .0375 0 0 0 .0375

Column
Sum =

P{G = j } .3750 .3875 .2000 .0375

P{B = 0, G = 2} = P{2 girls and total of 2 children}
= P{2 children}P{2 girls|2 children}
= (.35)

(1
2

)2 = .0875

P{B = 0, G = 3} = P{3 girls and total of 3 children}
= P{3 children}P{3 girls|3 children}
= (.30)

(1
2

)3 = .0375

We leave it to the reader to verify the remainder of Table 4.2, which tells us, among other
things, that the family chosen will have at least 1 girl with probability .625. !

We say that X and Y are jointly continuous if there exists a function f (x, y) defined for
all real x and y, having the property that for every set C of pairs of real numbers (that is,
C is a set in the two-dimensional plane)

P{(X , Y ) ∈ C} =
∫∫

(x,y)∈C

f (x, y) dx dy (4.3.3)

The function f (x, y) is called the joint probability density function of X and Y . If A and B
are any sets of real numbers, then by defining C = {(x, y) : x ∈ A, y ∈ B}, we see from
Equation 4.3.3 that

P{X ∈ A, Y ∈ B} =
∫

B

∫

A
f (x, y) dx dy (4.3.4)

Because

F(a, b) = P{X ∈ (−∞, a], Y ∈ (−∞, b]}

=
∫ b

−∞

∫ a

−∞
f (x, y) dx dy
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it follows, upon differentiation, that

f (a, b) = ∂2

∂a ∂b
F(a, b)

wherever the partial derivatives are defined. Another interpretation of the joint density
function is obtained from Equation 4.3.4 as follows:

P{a < X < a + da, b < Y < b + db} =
∫ d+db

b

∫ a+da

a
f (x, y) dx dy

≈ f (a, b)da db

when da and db are small and f (x, y) is continuous at a, b. Hence f (a, b) is a measure of
how likely it is that the random vector (X , Y ) will be near (a, b).

If X and Y are jointly continuous, they are individually continuous, and their probability
density functions can be obtained as follows:

P{X ∈ A} = P{X ∈ A, Y ∈ (−∞, ∞)} (4.3.5)

=
∫

A

∫ ∞

−∞
f (x, y) dy dx

=
∫

A
fX (x) dx

where

fX (x) =
∫ ∞

−∞
f (x, y) dy

is thus the probability density function of X . Similarly, the probability density function
of Y is given by

fY ( y) =
∫ ∞

−∞
f (x, y) dx (4.3.6)

EXAMPLE 4.3c The joint density function of X and Y is given by

f (x, y) =





2e−xe−2y 0 < x < ∞, 0 < y < ∞

0 otherwise

Compute (a) P{X > 1, Y < 1}; (b) P{X < Y }; and (c) P{X < a}.
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SOLUTION

(a) P{X > 1, Y < 1} =
∫ 1

0

∫ ∞

1
2e−xe−2y dx dy

=
∫ 1

0
2e−2y(−e−x|∞1 ) dy

= e−1
∫ 1

0
2e−2y dy

= e−1(1 − e−2)

(b) P{X < Y } =
∫∫

(x,y):x<y

2e−xe−2y dx dy

=
∫ ∞

0

∫ y

0
2e−xe−2y dx dy

=
∫ ∞

0
2e−2y(1 − e−y) dy

=
∫ ∞

0
2e−2y dy −

∫ ∞

0
2e−3y dy

= 1 − 2
3

= 1
3

(c) P{X < a} =
∫ a

0

∫ ∞

0
2e−2ye−x dy dx

=
∫ a

0
e−x dx

= 1 − e−a !

4.3.1 Independent Random Variables
The random variables X and Y are said to be independent if for any two sets of real
numbers A and B

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B} (4.3.7)

In other words, X and Y are independent if, for all A and B, the events EA = {X ∈ A}
and FB = {Y ∈ B} are independent.
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It can be shown by using the three axioms of probability that Equation 4.3.7 will follow
if and only if for all a, b

P{X ≤ a, Y ≤ b} = P{X ≤ a}P{Y ≤ b}

Hence, in terms of the joint distribution function F of X and Y , we have that X and Y
are independent if

F(a, b) = FX (a)FY (b) for all a, b

When X and Y are discrete random variables, the condition of independence Equa-
tion 4.3.7 is equivalent to

p(x, y) = pX (x)pY ( y) for all x, y (4.3.8)

where pX and pY are the probability mass functions of X and Y . The equivalence follows
because, if Equation 4.3.7 is satisfied, then we obtain Equation 4.3.8 by letting A and B
be, respectively, the one-point sets A = {x}, B = { y}. Furthermore, if Equation 4.3.8 is
valid, then for any sets A, B

P{X ∈ A, Y ∈ B} =
∑

y∈B

∑

x∈A

p(x, y)

=
∑

y∈B

∑

x∈A

pX (x)pY ( y)

=
∑

y∈B

pY ( y)
∑

x∈A

pX (x)

= P{Y ∈ B}P{X ∈ A}

and thus Equation 4.3.7 is established.
In the jointly continuous case, the condition of independence is equivalent to

f (x, y) = fX (x)fY ( y) for all x, y

Loosely speaking, X and Y are independent if knowing the value of one does not change
the distribution of the other. Random variables that are not independent are said to be
dependent.

EXAMPLE 4.3d Suppose that X and Y are independent random variables having the com-
mon density function

f (x) =
{

e−x x > 0

0 otherwise

Find the density function of the random variable X /Y .
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SOLUTION We start by determining the distribution function of X /Y . For a > 0

FX /Y (a) = P{X /Y ≤ a}

=
∫∫

x/y≤a

f (x, y) dx dy

=
∫∫

x/y≤a

e−xe−y dx dy

=
∫ ∞

0

∫ ay

0
e−xe−y dx dy

=
∫ ∞

0
(1 − e−ay)e−y dy

=
[
−e−y + e−(a+1)y

a + 1

] ∣∣∣
∞

0

= 1 − 1
a + 1

Differentiation yields that the density function of X /Y is given by

fX /Y (a) = 1/(a + 1)2, 0 < a < ∞ !

We can also define joint probability distributions for n random variables in exactly the
same manner as we did for n = 2. For instance, the joint cumulative probability distri-
bution function F(a1, a2, . . . , an) of the n random variables X1, X2, . . . , Xn is defined by

F(a1, a2, . . . , an) = P{X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an}

If these random variables are discrete, we define their joint probability mass function
p(x1, x2, . . . , xn) by

p(x1, x2, . . . , xn) = P{X1 = x1, X2 = x2, . . . , Xn = xn}

Further, the n random variables are said to be jointly continuous if there exists a function
f (x1, x2, . . . , xn), called the joint probability density function, such that for any set C in
n-space

P{(X1, X2, . . . , Xn) ∈ C} =
∫ ∫

(x1,..., xn)∈C
. . .

∫
f (x1, . . . , xn) dx1 dx2 · · · dxn
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In particular, for any n sets of real numbers A1, A2, . . . , An

P{X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An}

=
∫

An

∫

An−1

. . .

∫

A1

f (x1, . . . , xn) dx1 dx2 . . . dxn

The concept of independence may, of course, also be defined for more than two random
variables. In general, the n random variables X1, X2, . . . , Xn are said to be independent if,
for all sets of real numbers A1, A2, . . . , An,

P{X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An} =
n∏

i=1

P{Xi ∈ Ai}

As before, it can be shown that this condition is equivalent to

P{X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an}

=
n∏

i=1

P{X1 ≤ ai} for all a1, a2, . . . , an

Finally, we say that an infinite collection of random variables is independent if every finite
subcollection of them is independent.

EXAMPLE 4.3e Suppose that the successive daily changes of the price of a given stock are
assumed to be independent and identically distributed random variables with probability
mass function given by

P{daily change is i} =






−3 with probability .05

−2 with probability .10

−1 with probability .20

0 with probability .30

1 with probability .20

2 with probability .10

3 with probability .05

Then the probability that the stock’s price will increase successively by 1, 2, and 0 points
in the next three days is

P{X1 = 1, X2 = 2, X3 = 0} = (.20)(.10)(.30) = .006

where we have let Xi denote the change on the ith day. !
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*4.3.2 Conditional Distributions
The relationship between two random variables can often be clarified by consideration of
the conditional distribution of one given the value of the other.

Recall that for any two events E and F , the conditional probability of E given F is
defined, provided that P(F) > 0, by

P(E |F) = P(EF)

P(F)

Hence, if X and Y are discrete random variables, it is natural to define the conditional
probability mass function of X given that Y = y, by

pX |Y (x|y) = P{X = x|Y = y}

= P{X = x, Y = y}
P{Y = y}

= p(x, y)
pY ( y)

for all values of y such that pY ( y) > 0.

EXAMPLE 4.3f If we know, in Example 4.3b, that the family chosen has one girl, compute
the conditional probability mass function of the number of boys in the family.

SOLUTION We first note from Table 4.2 that

P{G = 1} = .3875

Hence,

P{B = 0|G = 1} = P{B = 0, G = 1}
P{G = 1} = .10

.3875
= 8/31

P{B = 1|G = 1} = P{B = 1, G = 1}
P{G = 1} = .175

.3875
= 14/31

P{B = 2|G = 1} = P{B = 2, G = 1}
P{G = 1} = .1125

.3875
= 9/31

P{B = 3|G = 1} = P{B = 3, G = 1}
P{G = 1} = 0

Thus, for instance, given 1 girl, there are 23 chances out of 31 that there will also be
at least 1 boy. !

* Optional section.
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EXAMPLE 4.3g Suppose that p(x, y), the joint probability mass function of X and Y , is
given by

p(0, 0) = .4, p(0, 1) = .2, p(1, 0) = .1, p(1, 1) = .3

Calculate the conditional probability mass function of X given that Y = 1.

SOLUTION We first note that

P{Y = 1} =
∑

x

p(x, 1) = p(0, 1) + p(1, 1) = .5

Hence,

P{X = 0|Y = 1} = p(0, 1)

P{Y = 1} = 2/5

P{X = 1|Y = 1} = p(1, 1)

P{Y = 1} = 3/5 !

If X and Y have a joint probability density function f (x, y), then the conditional
probability density function of X , given that Y = y, is defined for all values of y such
that fY ( y) > 0, by

fX |Y (x| y) = f (x, y)
fY ( y)

To motivate this definition, multiply the left-hand side by dx and the right-hand side by
(dx dy)/dy to obtain

fX |Y (x| y) dx = f (x, y) dx dy
fY ( y) dy

≈ P{x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy}
P{ y ≤ Y ≤ y + dy}

= P{x ≤ X ≤ x + dy| y ≤ Y ≤ y + dy}

In other words, for small values of dx and dy, fX |Y (x| y) dx represents the conditional
probability that X is between x and x + dx, given that Y is between y and y + dy.

The use of conditional densities allows us to define conditional probabilities of events
associated with one random variable when we are given the value of a second random
variable. That is, if X and Y are jointly continuous, then, for any set A,

P{X ∈ A|Y = y} =
∫

A
fX |Y (x| y) dx
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EXAMPLE 4.3h The joint density of X and Y is given by

f (x, y) =
{

12
5 x(2 − x − y) 0 < x < 1, 0 < y < 1

0 otherwise

Compute the conditional density of X , given that Y = y, where 0 < y < 1.

SOLUTION For 0 < x < 1, 0 < y < 1, we have

fX |Y (x| y) = f (x, y)
fY ( y)

= f (x, y)∫∞
−∞ f (x, y) dx

= x(2 − x − y)
∫ 1

0 x(2 − x − y) dx

= x(2 − x − y)
2
3 − y/2

= 6x(2 − x − y)
4 − 3y

!

4.4 EXPECTATION
One of the most important concepts in probability theory is that of the expectation of a ran-
dom variable. If X is a discrete random variable taking on the possible values x1, x2, . . . ,
then the expectation or expected value of X , denoted by E[X ], is defined by

E[X ] =
∑

i

xiP{X = xi}

In words, the expected value of X is a weighted average of the possible values that X can
take on, each value being weighted by the probability that X assumes it. For instance, if
the probability mass function of X is given by

p(0) = 1
2 = p(1)

then

E[X ] = 0
(1

2

)
+ 1

(1
2

)
= 1

2

is just the ordinary average of the two possible values 0 and 1 that X can assume. On the
other hand, if

p(0) = 1
3 , p(1) = 2

3
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then

E[X ] = 0
(1

3

)
+ 1

(2
3

)
= 2

3

is a weighted average of the two possible values 0 and 1 where the value 1 is given twice as
much weight as the value 0 since p(1) = 2p(0).

Another motivation of the definition of expectation is provided by the frequency inter-
pretation of probabilities. This interpretation assumes that if an infinite sequence of inde-
pendent replications of an experiment is performed, then for any event E , the proportion
of time that E occurs will be P(E). Now, consider a random variable X that must take on
one of the values x1, x2, . . . , xn with respective probabilities p(x1), p(x2), . . . , p(xn); and
think of X as representing our winnings in a single game of chance. That is, with proba-
bility p(xi) we shall win xi units i = 1, 2, . . . , n. Now by the frequency interpretation, it
follows that if we continually play this game, then the proportion of time that we win xi
will be p(xi). Since this is true for all i, i = 1, 2, . . . , n, it follows that our average winnings
per game will be

n∑

i=1

xip(xi) = E[X ]

To see this argument more clearly, suppose that we play N games where N is very large.
Then in approximately Np(xi) of these games, we shall win xi , and thus our total winnings
in the N games will be

n∑

i=1

xiN p(xi)

implying that our average winnings per game are

n∑

i=1

xiNp(xi)

N
=

n∑

i=1

xip(xi) = E[X ]

EXAMPLE 4.4a Find E[X ] where X is the outcome when we roll a fair die.

SOLUTION Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1
6 , we obtain that

E[X ] = 1
(1

6

)
+ 2

(1
6

)
+ 3

(1
6

)
+ 4

(1
6

)
+ 5

(1
6

)
+ 6

(1
6

)
= 7

2

The reader should note that, for this example, the expected value of X is not a value that X
could possibly assume. (That is, rolling a die cannot possibly lead to an outcome of 7/2.)
Thus, even though we call E[X ] the expectation of X , it should not be interpreted as the
value that we expect X to have but rather as the average value of X in a large number of
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repetitions of the experiment. That is, if we continually roll a fair die, then after a large
number of rolls the average of all the outcomes will be approximately 7/2. (The interested
reader should try this as an experiment.) !

EXAMPLE 4.4b If I is an indicator random variable for the event A, that is, if

I =
{

1 if A occurs

0 if A does not occur

then

E[I ] = 1P(A) + 0P(Ac) = P(A)

Hence, the expectation of the indicator random variable for the event A is just the proba-
bility that A occurs. !

EXAMPLE 4.4c (Entropy) For a given random variable X , how much information is conveyed
in the message that X = x? Let us begin our attempts at quantifying this statement by
agreeing that the amount of information in the message that X = x should depend on
how likely it was that X would equal x. In addition, it seems reasonable that the more
unlikely it was that X would equal x, the more informative would be the message. For
instance, if X represents the sum of two fair dice, then there seems to be more information
in the message that X equals 12 than there would be in the message that X equals 7, since
the former event has probability 1

36 and the latter 1
6 .

Let us denote by I(p) the amount of information contained in the message that an event,
whose probability is p, has occurred. Clearly I( p) should be a nonnegative, decreasing
function of p. To determine its form, let X and Y be independent random variables, and
suppose that P{X = x} = p and P{Y = y} = q. How much information is contained in
the message that X equals x and Y equals y? To answer this, note first that the amount of
information in the statement that X equals x is I( p). Also, since knowledge of the fact
that X is equal to x does not affect the probability that Y will equal y (since X and Y are
independent), it seems reasonable that the additional amount of information contained in
the statement that Y = y should equal I(q). Thus, it seems that the amount of information
in the message that X equals x and Y equals y is I( p)+ I(q). On the other hand, however,
we have that

P{X = x, Y = y} = P{X = x}P{Y = y} = pq

which implies that the amount of information in the message that X equals x and Y equals
y is I( pq). Therefore, it seems that the function I should satisfy the identity

I( pq) = I( p) + I(q)
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However, if we define the function G by

G( p) = I(2−p)

then we see from the above that

G( p + q) = I(2−( p+q))

= I(2−p2−q)

= I(2−p) + I(2−q)

= G( p) + G(q)

However, it can be shown that the only (monotone) functions G that satisfy the foregoing
functional relationship are those of the form

G( p) = cp

for some constant c. Therefore, we must have that

I(2−p) = cp

or, letting q = 2−p

I(q) = −c log2(q)

for some positive constant c. It is traditional to let c = 1 and to say that the information
is measured in units of bits (short for binary digits).

Consider now a random variable X , which must take on one of the values x1, . . . , xn
with respective probabilities p1, . . . , pn. As −log2( pi) represents the information con-
veyed by the message that X is equal to xi, it follows that the expected amount of infor-
mation that will be conveyed when the value of X is transmitted is given by

H(X ) = −
n∑

i=1

pi log2( pi)

The quantity H(X ) is known in information theory as the entropy of the random
variable X . !

We can also define the expectation of a continuous random variable. Suppose that
X is a continuous random variable with probability density function f . Since, for dx
small

f (x) dx ≈ P{x < X < x + dx}

it follows that a weighted average of all possible values of X , with the weight given to x
equal to the probability that X is near x, is just the integral over all x of xf (x) dx. Hence,
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21
p (21) 5 .10,

Center of gravity 5 .9

0
p (0) 5 .25,

1
p (1) 5 .30,

2
p (2) 5 .35

FIGURE 4.4

it is natural to define the expected value of X by

E[X ] =
∫ ∞

−∞
x f (x) dx

EXAMPLE 4.4d Suppose that you are expecting a message at some time past 5 P.M. From
experience you know that X , the number of hours after 5 P.M. until the message arrives,
is a random variable with the following probability density function:

f (x) =






1
1.5

if 0 < x < 1.5

0 otherwise

The expected amount of time past 5 P.M. until the message arrives is given by

E[X ] =
∫ 1.5

0

x
1.5

dx = .75

Hence, on average, you would have to wait three-fourths of an hour. !

REMARKS

(a) The concept of expectation is analogous to the physical concept of the center of gravity
of a distribution of mass. Consider a discrete random variable X having probability mass
function p(xi), i ≥ 1. If we now imagine a weightless rod in which weights with mass
p(xi), i ≥ 1 are located at the points xi, i ≥ 1 (see Figure 4.4), then the point at which
the rod would be in balance is known as the center of gravity. For those readers acquainted
with elementary statics, it is now a simple matter to show that this point is at E[X ].*
(b) E[X ] has the same units of measurement as does X .

4.5 PROPERTIES OF THE EXPECTED VALUE
Suppose now that we are given a random variable X and its probability distribution (that
is, its probability mass function in the discrete case or its probability density function in
the continuous case). Suppose also that we are interested in calculating, not the expected

* To prove this, we must show that the sum of the torques tending to turn the point around E[X ] is equal to 0. That
is, we must show that 0 = ∑

i(xi − E[X ])p(xi), which is immediate.
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value of X , but the expected value of some function of X , say g(X ). How do we go
about doing this? One way is as follows. Since g(X ) is itself a random variable, it must
have a probability distribution, which should be computable from a knowledge of the
distribution of X . Once we have obtained the distribution of g(X ), we can then compute
E[g(X )] by the definition of the expectation.

EXAMPLE 4.5a Suppose X has the following probability mass function

p(0) = .2, p(1) = .5, p(2) = .3

Calculate E[X 2].
SOLUTION Letting Y = X 2, we have that Y is a random variable that can take on one of
the values 02, 12, 22 with respective probabilities

pY (0) = P{Y = 02} = .2

pY (1) = P{Y = 12} = .5

pY (4) = P{Y = 22} = .3

Hence,

E[X 2] = E[Y ] = 0(.2) + 1(.5) + 4(.3) = 1.7 !

EXAMPLE 4.5b The time, in hours, it takes to locate and repair an electrical break-
down in a certain factory is a random variable — call it X — whose density function is
given by

fX (x) =
{

1 if 0 < x < 1

0 otherwise

If the cost involved in a breakdown of duration x is x3, what is the expected cost of such
a breakdown?

SOLUTION Letting Y = X 3 denote the cost, we first calculate its distribution function as
follows. For 0 ≤ a ≤ 1,

FY (a) = P{Y ≤ a}
= P{X 3 ≤ a}
= P{X ≤ a1/3}

=
∫ a1/3

0
dx

= a1/3
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By differentiating FY (a), we obtain the density of Y ,

fY (a) = 1
3

a−2/3, 0 ≤ a < 1

Hence,

E[X 3] = E[Y ] =
∫ ∞

−∞
afY (a) da

=
∫ 1

0
a

1
3

a−2/3 da

= 1
3

∫ 1

0
a1/3 da

= 1
3

3
4

a4/3|10

= 1
4

!

While the foregoing procedure will, in theory, always enable us to compute the expec-
tation of any function of X from a knowledge of the distribution of X , there is an easier
way of doing this. Suppose, for instance, that we wanted to compute the expected value
of g(X ). Since g(X ) takes on the value g(x) when X = x, it seems intuitive that E[g(X )]
should be a weighted average of the possible values g(x) with, for a given x, the weight
given to g(x) being equal to the probability (or probability density in the continuous case)
that X will equal x. Indeed, the foregoing can be shown to be true and we thus have the
following proposition.

PROPOSITION 4.5.1 EXPECTATION OF A FUNCTION OF A RANDOM VARIABLE

(a) If X is a discrete random variable with probability mass function p(x), then for
any real-valued function g ,

E[g(X )] =
∑

x

g(x)p(x)

(b) If X is a continuous random variable with probability density function f (x), then
for any real-valued function g ,

E[g(X )] =
∫ ∞

−∞
g(x)f (x) dx
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EXAMPLE 4.5c Applying Proposition 4.5.1 to Example 4.5a yields

E[X 2] = 02(0.2) + (12)(0.5) + (22)(0.3) = 1.7

which, of course, checks with the result derived in Example 4.5a. !

EXAMPLE 4.5d Applying the proposition to Example 4.5b yields

E[X 3] =
∫ 1

0
x3dx (since f (x) = 1, 0 < x < 1)

= 1
4

!

An immediate corollary of Proposition 4.5.1 is the following.

Corollary 4.5.2
If a and b are constants, then

E[aX + b] = aE[X ] + b

Proof

In the discrete case,

E[aX + b] =
∑

x

(ax + b)p(x)

= a
∑

x

x p(x) + b
∑

x

p(x)

= aE[X ] + b

In the continuous case,

E[aX + b] =
∫ ∞

−∞
(ax + b)f (x) dx

= a
∫ ∞

−∞
x f (x) dx + b

∫ ∞

−∞
f (x) dx

= aE[X ] + b !

If we take a = 0 in Corollary 4.5.2, we see that

E[b] = b



4.5 Properties of the Expected Value 115

That is, the expected value of a constant is just its value. (Is this intuitive?) Also, if we take
b = 0, then we obtain

E[aX ] = aE[X ]

or, in words, the expected value of a constant multiplied by a random variable is just the
constant times the expected value of the random variable. The expected value of a random
variable X , E[X ], is also referred to as the mean or the first moment of X . The quantity
E[X n], n ≥ 1, is called the nth moment of X . By Proposition 4.5.1, we note that

E[X n] =






∑

x

xnp(x) if X is discrete

∫ ∞

−∞
xnf (x) dx if X is continuous

4.5.1 Expected Value of Sums of Random Variables
The two-dimensional version of Proposition 4.5.1 states that if X and Y are random
variables and g is a function of two variables, then

E[g(X , Y )] =
∑

y

∑

x

g(x, y)p(x, y) in the discrete case

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f (x, y) dx dy in the continuous case

For example, if g(X , Y ) = X + Y , then, in the continuous case,

E[X + Y ] =
∫ ∞

−∞

∫ ∞

−∞
(x + y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
x f (x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
y f (x, y) dx dy

= E[X ] + E[Y ]

where the final equality followed by applying the identity

E[g(X , Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) f (x, y) dx dy

first to the function g(x, y) = x and then to the function g(x, y) = y.
A similar result can be shown in the discrete case and indeed, for any random variables

X and Y ,

E[X + Y ] = E[X ] + E[Y ] (4.5.1)
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By repeatedly applying Equation 4.5.1 we can show that the expected value of the sum
of any number of random variables equals the sum of their individual expectations.
For instance,

E[X + Y + Z] = E[(X + Y ) + Z]
= E[X + Y ] + E[Z] by Equation 4.5.1

= E[X ] + E[Y ] + E[Z] again by Equation 4.5.1

And in general, for any n,

E[X1 + X2 · · · + Xn] = E[X1] + E[X2] + · · · + E[Xn] (4.5.2)

Equation 4.5.2 is an extremely useful formula whose utility will now be illustrated by
a series of examples.

EXAMPLE 4.5e Find the expected value of the sum obtained when two fair dice are rolled.

SOLUTION If X is the sum, then E[X ] can be obtained from the formula

E[X ] =
12∑

i=2

i P(X = i)

However, it is simpler to name the dice, and let Xi be the value on dice i, i = 1, 2. As,
X = X1 + X2, this yields that

E[X ] = E[X1] + E[X2]

Thus, from Example 4.4a, we see that E[X ] = 7. !

EXAMPLE 4.5f A construction firm has recently sent in bids for 3 jobs worth (in profits)
10, 20, and 40 (thousand) dollars. If its probabilities of winning the jobs are respectively
.2, .8, and .3, what is the firm’s expected total profit?

SOLUTION Letting Xi , i = 1, 2, 3 denote the firm’s profit from job i, then

total profit = X1 + X2 + X3

and so

E[total profit] = E[X1] + E[X2] + E[X3]

Now

E[X1] = 10(.2) + 0(.8) = 2

E[X2] = 20(.8) + 0(.2) = 16

E[X3] = 40(.3) + 0(.7) = 12

and thus the firm’s expected total profit is 30 thousand dollars. !
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EXAMPLE 4.5g A secretary has typed N letters along with their respective envelopes. The
envelopes get mixed up when they fall on the floor. If the letters are placed in the mixed-up
envelopes in a completely random manner (that is, each letter is equally likely to end up
in any of the envelopes), what is the expected number of letters that are placed in the
correct envelopes?

SOLUTION Letting X denote the number of letters that are placed in the correct envelope,
we can most easily compute E[X ] by noting that

X = X1 + X2 + · · · + XN

where

Xi =
{

1 if the ith letter is placed in its proper envelope
0 otherwise

Now, since the ith letter is equally likely to be put in any of the N envelopes, it follows
that

P{Xi = 1} = P{ith letter is in its proper envelope} = 1/N

and so

E[Xi] = 1P{Xi = 1} + 0P{Xi = 0} = 1/N

Hence, from Equation 4.5.2 we obtain that

E[X ] = E[X1] + · · · + E[XN ] =
(

1
N

)
N = 1

Hence, no matter how many letters there are, on the average, exactly one of the letters will
be in its own envelope. !

EXAMPLE 4.5h Suppose there are 20 different types of coupons and suppose that each time
one obtains a coupon it is equally likely to be any one of the types. Compute the expected
number of different types that are contained in a set for 10 coupons.

SOLUTION Let X denote the number of different types in the set of 10 coupons. We
compute E[X ] by using the representation

X = X1 + · · · + X20

where

Xi =
{

1 if at least one type i coupon is contained in the set of 10

0 otherwise
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Now

E[Xi] = P{Xi = 1}
= P{at least one type i coupon is in the set of 10}
= 1 − P{no type i coupons are contained in the set of 10}
= 1 −

(19
20

)10

when the last equality follows since each of the 10 coupons will (independently) not be
a type i with probability 19

20 . Hence,

E[X ] = E[X1] + · · · + E[X20] = 20
[
1 −

(19
20

)10
]

= 8.025 !

An important property of the mean arises when one must predict the value of a ran-
dom variable. That is, suppose that the value of a random variable X is to be predicted.
If we predict that X will equal c, then the square of the “error” involved will be (X − c)2.
We will now show that the average squared error is minimized when we predict that X
will equal its mean µ. To see this, note that for any constant c

E[(X − c)2] = E[(X − µ + µ − c)2]
= E[(X − µ)2 + 2(µ − c)(X − µ) + (µ − c)2]
= E[(X − µ)2] + 2(µ − c)E[X − µ] + (µ − c)2

= E[(X − µ)2] + (µ − c)2 since E[X − µ] = E[X ] − µ = 0

≥ E[(X − µ)2]

Hence, the best predictor of a random variable, in terms of minimizing the expected
square of its error, is just its mean.

4.6 VARIANCE
Given a random variable X along with its probability distribution function, it would be
extremely useful if we were able to summarize the essential properties of the mass function
by certain suitably defined measures. One such measure would be E[X ], the expected value
of X . However, while E[X ] yields the weighted average of the possible values of X , it does
not tell us anything about the variation, or spread, of these values. For instance, while the
following random variables W, Y, and Z having probability mass functions determined by

W = 0 with probability 1

Y =
{

−1 with probability 1
2

1 with probability 1
2
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Z =
{

−100 with probability 1
2

100 with probability 1
2

all have the same expectation — namely, 0 — there is much greater spread in the possible
values of Y than in those of W (which is a constant) and in the possible values of Z than
in those of Y .

Because we expect X to take on values around its mean E[X ], it would appear that
a reasonable way of measuring the possible variation of X would be to look at how far
apart X would be from its mean on the average. One possible way to measure this would
be to consider the quantity E[|X − µ|], where µ = E[X ], and |X − µ| represents the
absolute value of X − µ. However, it turns out to be mathematically inconvenient to deal
with this quantity and so a more tractable quantity is usually considered — namely, the
expectation of the square of the difference between X and its mean. We thus have the
following definition.

Definition
If X is a random variable with mean µ, then the variance of X , denoted by Var(X ), is
defined by

Var(X ) = E[(X − µ)2]

An alternative formula for Var(X ) can be derived as follows:

Var(X ) = E[(X − µ)2]
= E[X 2 − 2µX + µ2]
= E[X 2] − E[2µX ] + E[µ2]
= E[X 2] − 2µE[X ] + µ2

= E[X 2] − µ2

That is,

Var(X ) = E[X 2] − (E[X ])2 (4.6.1)

or, in words, the variance of X is equal to the expected value of the square of X minus the
square of the expected value of X . This is, in practice, often the easiest way to compute
Var(X ).
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EXAMPLE 4.6a Compute Var(X ) when X represents the outcome when we roll a fair die.

SOLUTION Since P{X = i} = 1
6 , i = 1, 2, 3, 4, 5, 6, we obtain

E[X 2] =
6∑

i−1

i2P{X = i}

= 12 (1
6

)
+ 22 (1

6

)
+ 32 (1

6

)
+ 42 (1

6

)
+ 52 ( 1

6

)
+ 62 (1

6

)

= 91
6

Hence, since it was shown in Example 4.4a that E[X ] = 7
2 , we obtain from Equation

4.6.1 that

Var(X ) = E[X 2] − (E[X ])2

= 91
6 −

(7
2

)2 = 35
12 !

EXAMPLE 4.6b Variance of an Indicator Random Variable. If, for some event A,

I =
{

1 if event A occurs

0 if event A does not occur

then

Var(I) = E[I2] − (E[I ])2

= E[I ] − (E[I ])2 since I2 = I (as 12 = 1 and 02 = 0)

= E[I ](1 − E[I ])
= P(A)[1 − P(A)] since E[I ] = P(A) from Example 4.4b !

A useful identity concerning variances is that for any constants a and b,

Var(aX + b) = a2Var(X ) (4.6.2)

To prove Equation 4.6.2, let µ = E[X ] and recall that E[aX + b] = aµ + b. Thus, by
the definition of variance, we have

Var(aX + b) = E[(aX + b − E[aX + b])2]
= E[(aX + b − aµ − b)2]
= E[(aX − aµ)2]
= E[a2(X − µ)2]
= a2 E[(X − µ)2]
= a2 Var(X )
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Specifying particular values for a and b in Equation 4.6.2 leads to some interesting
corollaries. For instance, by setting a = 0 in Equation 4.6.2 we obtain that

Var(b) = 0

That is, the variance of a constant is 0. (Is this intuitive?) Similarly, by setting a = 1 we
obtain

Var(X + b) = Var(X )

That is, the variance of a constant plus a random variable is equal to the variance of the
random variable. (Is this intuitive? Think about it.) Finally, setting b = 0 yields

Var(aX ) = a2Var(X )

The quantity
√

Var(X ) is called the standard deviation of X . The standard deviation
has the same units as does the mean.

REMARK

Analogous to the mean’s being the center of gravity of a distribution of mass, the variance
represents, in the terminology of mechanics, the moment of inertia.

4.7 COVARIANCE AND VARIANCE OF SUMS OF
RANDOM VARIABLES

We showed in Section 4.5 that the expectation of a sum of random variables is equal
to the sum of their expectations. The corresponding result for variances is, however, not
generally valid. Consider

Var(X + X ) = Var(2X )

= 22 Var(X )

= 4 Var(X )

)= Var(X ) + Var(X )

There is, however, an important case in which the variance of a sum of random variables
is equal to the sum of the variances; and this is when the random variables are indepen-
dent. Before proving this, however, let us define the concept of the covariance of two
random variables.

Definition
The covariance of two random variables X and Y , written Cov(X , Y ), is defined by

Cov(X , Y ) = E[(X − µx)(Y − µy)]

where µx and µy are the means of X and Y , respectively.
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A useful expression for Cov(X , Y ) can be obtained by expanding the right side of the
definition. This yields

Cov(X , Y ) = E[XY − µxY − µyX + µxµy]
= E[XY ] − µxE[Y ] − µyE[X ] + µxµy

= E[XY ] − µxµy − µyµx + µxµy

= E[XY ] − E[X ]E[Y ] (4.7.1)

From its definition we see that covariance satisfies the following properties:

Cov(X , Y ) = Cov(Y , X ) (4.7.2)

and

Cov(X , X ) = Var(X ) (4.7.3)

Another property of covariance, which immediately follows from its definition, is that, for
any constant a,

Cov(aX , Y ) = a Cov(X , Y ) (4.7.4)

The proof of Equation 4.7.4 is left as an exercise.
Covariance, like expectation, possesses an additive property.

Lemma 4.7.1

Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y )

Proof

Cov(X1 + X2, Y )

= E[(X1 + X2)Y ] − E[X1 + X2]E[Y ] from Equation 4.7.1

= E[X1Y ] + E[X2Y ] − (E[X1] + E[X2])E[Y ]
= E[X1Y ] − E[X1]E[Y ] + E[X2Y ] − E[X2]E[Y ]
= Cov(X1, Y ) + Cov(X2, Y ) !

Lemma 4.7.1 can be easily generalized (see Problem 48) to show that

Cov

( n∑

i=1

Xi , Y

)

=
n∑

i=1

Cov(Xi , Y ) (4.7.5)

which gives rise to the following.
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PROPOSITION 4.7.2

Cov




n∑

i=1

Xi ,
m∑

j=1

Yj



 =
n∑

i=1

m∑

j=1

Cov(Xi, Yj)

Proof

Cov




n∑

i=1

Xi ,
m∑

j=1

Yj





=
n∑

i=1

Cov



Xi,
m∑

j=1

Yj



 from Equation 4.7.5

=
n∑

i=1

Cov




m∑

j=1

Yj , Xi



 by the symmetry property Equation 4.7.2

=
n∑

i=1

m∑

j=1

Cov(Yj , Xi) again from Equation 4.7.5

and the result now follows by again applying the symmetry property Equation 4.7.2. !

Using Equation 4.7.3 gives rise to the following formula for the variance of a sum of
random variables.

Corollary 4.7.3

Var

( n∑

i=1

Xi

)

=
n∑

i=1

Var(Xi) +
n∑

i=1

n∑

j=1
j )=i

Cov(Xi, Xj)

Proof

Because Cov(X , X ) = Var(X ), for any random variable X , we obtain from Proposition 4.7.2
that

Var

( n∑

i=1

Xi

)

= Cov




n∑

i=1

Xi ,
n∑

j=1

Xj





=
n∑

i=1

n∑

j=1

Cov(Xi, Xj)
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=
n∑

i=1




∑

j )=i

Cov(Xi, Xj) + Cov(Xi , Xi)





=
n∑

i=1

∑

j )=i

Cov(Xi, Xj) +
n∑

i=1

Cov(Xi, Xi)

=
n∑

i=1

∑

j )=i

Cov(Xi, Xj) +
n∑

i=1

Var(Xi) !

In the case of n = 2, Corollary 4.7.3 yields that

Var(X + Y ) = Var(X ) + Var(Y ) + Cov(X , Y ) + Cov(Y , X )

or, using Equation 4.7.2,

Var(X + Y ) = Var(X ) + Var(Y ) + 2 Cov(X , Y ) (4.7.6)

Theorem 4.7.4
If X and Y are independent random variables, then

Cov(X , Y ) = 0

and so for independent X1, . . . , Xn,

Var

( n∑

i=1

Xi

)
=

n∑

i=1

Var(Xi)

Proof

We need to prove that E[XY ] = E[X ]E[Y ]. Now, in the discrete case,

E[XY ] =
∑

j

∑

i

xiyjP{X = xi , Y = yj}

=
∑

j

∑

i

xiyjP{X = xi}P{Y = yj} by independence

=
∑

y

yjP{Y = yj}
∑

i

xiP{X = xi}

= E[Y ]E[X ]

Because a similar argument holds in all other cases, the result is proven. !
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EXAMPLE 4.7a Compute the variance of the sum obtained when 10 independent rolls of
a fair die are made.

SOLUTION Letting Xi denote the outcome of the ith roll, we have that

Var

( 10∑

1

Xi

)

=
10∑

1

Var(Xi)

= 10 35
12 from Example 4.6a

= 175
6 !

EXAMPLE 4.7b Compute the variance of the number of heads resulting from 10 indepen-
dent tosses of a fair coin.

SOLUTION Letting

Ij =
{

1 if the jth toss lands heads

0 if the jth toss lands tails

then the total number of heads is equal to

10∑

j=1

Ij

Hence, from Theorem 4.7.4,

Var




10∑

j=1

Ij



 =
10∑

j=1

Var(Ij)

Now, since Ij is an indicator random variable for an event having probability 1
2 , it follows

from Example 4.6b that

Var(Ij) = 1
2

(
1 − 1

2

)
= 1

4

and thus

Var




10∑

j=1

Ij



 = 10
4

!
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The covariance of two random variables is important as an indicator of the relationship
between them. For instance, consider the situation where X and Y are indicator variables
for whether or not the events A and B occur. That is, for events A and B, define

X =
{

1 if A occurs

0 otherwise
, Y =

{
1 if B occurs

0 otherwise

and note that

XY =
{

1 if X = 1, Y = 1

0 otherwise

Thus,

Cov(X , Y ) = E[XY ] − E[X ]E[Y ]
= P{X = 1, Y = 1} − P{X = 1}P{Y = 1}

From this we see that

Cov(X , Y ) > 0 ⇔ P{X = 1, Y = 1} > P{X = 1}P{Y = 1}

⇔ P{X = 1, Y = 1}
P{X = 1} > P{Y = 1}

⇔ P{Y = 1|X = 1} > P{Y = 1}

that Y = 1; whereas the covariance of X and Y is negative if the outcome X = 1 makes
it less likely that Y = 1, and so makes it more likely that Y = 0. (By the symmetry of the
covariance, the preceding remains true when X and Y are interchanged.)

In general, it can be shown that a positive value of Cov(X , Y ) is an indication that
Y tends to increase as X does, whereas a negative value indicates that Y tends to decrease
as X increases. The strength of the relationship between X and Y is indicated by the
correlation between X and Y , a dimensionless quantity obtained by dividing the covari-
ance by the product of the standard deviations of X and Y . That is,

Corr(X , Y ) = Cov(X , Y )√
Var(X )Var(Y )

It can be shown (see Problem 49) that this quantity always has a value between −1
and +1.
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4.8 MOMENT GENERATING FUNCTIONS
The moment generating function φ(t) of the random variable X is defined for all values
t by

φ(t) = E[et X ] =






∑

x

et xp(x) if X is discrete

∫ ∞

−∞
et xf (x) dx if X is continuous

We call φ(t) the moment generating function because all of the moments of X can be
obtained by successively differentiating φ(t). For example,

φ′(t) = d
dt

E[et X ]

= E
[

d
dt

(et X )

]

= E[Xet X ]

Hence,

φ′(0) = E[X ]

Similarly,

φ′′(t) = d
dt

φ′(t)

= d
dt

E[Xet X ]

= E
[

d
dt

(Xet X )

]

= E[X 2et X ]

and so

φ′′(0) = E[X 2]

In general, the nth derivative of φ(t) evaluated at t = 0 equals E[X n]; that is,

φn(0) = E[X n], n ≥ 1

An important property of moment generating functions is that the moment generating
function of the sum of independent random variables is just the product of the individual
moment generating functions. To see this, suppose that X and Y are independent and have
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moment generating functions φX (t) and φY (t), respectively. Then φX+Y (t), the moment
generating function of X + Y , is given by

φX+Y (t) = E[et(X+Y )]
= E[etX etY ]
= E[etX ]E[etY ]
= φX (t)φY (t)

where the next to the last equality follows from Theorem 4.7.4 since X and Y , and thus
etX and etY , are independent.

Another important result is that the moment generating function uniquely determines
the distribution. That is, there exists a one-to-one correspondence between the moment
generating function and the distribution function of a random variable.

4.9 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF
LARGE NUMBERS

We start this section by proving a result known as Markov’s inequality.

PROPOSITION 4.9.1 MARKOV’S INEQUALITY

If X is a random variable that takes only nonnegative values, then for any value a > 0

P{X ≥ a} ≤ E[X ]
a

Proof

We give a proof for the case where X is continuous with density f .

E[X ] =
∫ ∞

0
x f (x) dx

=
∫ a

0
x f (x) dx +

∫ ∞

a
xf (x) dx

≥
∫ ∞

a
x f (x) dx

≥
∫ ∞

a
a f (x) dx

= a
∫ ∞

a
f (x) dx

= aP{X ≥ a}

and the result is proved. !
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As a corollary, we obtain Proposition 4.9.2.

PROPOSITION 4.9.2 CHEBYSHEV’S INEQUALITY

If X is a random variable with mean µ and variance σ 2, then for any value k > 0

P{|X − µ| ≥ k} ≤ σ 2

k2

Proof

Since (X − µ)2 is a nonnegative random variable, we can apply Markov’s inequality
(with a = k2) to obtain

P{(X − µ)2 ≥ k2} ≤ E[(X − µ)2]
k2 (4.9.1)

But since (X − µ) ≥ k2 if and only if |X − µ| ≥ k, Equation 4.9.1 is equivalent to

P{|X − µ| ≥ k} ≤ E[(X − µ)2]
k2 = σ 2

k2

and the proof is complete. !

The importance of Markov’s and Chebyshev’s inequalities is that they enable us to
derive bounds on probabilities when only the mean, or both the mean and the variance, of
the probability distribution are known. Of course, if the actual distribution were known,
then the desired probabilities could be exactly computed and we would not need to resort
to bounds.

EXAMPLE 4.9a Suppose that it is known that the number of items produced in a factory
during a week is a random variable with mean 50.

(a) What can be said about the probability that this week’s production will exceed 75?

(b) If the variance of a week’s production is known to equal 25, then what can
be said about the probability that this week’s production will be between
40 and 60?

SOLUTION Let X be the number of items that will be produced in a week:

(a) By Markov’s inequality

P{X > 75} ≤ E[X ]
75

= 50
75

= 2
3

(b) By Chebyshev’s inequality

P{|X − 50| ≥ 10} ≤ σ 2

102 = 1
4
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Hence

P{|X − 50| < 10} ≥ 1 − 1
4

= 3
4

and so the probability that this week’s production will be between 40 and 60 is at
least .75. !

By replacing k by kσ in Equation 4.9.1, we can write Chebyshev’s inequality as

P{|X − µ| > kσ } ≤ 1/k2

Thus it states that the probability a random variable differs from its mean by more than k
standard deviations is bounded by 1/k2.

We will end this section by using Chebyshev’s inequality to prove the weak law of
large numbers, which states that the probability that the average of the first n terms in a
sequence of independent and identically distributed random variables differs by its mean
by more than ε goes to 0 as n goes to infinity.

Theorem 4.9.3 The Weak Law of Large Numbers
Let X1, X2, . . . , be a sequence of independent and identically distributed random vari-
ables, each having mean E[Xi] = µ. Then, for any ε > 0,

P
{∣∣∣

X1 + · · · + Xn

n
− µ

∣∣∣ > ε

}
→ 0 as n → ∞

Proof

We shall prove the result only under the additional assumption that the random variables
have a finite variance σ 2. Now, as

E
[

X1 + · · · + Xn

n

]
= µ and Var

(
X1 + · · · + Xn

n

)
= σ 2

n

it follows from Chebyshev’s inequality that

P
{∣∣∣

X1 + · · · + Xn

n
− µ

∣∣∣ > ε

}
≤ σ 2

nε2

and the result is proved. !

For an application of the above, suppose that a sequence of independent trials is per-
formed. Let E be a fixed event and denote by P(E) the probability that E occurs on a
given trial. Letting

Xi =
{

1 if E occurs on trial i
0 if E does not occur on trial i
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it follows that X1 + X2 + · · · + Xn represents the number of times that E occurs in the
first n trials. Because E[Xi] = P(E), it thus follows from the weak law of large numbers
that for any positive number ε, no matter how small, the probability that the proportion
of the first n trials in which E occurs differs from P(E) by more than ε goes to 0 as n
increases.

Problems

1. Five men and 5 women are ranked according to their scores on an examination.
Assume that no two scores are alike and all 10! possible rankings are equally likely.
Let X denote the highest ranking achieved by a woman (for instance, X = 2 if
the top-ranked person was male and the next-ranked person was female). Find
P{X = i}, i = 1, 2, 3, . . . , 8, 9, 10.

2. Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed n times. What are the possible values of X ?

3. In Problem 2, if the coin is assumed fair, for n = 3, what are the probabilities
associated with the values that X can take on?

4. The distribution function of the random variable X is given

F(x) =






0 x < 0
x
2

0 ≤ x < 1

2
3

1 ≤ x < 2

11
12

2 ≤ x < 3

1 3 ≤ x

(a) Plot this distribution function.
(b) What is P{X > 1

2 }?
(c) What is P{2 < X ≤ 4}?
(d) What is P{X < 3}?
(e) What is P{X = 1}?

5. Suppose the random variable X has probability density function

f (x) =
{

c x3, if 0 ≤ x ≤ 1
0, otherwise

(a) Find the value of c.
(b) Find P{.4 < X < .8}.
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6. The amount of time, in hours, that a computer functions before breaking down
is a continuous random variable with probability density function given by

f (x) =
{

λe−x/100 x ≥ 0

0 x < 0

What is the probability that a computer will function between 50 and 150 hours
before breaking down? What is the probability that it will function less than
100 hours?

7. The lifetime in hours of a certain kind of radio tube is a random variable having
a probability density function given by

f (x) =
{

0 x ≤ 100
100
x2 x > 100

What is the probability that exactly 2 of 5 such tubes in a radio set will have
to be replaced within the first 150 hours of operation? Assume that the events
Ei , i = 1, 2, 3, 4, 5, that the ith such tube will have to be replaced within this
time are independent.

8. If the density function of X equals

f (x) =
{

c e−2x 0 < x < ∞
0 x < 0

find c. What is P{X > 2}?
9. A set of five transistors are to be tested, one at a time in a random order, to see

which of them are defective. Suppose that three of the five transistors are defective,
and let N1 denote the number of tests made until the first defective is spotted, and
let N2 denote the number of additional tests until the second defective is spotted.
Find the joint probability mass function of N1 and N2.

10. The joint probability density function of X and Y is given by

f (x, y) = 6
7

(
x2 + xy

2

)
, 0 < x < 1, 0 < y < 2

(a) Verify that this is indeed a joint density function.
(b) Compute the density function of X .
(c) Find P{X > Y }.

11. Let X1, X2, . . . , Xn be independent random variables, each having a uniform dis-
tribution over (0, 1). Let M = maximum (X1, X2, . . . , Xn). Show that the distri-
bution function of M is given by

FM (x) = xn, 0 ≤ x ≤ 1

What is the probability density function of M ?
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12. The joint density of X and Y is given by

f (x, y) =
{

x e−(x+y) x > 0, y > 0

0 otherwise

(a) Compute the density of X .
(b) Compute the density of Y .
(c) Are X and Y independent?

13. The joint density of X and Y is

f (x, y) =
{

2 0 < x < y, 0 < y < 1

0 otherwise

(a) Compute the density of X .
(b) Compute the density of Y .
(c) Are X and Y independent?

14. If the joint density function of X and Y factors into one part depending only
on x and one depending only on y, show that X and Y are independent.
That is, if

f (x, y) = k(x) h( y), −∞ < x < ∞, −∞ < y < ∞

show that X and Y are independent.
15. Is Problem 14 consistent with the results of Problems 12 and 13?

16. Suppose that X and Y are independent continuous random variables. Show
that

(a) P{X + Y ≤ a} =
∫ ∞

−∞
FX (a − y) fY ( y) dy

(b) P{X ≤ Y } =
∫ ∞

−∞
FX ( y) fY ( y) dy

where fY is the density function of Y , and FX is the distribution function
of X .

17. When a current I (measured in amperes) flows through a resistance R (measured
in ohms), the power generated (measured in watts) is given by W = I2R. Suppose
that I and R are independent random variables with densities

fI (x) = 6x(1 − x) 0 ≤ x ≤ 1

fR(x) = 2x 0 ≤ x ≤ 1

Determine the density function of W .
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18. In Example 4.3b, determine the conditional probability mass function of the size
of a randomly chosen family containing 2 girls.

19. Compute the conditional density function of X given Y = y in (a) Problem 10
and (b) Problem 13.

20. Show that X and Y are independent if and only if

(a) pX |Y (x|y) = pX (x) in the discrete case

(b) fX |Y (x|y) = fX (x) in the continuous case

21. Compute the expected value of the random variable in Problem 1.
22. Compute the expected value of the random variable in Problem 3.
23. Each night different meteorologists give us the “probability” that it will rain the

next day. To judge how well these people predict, we will score each of them as
follows: If a meteorologist says that it will rain with probability p, then he or she
will receive a score of

1 − (1 − p)2 if it does rain
1 − p2 if it does not rain

We will then keep track of scores over a certain time span and conclude that
the meteorologist with the highest average score is the best predictor of weather.
Suppose now that a given meteorologist is aware of this and so wants to maximize
his or her expected score. If this individual truly believes that it will rain tomorrow
with probability p∗, what value of p should he or she assert so as to maximize the
expected score?

24. An insurance company writes a policy to the effect that an amount of money A
must be paid if some event E occurs within a year. If the company estimates that
E will occur within a year with probability p, what should it charge the customer
so that its expected profit will be 10 percent of A?

25. A total of 4 buses carrying 148 students from the same school arrive at a football
stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the
students is randomly selected. Let X denote the number of students that were on
the bus carrying this randomly selected student. One of the 4 bus drivers is also
randomly selected. Let Y denote the number of students on her bus.

(a) Which of E[X ] or E[Y ] do you think is larger? Why?
(b) Compute E[X ] and E[Y ].

26. Suppose that two teams play a series of games that end when one of them has won
i games. Suppose that each game played is, independently, won by team A with
probability p. Find the expected number of games that are played when i = 2.
Also show that this number is maximized when p = 1

2 .
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27. The density function of X is given by

f (x) =
{

a + b x2 0 ≤ x ≤ 1

0 otherwise

If E[X ] = 3
5 , find a, b.

28. The lifetime in hours of electronic tubes is a random variable having a probability
density function given by

f (x) = a2 x e−ax, x ≥ 0

Compute the expected lifetime of such a tube.
29. Let X1, X2, . . . , Xn be independent random variables having the common density

function

f (x) =
{

1 0 < x < 1

0 otherwise

Find (a) E[Max(X1, . . . , Xn)] and (b) E[Min(X1, . . . , Xn)].
30. Suppose that X has density function

f (x) =
{

1 0 < x < 1

0 otherwise

Compute E[X n] (a) by computing the density of X n and then using the definition
of expectation and (b) by using Proposition 4.5.1.

31. The time it takes to repair a personal computer is a random variable whose density,
in hours, is given by

f (x) =
{

1
2 0 < x < 2

0 otherwise

The cost of the repair depends on the time it takes and is equal to 40 + 30
√

x
when the time is x. Compute the expected cost to repair a personal computer.

32. If E[X ] = 2 and E[X 2] = 8, calculate (a) E[(2+4X )2] and (b) E[X 2+(X +1)2].
33. Ten balls are randomly chosen from an urn containing 17 white and 23 black

balls. Let X denote the number of white balls chosen. Compute E[X ]
(a) by defining appropriate indicator variables Xi , i = 1, . . . , 10 so that

X =
10∑

i=1

Xi
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(b) by defining appropriate indicator variables Yi = 1, . . . , 17 so that

X =
17∑

i=1

Yi

34. If X is a continuous random variable having distribution function F , then its
median is defined as that value of m for which

F(m) = 1/2

Find the median of the random variables with density function

(a) f (x) = e−x, x ≥ 0;

(b) f (x) = 1, 0 ≤ x ≤ 1.

35. The median, like the mean, is important in predicting the value of a random
variable. Whereas it was shown in the text that the mean of a random variable
is the best predictor from the point of view of minimizing the expected value of
the square of the error, the median is the best predictor if one wants to minimize
the expected value of the absolute error. That is, E[|X − c|] is minimized when
c is the median of the distribution function of X . Prove this result when X is
continuous with distribution function F and density function f . Hint: Write

E[|X − c|] =
∫ ∞

−∞
|x − c| f (x) dx

=
∫ c

−∞
|x − c| f (x) dx +

∫ ∞

c
|x − c| f (x) dx

=
∫ c

−∞
(c − x)f (x) dx +

∫ ∞

c
(x − c)f (x) dx

= c F(c) −
∫ c

−∞
x f (x) dx +

∫ ∞

c
x f (x) dx − c[1 − F(c)]

Now, use calculus to find the minimizing value of c.
36. We say that mp is the 100p percentile of the distribution function F if

F(mp) = p

Find mp for the distribution having density function

f (x) = 2e−2x, x ≥ 0

37. A community consists of 100 married couples. If 50 members of the community
die, what is the expected number of marriages that remain intact? Assume that the



Problems 137

set of people who die is equally likely to be any of the
(

200
50

)
groups of size 50.

Hint: For i = 1, . . . , 100 let

Xi =
{

1 if neither member of couple i dies

0 otherwise

38. Compute the expectation and variance of the number of successes in n indepen-
dent trials, each of which results in a success with probability p. Is independence
necessary?

39. Suppose that X is equally likely to take on any of the values 1, 2, 3, 4. Compute
(a) E[X ] and (b) Var(X ).

40. Let pi = P{X = i} and suppose that p1 + p2 + p3 = 1. If E[X ] = 2, what values
of p1, p2, p3 (a) maximize and (b) minimize Var(X )?

41. Compute the mean and variance of the number of heads that appear in 3 flips of
a fair coin.

42. Argue that for any random variable X

E[X 2] ≥ (E[X ])2

When does one have equality?
43. A random variable X , which represents the weight (in ounces) of an article, has

density function,

f (z) =






z − 8 for 8 ≤ z ≤ 9
10 − z for 9 < z ≤ 10
0 otherwise

(a) Calculate the mean and variance of the random variable X .
(b) The manufacturer sells the article for a fixed price of $2.00. He guaran-

tees to refund the purchase money to any customer who finds the weight
of his article to be less than 8.25 oz. His cost of production is related to the
weight of the article by the relation x/15 + .35. Find the expected profit per
article.

44. Let Xi denote the percentage of votes cast in a given election that are for candidate
i, and suppose that X1 and X2 have a joint density function

fX1,X2(x, y) =
{

3(x + y), if x ≥ 0, y ≥ 0, 0 ≤ x + y ≤ 1
0, if otherwise

(a) Find the marginal densities of X1 and X2.
(b) Find E[Xi] and Var(Xi) for i = 1, 2.



138 Chapter 4: Random Variables and Expectation

45. A product is classified according to the number of defects it contains and the
factory that produces it. Let X1 and X2 be the random variables that represent
the number of defects per unit (taking on possible values of 0, 1, 2, or 3) and the
factory number (taking on possible values 1 or 2), respectively. The entries in the
table represent the joint possibility mass function of a randomly chosen product.

X2X1 1 2

0 1
8

1
16

1 1
16

1
16

2 3
16

1
8

3 1
8

1
4

(a) Find the marginal probability distributions of X1 and X2.
(b) Find E[X1], E[X2], Var(X1), Var(X2), and Cov(X1, X2).

46. Find Corr(X1, X2) for the random variables of Problem 44.
47. Verify Equation 4.7.4.
48. Prove Equation 4.7.5 by using mathematical induction.
49. Let X have variance σ 2

x and let Y have variance σ 2
y . Starting with

0 ≤ Var(X /σx + Y /σy)

show that

−1 ≤ Corr(X , Y )

Now using that

0 ≤ Var(X /σx − Y /σy)

conclude that

−1 ≤ Corr(X , Y ) ≤ 1

Using the result that Var(Z) = 0 implies that Z is constant, argue that, if
Corr(X , Y ) = 1 or −1, then X and Y are related by

Y = a + bx

where the sign of b is positive when the correlation is 1 and negative when it
is −1.
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50. Consider n independent trials, each of which results in any of the outcomes i, i =
1, 2, 3, with respective probabilities p1, p2, p3,

∑3
i=1 pi = 1. Let Ni denote the

number of trials that result in outcome i, and show that Cov(N1, N2) = −np1p2.
Also explain why it is intuitive that this covariance is negative. (Hint: For i =
1, . . . , n, let

Xi =
{

1 if trial i results in outcome 1

0 if trial i does not result in outcome 1

Similarly, for j = 1, . . . , n, let

Yj =
{

1 if trial j results in outcome 2

0 if trial j does not result in outcome 2

Argue that

N1 =
n∑

i=1

Xi , N2 =
n∑

j=1

Yj

Then use Proposition 4.7.2 and Theorem 4.7.4.)
51. In Example 4.5f, compute Cov(Xi, Xj) and use this result to show that

Var(X ) = 1.
52. If X1 and X2 have the same probability distribution function, show that

Cov(X1 − X2, X1 + X2) = 0

Note that independence is not being assumed.
53. Suppose that X has density function

f (x) = e−x, x > 0

Compute the moment generating function of X and use your result to deter-
mine its mean and variance. Check your answer for the mean by a direct
calculation.

54. If the density function of X is

f (x) = 1, 0 < x < 1

determine E[etX ]. Differentiate to obtain E[X n] and then check your
answer.

55. Suppose that X is a random variable with mean and variance both equal to 20.
What can be said about P{0 ≤ X ≤ 40}?
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56. From past experience, a professor knows that the test score of a student taking her
final examination is a random variable with mean 75.

(a) Give an upper bound to the probability that a student’s test score will
exceed 85.
Suppose in addition the professor knows that the variance of a student’s test
score is equal to 25.

(b) What can be said about the probability that a student will score between
65 and 85?

(c) How many students would have to take the examination so as to ensure, with
probability at least .9, that the class average would be within 5 of 75?

57. Let X and Y have respective distribution functions FX and FY , and suppose that
for some constants a and b > 0,

FX (x) = FY

(
x − a

b

)

(a) Determine E[X ] in terms of E[Y ].
(b) Determine Var(X ) in terms of Var(Y ).

Hint: X has the same distribution as what other random variable?
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SPECIAL RANDOM VARIABLES

Certain types of random variables occur over and over again in applications. In this chapter,
we will study a variety of them.

5.1 THE BERNOULLI AND BINOMIAL
RANDOM VARIABLES

Suppose that a trial, or an experiment, whose outcome can be classified as either a “success”
or as a “failure” is performed. If we let X = 1 when the outcome is a success and X = 0
when it is a failure, then the probability mass function of X is given by

P{X = 0} = 1 − p (5.1.1)

P{X = 1} = p

where p, 0 ≤ p ≤ 1, is the probability that the trial is a “success.”
A random variable X is said to be a Bernoulli random variable (after the Swiss mathe-

matician James Bernoulli) if its probability mass function is given by Equations 5.1.1 for
some p ∈ (0, 1). Its expected value is

E[X ] = 1 · P{X = 1} + 0 · P{X = 0} = p

That is, the expectation of a Bernoulli random variable is the probability that the random
variable equals 1.

Suppose now that n independent trials, each of which results in a “success” with prob-
ability p and in a “failure” with probability 1 − p, are to be performed. If X represents
the number of successes that occur in the n trials, then X is said to be a binomial random
variable with parameters (n, p).

141
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The probability mass function of a binomial random variable with parameters n and p
is given by

P{X = i} =
(

n
i

)
pi(1 − p)n−i, i = 0, 1, . . . , n (5.1.2)

where
( n

i

)
= n!/[i!(n − i)!] is the number of different groups of i objects that can be

chosen from a set of n objects. The validity of Equation 5.1.2 may be verified by first not-
ing that the probability of any particular sequence of the n outcomes containing i successes
and n − i failures is, by the assumed independence of trials, pi(1 − p)n−i. Equation 5.1.2
then follows since there are

(n
i

)
different sequences of the n outcomes leading to i suc-

cesses and n − i failures — which can perhaps most easily be seen by noting that there are( n
i

)
different selections of the i trials that result in successes. For instance, if n = 5, i = 2,

then there are
(5

2

)
choices of the two trials that are to result in successes — namely, any

of the outcomes

(s, s, f , f , f ) ( f , s, s, f , f ) ( f , f , s, f , s)

(s, f , s, f , f ) ( f , s, f , s, f )

(s, f , f , s, f ) ( f , s, f , f , s) ( f , f , f , s, s)

(s, f , f , f , s) ( f , f , s, s, f )

where the outcome ( f , s, f , s, f ) means, for instance, that the two successes appeared on
trials 2 and 4. Since each of the

(5
2

)
outcomes has probability p2(1 − p)3, we see that the

probability of a total of 2 successes in 5 independent trials is
(5

2

)
p2(1 − p)3. As a check,

note that, by the binomial theorem, the probabilities sum to 1; that is,

∞∑

i=0

p(i) =
n∑

i=0

(n
i

)
pi(1 − p)n−i = [p + (1 − p)]n = 1

The probability mass function of three binomial random variables with respective param-
eters (10, .5), (10, .3), and (10, .6) are presented in Figure 5.1. The first of these is sym-
metric about the value .5, whereas the second is somewhat weighted, or skewed, to lower
values and the third to higher values.

EXAMPLE 5.1a It is known that disks produced by a certain company will be defective
with probability .01 independently of each other. The company sells the disks in packages
of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective.
What proportion of packages is returned? If someone buys three packages, what is the
probability that exactly one of them will be returned?

SOLUTION If X is the number of defective disks in a package, then assuming that customers
always take advantage of the guarantee, it follows that X is a binomial random variable
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FIGURE 5.1 Binomial probability mass functions.

with parameters (10, .01). Hence the probability that a package will have to be replaced is

P{X > 1} = 1 − P{X = 0} − P{X = 1}

= 1 −
(

10
0

)
(.01)0(.99)10 −

(
10
1

)
(.01)1(.99)9 ≈ .005
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Because each package will, independently, have to be replaced with probability .005, it
follows from the law of large numbers that in the long run .5 percent of the packages will
have to be replaced.

It follows from the foregoing that the number of packages that will be returned by
a buyer of three packages is a binomial random variable with parameters n = 3 and
p = .005. Therefore, the probability that exactly one of the three packages will be returned

is
(

3
1

)
(.005)(.995)2 = .015. !

EXAMPLE 5.1b The color of one’s eyes is determined by a single pair of genes, with the gene
for brown eyes being dominant over the one for blue eyes. This means that an individual
having two blue-eyed genes will have blue eyes, while one having either two brown-eyed
genes or one brown-eyed and one blue-eyed gene will have brown eyes. When two people
mate, the resulting offspring receives one randomly chosen gene from each of its parents’
gene pair. If the eldest child of a pair of brown-eyed parents has blue eyes, what is the
probability that exactly two of the four other children (none of whom is a twin) of this
couple also have blue eyes?

SOLUTION To begin, note that since the eldest child has blue eyes, it follows that both parents
must have one blue-eyed and one brown-eyed gene. (For if either had two brown-eyed
genes, then each child would receive at least one brown-eyed gene and would thus have
brown eyes.) The probability that an offspring of this couple will have blue eyes is equal to
the probability that it receives the blue-eyed gene from both parents, which is

(1
2

)(1
2

)
= 1

4 .
Hence, because each of the other four children will have blue eyes with probability 1

4 , it
follows that the probability that exactly two of them have this eye color is

(
4
2

)
(1/4)2(3/4)2 = 27/128 !

EXAMPLE 5.1c A communications system consists of n components, each of which will,
independently, function with probability p. The total system will be able to operate effec-
tively if at least one-half of its components function.

(a) For what values of p is a 5-component system more likely to operate effectively
than a 3-component system?

(b) In general, when is a 2k + 1 component system better than a 2k − 1 component
system?

SOLUTION

(a) Because the number of functioning components is a binomial random variable
with parameters (n, p), it follows that the probability that a 5-component system
will be effective is

(
5
3

)
p3(1 − p)2 +

(
5
4

)
p4(1 − p) + p5
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whereas the corresponding probability for a 3-component system is
(

3
2

)
p2(1 − p) + p3

Hence, the 5-component system is better if

10p3(1 − p)2 + 5p4(1 − p) + p5 ≥ 3p2(1 − p) + p3

which reduces to

3( p − 1)2(2p − 1) ≥ 0

or

p ≥ 1
2

(b) In general, a system with 2k + 1 components will be better than one with 2k − 1
components if (and only if ) p ≥ 1

2 . To prove this, consider a system of 2k + 1
components and let X denote the number of the first 2k − 1 that function. Then

P2k+1(effective) = P{X ≥ k + 1}+ P{X = k}(1 − (1 − p)2)+ P{X = k − 1} p2

which follows since the 2k + 1 component system will be effective if either

(1) X ≥ k + 1;
(2) X = k and at least one of the remaining 2 components function; or
(3) X = k − 1 and both of the next 2 function.

Because

P2k−1(effective) = P{X ≥ k}
= P{X = k} + P{X ≥ k + 1}

we obtain that

P2k+1(effective) − P2k−1(effective)

= P{X = k − 1} p2 − (1 − p)2P{X = k}

=
(

2k − 1
k − 1

)
pk−1(1 − p)kp2 − (1 − p)2

(
2k − 1

k

)
pk(1 − p)k−1

=
(

2k − 1
k

)
pk(1 − p)k[p − (1 − p)] since

(
2k − 1
k − 1

)
=

(
2k − 1

k

)

≥ 0 ⇔ p ≥ 1
2

!
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EXAMPLE 5.1d Suppose that 10 percent of the chips produced by a computer hardware
manufacturer are defective. If we order 100 such chips, will X, the number of defective
ones we receive, be a binomial random variable?

SOLUTION The random variable X will be a binomial random variable with parameters
(100, .1) if each chip has probability .9 of being functional and if the functioning of
successive chips is independent. Whether this is a reasonable assumption when we know
that 10 percent of the chips produced are defective depends on additional factors. For
instance, suppose that all the chips produced on a given day are always either functional
or defective (with 90 percent of the days resulting in functional chips). In this case, if we
know that all of our 100 chips were manufactured on the same day, then X will not be
a binomial random variable. This is so since the independence of successive chips is not
valid. In fact, in this case, we would have

P{X = 100} = .1

P{X = 0} = .9 !

Since a binomial random variable X, with parameters n and p, represents the number of
successes in n independent trials, each having success probability p, we can represent X as
follows:

X =
n∑

i=1

Xi (5.1.3)

where

Xi =
{

1 if the ith trial is a success

0 otherwise

Because the Xi , i = 1, . . . , n are independent Bernoulli random variables, we have that

E[Xi] = P{Xi = 1} = p

Var(Xi) = E[X 2
i ] − p2

= p(1 − p)

where the last equality follows since X 2
i = Xi, and so E[X 2

i ] = E[Xi] = p.
Using the representation Equation 5.1.3, it is now an easy matter to compute the mean

and variance of X:

E[X ] =
n∑

i=1

E[Xi]

= np
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Var(X ) =
n∑

i=1

Var(Xi) since the Xi are independent

= np(1 − p)

If X1 and X2 are independent binomial random variables having respective parameters
(ni, p), i = 1, 2, then their sum is binomial with parameters (n1 + n2, p). This can most
easily be seen by noting that because Xi , i = 1, 2, represents the number of successes in ni
independent trials each of which is a success with probability p, then X1 + X2 represents
the number of successes in n1 + n2 independent trials each of which is a success with
probability p. Therefore, X1 + X2 is binomial with parameters (n1 + n2, p).

5.1.1 Computing the Binomial Distribution Function
Suppose that X is binomial with parameters (n, p). The key to computing its distribution
function

P{X ≤ i} =
i∑

k=0

(
n
k

)
pk(1 − p)n−k, i = 0, 1, . . . , n

is to utilize the following relationship between P{X = k + 1} and P{X = k}:

P{X = k + 1} = p
1 − p

n − k
k + 1

P{X = k} (5.1.4)

The proof of this equation is left as an exercise.

EXAMPLE 5.1e Let X be a binomial random variable with parameters n = 6, p = .4. Then,
starting with P{X = 0} = (.6)6 and recursively employing Equation 5.1.4, we obtain

P{X = 0} = (.6)6 = .0467

P{X = 1} = 4
6

6
1 P{X = 0} = .1866

P{X = 2} = 4
6

5
2 P{X = 1} = .3110

P{X = 3} = 4
6

4
3 P{X = 2} = .2765

P{X = 4} = 4
6

3
4 P{X = 3} = .1382

P{X = 5} = 4
6

2
5 P{X = 4} = .0369

P{X = 6} = 4
6

1
6 P{X = 5} = .0041 !

The text disk uses Equation 5.1.4 to compute binomial probabilities. In using it, one enters
the binomial parameters n and p and a value i and the program computes the probabilities
that a binomial (n, p) random variable is equal to and is less than or equal to i.
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Binomial Distribution

Enter Value For p:

Enter Value For n:

Enter Value For i:

.75

100

70

Probability (Number of Successes 5 i )    .04575381

Probability (Number of Successes <5 i ) .14954105

Start

Quit

FIGURE 5.2

EXAMPLE 5.1f If X is a binomial random variable with parameters n = 100 and p = .75,
find P{X = 70} and P{X ≤ 70}.
SOLUTION The text disk gives the answers shown in Figure 5.2. !

5.2 THE POISSON RANDOM VARIABLE
A random variable X, taking on one of the values 0, 1, 2, . . . , is said to be a Poisson
random variable with parameter λ, λ > 0, if its probability mass function is given by

P{X = i} = e−λ λi

i! , i = 0, 1, . . . (5.2.1)

The symbol e stands for a constant approximately equal to 2.7183. It is a famous con-
stant in mathematics, named after the Swiss mathematician L. Euler, and it is also the
base of the so-called natural logarithm.

Equation 5.2.1 defines a probability mass function, since

∞∑

i=0

p(i) = e−λ
∞∑

i=0

λi/i! = e−λeλ = 1

A graph of this mass function when λ = 4 is given in Figure 5.3.
The Poisson probability distribution was introduced by S. D. Poisson in a book he

wrote dealing with the application of probability theory to lawsuits, criminal trials, and the
like. This book, published in 1837, was entitled Recherches sur la probabilité des jugements
en matière criminelle et en matière civile.
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FIGURE 5.3 The Poisson probability mass function with λ = 4.

As a prelude to determining the mean and variance of a Poisson random variable, let
us first determine its moment generating function.

φ(t) = E[etX ]

=
∞∑

i=0

etie−λλi/i!

= e−λ
∞∑

i=0

(λet)i/i!

= e−λeλet

= exp{λ(et − 1)}

Differentiation yields

φ′(t) = λet exp{λ(et − 1)}
φ′′(t) = (λet)2 exp{λ(et − 1)} + λet exp{λ(et − 1)}
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Evaluating at t = 0 gives that

E[X ] = φ′(0) = λ

Var(X ) = φ′′(0) − (E[X ])2

= λ2 + λ − λ2 = λ

Thus both the mean and the variance of a Poisson random variable are equal to the
parameter λ.

The Poisson random variable has a wide range of applications in a variety of areas because
it may be used as an approximation for a binomial random variable with parameters (n, p)
when n is large and p is small. To see this, suppose that X is a binomial random variable
with parameters (n, p) and let λ = np. Then

P{X = i} = n!
(n − 1)!i!p

i(1 − p)n−i

= n!
(n − 1)!i!

(
λ

n

)i (
1 − λ

n

)n−i

= n(n − 1) . . . (n − i + 1)

ni
λi

i!
(1 − λ/n)n

(1 − λ/n)i

Now, for n large and p small,
(

1 − λ

n

)n

≈ e−λ n(n − 1) . . . (n − i + 1)

ni ≈ 1
(

1 − λ

n

)i

≈ 1

Hence, for n large and p small,

P{X = i} ≈ e−λ λi

i!
In other words, if n independent trials, each of which results in a “success” with probability
p, are performed, then when n is large and p small, the number of successes occurring is
approximately a Poisson random variable with mean λ = np.

Some examples of random variables that usually obey, to a good approximation, the
Poisson probability law (that is, they usually obey Equation 5.2.1 for some value of λ)
are:

1. The number of misprints on a page (or a group of pages) of a book.
2. The number of people in a community living to 100 years of age.
3. The number of wrong telephone numbers that are dialed in a day.
4. The number of transistors that fail on their first day of use.
5. The number of customers entering a post office on a given day.
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6. The number of α-particles discharged in a fixed period of time from some radioac-
tive particle.

Each of the foregoing, and numerous other random variables, is approximately Poisson
for the same reason — namely, because of the Poisson approximation to the binomial.
For instance, we can suppose that there is a small probability p that each letter typed
on a page will be misprinted, and so the number of misprints on a given page will be
approximately Poisson with mean λ = np where n is the (presumably) large number of
letters on that page. Similarly, we can suppose that each person in a given community,
independently, has a small probability p of reaching the age 100, and so the number of
people that do will have approximately a Poisson distribution with mean np where n is the
large number of people in the community. We leave it for the reader to reason out why the
remaining random variables in examples 3 through 6 should have approximately a Poisson
distribution.

EXAMPLE 5.2a Suppose that the average number of accidents occurring weekly on a par-
ticular stretch of a highway equals 3. Calculate the probability that there is at least one
accident this week.

SOLUTION Let X denote the number of accidents occurring on the stretch of highway in
question during this week. Because it is reasonable to suppose that there are a large number
of cars passing along that stretch, each having a small probability of being involved in
an accident, the number of such accidents should be approximately Poisson distributed.
Hence,

P{X ≥ 1} = 1 − P{X = 0}

= 1 − e−3 30

0!
= 1 − e−3

≈ .9502 !

EXAMPLE 5.2b Suppose the probability that an item produced by a certain machine will
be defective is .1. Find the probability that a sample of 10 items will contain at most one
defective item. Assume that the quality of successive items is independent.

SOLUTION The desired probability is
(10

0

)
(.1)0(.9)10 +

(10
1

)
(.1)1(.9)9 = .7361, whereas

the Poisson approximation yields the value

e−1 10

0! + e−1 11

1! = 2e−1 ≈ .7358 !

EXAMPLE 5.2c Consider an experiment that consists of counting the number of α parti-
cles given off in a 1-second interval by 1 gram of radioactive material. If we know from
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past experience that, on the average, 3.2 such α-particles are given off, what is a good
approximation to the probability that no more than 2 α-particles will appear?

SOLUTION If we think of the gram of radioactive material as consisting of a large number
n of atoms each of which has probability 3.2/n of disintegrating and sending off an α-
particle during the second considered, then we see that, to a very close approximation, the
number of α-particles given off will be a Poisson random variable with parameter λ = 3.2.
Hence the desired probability is

P{X ≤ 2} = e−3.2 + 3.2e−3.2 + (3.2)2

2
e−3.2

= .382 !

EXAMPLE 5.2d If the average number of claims handled daily by an insurance company is
5, what proportion of days have less than 3 claims? What is the probability that there will
be 4 claims in exactly 3 of the next 5 days? Assume that the number of claims on different
days is independent.

SOLUTION Because the company probably insures a large number of clients, each having a
small probability of making a claim on any given day, it is reasonable to suppose that the
number of claims handled daily, call it X, is a Poisson random variable. Since E(X ) = 5,
the probability that there will be fewer than 3 claims on any given day is

P{X ≤ 3} = P{X = 0} + P{X = 1} + P{X = 2}

= e−5 + e−5 51

1! + e−5 52

2!
= 37

2
e−5

≈ .1247

Since any given day will have fewer than 3 claims with probability .125, it follows, from
the law of large numbers, that over the long run 12.5 percent of days will have fewer than
3 claims.

It follows from the assumed independence of the number of claims over successive days
that the number of days in a 5-day span that have exactly 4 claims is a binomial random
variable with parameters 5 and P{X = 4}. Because

P{X = 4} = e−5 54

4! ≈ .1755

it follows that the probability that 3 of the next 5 days will have 4 claims is equal to
(

5
3

)
(.1755)3(.8245)2 ≈ .0367 !
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The Poisson approximation result can be shown to be valid under even more general
conditions than those so far mentioned. For instance, suppose that n independent trials
are to be performed, with the ith trial resulting in a success with probability pi , i =
1, . . . , n. Then it can be shown that if n is large and each pi is small, then the number of
successful trials is approximately Poisson distributed with mean equal to

∑n
i=1 pi. In fact,

this result will sometimes remain true even when the trials are not independent, provided
that their dependence is “weak.” For instance, consider the following example.

EXAMPLE 5.2e At a party n people put their hats in the center of a room, where the hats
are mixed together. Each person then randomly chooses a hat. If X denotes the number
of people who select their own hat, then, for large n, it can be shown that X has approxi-
mately a Poisson distribution with mean 1. To see why this might be true, let

Xi =
{

1 if the ith person selects his or her own hat

0 otherwise

Then we can express X as

X = X1 + · · · + Xn

and so X can be regarded as representing the number of “successes” in n “trials” where trial
i is said to be a success if the ith person chooses her own hat. Now, since the ith person is
equally likely to end up with any of the n hats, one of which is her own, it follows that

P{Xi = 1} = 1
n

(5.2.2)

Suppose now that i )= j and consider the conditional probability that the ith person
chooses her own hat given that the jth person does — that is, consider P{Xi = 1|Xj = 1}.
Now given that the jth person indeed selects her own hat, it follows that the ith individual
is equally likely to end up with any of the remaining n − 1, one of which is her own.
Hence, it follows that

P{Xi = 1|Xj = 1} = 1
n − 1

(5.2.3)

Thus, we see from Equations 5.2.2 and 5.2.3 that whereas the trials are not independent,
their dependence is rather weak [since, if the above conditional probability were equal to
1/n rather than 1/(n − 1), then trials i and j would be independent]; and thus it is not
at all surprising that X has approximately a Poisson distribution. The fact that E[X ] = 1
follows since

E[X ] = E[X1 + · · · + Xn]
= E[X1] + · · · + E[Xn]

= n
(

1
n

)
= 1
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The last equality follows since, from Equation 5.2.2,

E[Xi] = P{Xi = 1} = 1
n

!

The Poisson distribution possesses the reproductive property that the sum of indepen-
dent Poisson random variables is also a Poisson random variable. To see this, suppose that
X1 and X2 are independent Poisson random variables having respective means λ1 and λ2.
Then the moment generating function of X1 + X2 is as follows:

E[et(X1+X2)] = E[etX1etX2]
= E[etX1]E[etX2] by independence

= exp{λ1(et − 1)} exp{λ2(et − 1)}
= exp{(λ1 + λ2)(et − 1)}

Because exp{(λ1 + λ2)(et − 1)} is the moment generating function of a Poisson random
variable having mean λ1+λ2, we may conclude, from the fact that the moment generating
function uniquely specifies the distribution, that X1 + X2 is Poisson with mean λ1 + λ2.

EXAMPLE 5.2f It has been established that the number of defective stereos produced daily
at a certain plant is Poisson distributed with mean 4. Over a 2-day span, what is the
probability that the number of defective stereos does not exceed 3?

SOLUTION Assuming that X1, the number of defectives produced during the first day, is
independent of X2, the number produced during the second day, then X1 + X2 is Poisson
with mean 8. Hence,

P{X1 + X2 ≤ 3} =
3∑

i=0

e−8 8i

i! = .04238 !

Consider now a situation in which a random number, call it N, of events will occur,
and suppose that each of these events will independently be a type 1 event with proba-
bility p or a type 2 event with probability 1 − p. Let N1 and N2 denote, respectively, the
numbers of type 1 and type 2 events that occur. (So N = N1 + N2.) If N is Poisson dis-
tributed with mean λ, then the joint probability mass function of N1 and N2 is obtained as
follows.

P{N1 = n, N2 = m} = P{N1 = n, N2 = m, N = n + m}
= P{N1 = n, N2 = m|N = n + m}P{N = n + m}

= P{N1 = n, N2 = m|N = n + m}e−λ λn+m

(n + m)!
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Now, given a total of n + m events, because each one of these events is independently
type 1 with probability p, it follows that the conditional probability that there are exactly
n type 1 events (and m type 2 events) is the probability that a binomial (n+m, p) random
variable is equal to n. Consequently,

P{N1 = n, N2 = m} = (n + m)!
n!m! pn(1 − p)me−λ λn+m

(n + m)!

= e−λp (λp)n

n! e−λ(1−p) (λ(1 − p))m

m! (5.2.4)

The probability mass function of N1 is thus

P{N1 = n} =
∞∑

m=0

P{N1 = n, N2 = m}

= e−λp (λp)n

n!
∞∑

m=0

e−λ(1−p) (λ(1 − p))m

m!

= e−λp (λp)n

n! (5.2.5)

Similarly,

P{N2 = m} =
∞∑

n=0

P{N1 = n, N2 = m} = e−λ(1−p) (λ(1 − p))m

m! (5.2.6)

It now follows from Equations 5.2.4, 5.2.5, and 5.2.6, that N1 and N2 are independent
Poisson random variables with respective means λp and λ(1 − p).

The preceding result generalizes when each of the Poisson number of events can be
classified into any of r categories, to yield the following important property of the Poisson
distribution: If each of a Poisson number of events having mean λ is independently classified as
being of one of the types 1, . . . , r, with respective probabilities p1, . . . , pr,

∑r
i=1 pi = 1, then

the numbers of type 1, . . . , r events are independent Poisson random variables with respective
means λp1, . . . , λpr.

5.2.1 Computing the Poisson Distribution Function
If X is Poisson with mean λ, then

P{X = i + 1}
P{X = i} = e−λλi+1/(i + 1)!

e−λλi/i! = λ

i + 1
(5.2.7)
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Starting with P{X = 0} = e−λ, we can use Equation 5.2.7 to successively compute

P{X = 1} = λP{X = 0}

P{X = 2} = λ

2
P{X = 1}

...

P{X = i + 1} = λ

i + 1
P{X = i}

The text disk includes a program that uses Equation 5.2.7 to compute Poisson probabilities.

5.3 THE HYPERGEOMETRIC RANDOM VARIABLE
A bin contains N + M batteries, of which N are of acceptable quality and the other M
are defective. A sample of size n is to be randomly chosen (without replacements) in the
sense that the set of sampled batteries is equally likely to be any of the

(N+M
n

)
subsets of

size n. If we let X denote the number of acceptable batteries in the sample, then

P{X = i} =
(N

i

)( M
n−i

)
(N+M

n

) , i = 0, 1, . . . , min(N , n)∗ (5.3.1)

Any random variable X whose probability mass function is given by Equation 5.3.1 is said
to be a hypergeometric random variable with parameters N , M , n.

EXAMPLE 5.3a The components of a 6-component system are to be randomly chosen
from a bin of 20 used components. The resulting system will be functional if at least 4 of
its 6 components are in working condition. If 15 of the 20 components in the bin are in
working condition, what is the probability that the resulting system will be functional?

SOLUTION If X is the number of working components chosen, then X is hypergeometric
with parameters 15, 5, 6. The probability that the system will be functional is

P{X ≥ 4} =
6∑

i = 4

P{X = i}

=

(
15
4

)(
5
2

)
+

(
15
5

)(
5
1

)
+

(
15
6

)(
5
0

)

(
20
6

)

≈ .8687 !

* We are following the convention that
( m

r
) = 0 if r > m or if r < 0.
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To compute the mean and variance of a hypergeometric random variable whose
probability mass function is given by Equation 5.3.1, imagine that the batteries are drawn
sequentially and let

Xi =
{

1 if the ith selection is acceptable

0 otherwise

Now, since the ith selection is equally likely to be any of the N + M batteries, of which
N are acceptable, it follows that

P{Xi = 1} = N
N + M

(5.3.2)

Also, for i )= j,

P{Xi = 1, Xj = 1} = P{Xi = 1}P{Xj = 1|Xi = 1}

= N
N + M

N − 1
N + M − 1

(5.3.3)

which follows since, given that the ith selection is acceptable, the jth selection is equally
likely to be any of the other N + M − 1 batteries of which N − 1 are acceptable.

To compute the mean and variance of X, the number of acceptable batteries in the
sample of size n, use the representation

X =
n∑

i=1

Xi

This gives

E[X ] =
n∑

i=1

E[Xi] =
n∑

i=1

P{Xi = 1} = nN
N + M

(5.3.4)

Also, Corollary 4.7.3 for the variance of a sum of random variables gives

Var(X ) =
n∑

i=1

Var(Xi) + 2
∑∑

1≤i<j≤n

Cov(Xi , Xj) (5.3.5)

Now, Xi is a Bernoulli random variable and so

Var(Xi) = P{Xi = 1}(1 − P{Xi = 1}) = N
N + M

M
N + M

(5.3.6)
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Also, for i < j,

Cov(Xi , Xj) = E[XiXj] − E[Xi]E[Xj]

Now, because both Xi and Xj are Bernoulli (that is, 0 − 1) random variables, it follows
that XiXj is a Bernoulli random variable, and so

E[XiXj] = P{XiXj = 1}

= P{Xi = 1, Xj = 1}

= N (N − 1)

(N + M)(N + M − 1)
from Equation 5.3.3 (5.3.7)

So from Equation 5.3.2 and the foregoing we see that for i )= j,

Cov(Xi, Xj) = N (N − 1)

(N + M)(N + M − 1)
−

(
N

N + M

)2

= −NM
(N + M)2(N + M − 1)

Hence, since there are
(n

2

)
terms in the second sum on the right side of Equation 5.3.5,

we obtain from Equation 5.3.6

Var(X ) = nNM
(N + M)2 − n(n − 1)NM

(N + M)2(N + M − 1)

= nNM
(N + M)2

(
1 − n − 1

N + M − 1

)
(5.3.8)

If we let p = N /(N +M) denote the proportion of batteries in the bin that are acceptable,
we can rewrite Equations 5.3.4 and 5.3.8 as follows.

E(X ) = np

Var(X ) = np(1 − p)
[

1 − n − 1
N + M − 1

]

It should be noted that, for fixed p, as N + M increases to ∞, Var(X) converges to
np(1 − p), which is the variance of a binomial random variable with parameters (n, p).
(Why was this to be expected?)

EXAMPLE 5.3b An unknown number, say N, of animals inhabit a certain region.
To obtain some information about the population size, ecologists often perform
the following experiment: They first catch a number, say r, of these animals, mark them
in some manner, and release them. After allowing the marked animals time to disperse
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throughout the region, a new catch of size, say, n is made. Let X denote the number of
marked animals in this second capture. If we assume that the population of animals in the
region remained fixed between the time of the two catches and that each time an animal
was caught it was equally likely to be any of the remaining uncaught animals, it follows
that X is a hypergeometric random variable such that

P{X = i} =
( r

i

) (
N−r
n−i

)

(
N
n

) ≡ Pi(N )

Suppose now that X is observed to equal i. That is, the fraction i/n of the animals in
the second catch were marked. By taking this as an approximation of r/N , the proportion
of animals in the region that are marked, we obtain the estimate rn/i of the number
of animals in the region. For instance, if r = 50 animals are initially caught, marked,
and then released, and a subsequent catch of n = 100 animals revealed X = 25 of them
that were marked, then we would estimate the number of animals in the region to be
about 200. !

There is a relationship between binomial random variables and the hypergeometric dis-
tribution that will be useful to us in developing a statistical test concerning two bino-
mial populations.

EXAMPLE 5.3c Let X and Y be independent binomial random variables having respective
parameters (n, p) and (m, p). The conditional probability mass function of X given that
X + Y = k is as follows.

P{X = i|X + Y = k} = P{X = i, X + Y = k}
P{X + Y = k}

= P{X = i, Y = k − i}
P{X + Y = k}

= P{X = i}P{Y = k − i}
P{X + Y = k}

=

(
n
i

)
pi(1 − p)n−i

(
m

k − i

)
pk−i(1 − p)m−(k−i)

(
n + m

k

)
pk(1 − p)n+m−k

=

(
n
i

)(
m

k − i

)

(
n + m

k

)
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where the next-to-last equality used the fact that X + Y is binomial with parameters
(n + m, p). Hence, we see that the conditional distribution of X given the value of X + Y
is hypergeometric.

It is worth noting that the preceding is quite intuitive. For suppose that n + m inde-
pendent trials, each of which has the same probability of being a success, are performed;
let X be the number of successes in the first n trials, and let Y be the number of successes
in the final m trials. Given a total of k successes in the n + m trials, it is quite intuitive
that each subgroup of k trials is equally likely to consist of those trials that resulted in
successes. That is, the k success trials are distributed as a random selection of k of the
n + m trials, and so the number that are from the first n trials is hypergeometric. !

5.4 THE UNIFORM RANDOM VARIABLE
A random variable X is said to be uniformly distributed over the interval [α, β] if its
probability density function is given by

f (x) =






1
β − α

if α ≤ x ≤ β

0 otherwise

A graph of this function is given in Figure 5.4. Note that the foregoing meets the require-
ments of being a probability density function since

1
β − α

∫ β

α
dx = 1

The uniform distribution arises in practice when we suppose a certain random variable is
equally likely to be near any value in the interval [α, β].

The probability that X lies in any subinterval of [α, β] is equal to the length of that
subinterval divided by the length of the interval [α, β]. This follows since when [a, b]
is a subinterval of [α, β] (see Figure 5.5),

f (x)

! "

1
" 2 !

x

FIGURE 5.4 Graph of f (x) for a uniform [α, β].



5.4 The Uniform Random Variable 161

f (x)

! "

1
" 2 !

a b
x

FIGURE 5.5 Probabilities of a uniform random variable.

P{a < X < b} = 1
β − α

∫ b

a
dx

= b − a
β − α

EXAMPLE 5.4a If X is uniformly distributed over the interval [0, 10], compute the proba-
bility that (a) 2 < X < 9, (b) 1 < X < 4, (c) X < 5, (d) X > 6.

SOLUTION The respective answers are (a) 7/10, (b) 3/10, (c) 5/10, (d) 4/10. !

EXAMPLE 5.4b Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M.
That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a
time that is uniformly distributed between 7 and 7:30, find the probability that he waits

(a) less than 5 minutes for a bus;
(b) at least 12 minutes for a bus.

SOLUTION Let X denote the time in minutes past 7 A.M. that the passenger arrives at
the stop. Since X is a uniform random variable over the interval (0, 30), it follows that
the passenger will have to wait less than 5 minutes if he arrives between 7:10 and 7:15 or
between 7:25 and 7:30. Hence, the desired probability for (a) is

P{10 < X < 15} + P{25 < X < 30} = 5
30

+ 5
30

= 1
3

Similarly, he would have to wait at least 12 minutes if he arrives between 7 and 7:03 or
between 7:15 and 7:18, and so the probability for (b) is

P{0 < X < 3} + P{15 < X < 18} = 3
30

+ 3
30

= 1
5

!



162 Chapter 5: Special Random Variables

The mean of a uniform [α, β] random variable is

E[X ] =
∫ β

α

x
β − α

dx

= β2 − α2

2(β − α)

= (β − α)(β + α)

2(β − α)

or

E[X ] = α + β

2

Or, in other words, the expected value of a uniform [α, β] random variable is equal to the
midpoint of the interval [α, β], which is clearly what one would expect. (Why?)

The variance is computed as follows.

E[X 2] = 1
β − α

∫ β

α
x2dx

= β3 − α3

3(β − α)

= β2 + αβ + α2

3

where the final equation used that

β3 − α3 = (β2 + αβ + α2)(β − α)

Hence,

Var(X ) = β2 + αβ + α2

3
−

(
α + β

2

)2

= 4(β2 + αβ + α2) − 3(α2 + 2αβ + β2)

12

= α2 + β2 − 2αβ

12

= (β − α)2

12

EXAMPLE 5.4c The current in a semiconductor diode is often measured by the Shockley
equation

I = I0(eaV − 1)
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where V is the voltage across the diode; I0 is the reverse current; a is a constant; and I is
the resulting diode current. Find E[I] if a = 5, I0 = 10−6, and V is uniformly distributed
over (1, 3).

SOLUTION
E[I ] = E[I0(eaV − 1)]

= I0E[eaV − 1]
= I0(E[eaV ] − 1)

= 10−6
∫ 3

1
e5x 1

2
dx − 10−6

= 10−7(e15 − e5) − 10−6

≈ .3269 !

The value of a uniform (0, 1) random variable is called a random number. Most com-
puter systems have a built-in subroutine for generating (to a high level of approxima-
tion) sequences of independent random numbers — for instance, Table 5.1 presents a set
of independent random numbers. Random numbers are quite useful in probability and
statistics because their use enables one to empirically estimate various probabilities and
expectations.

TABLE 5.1 A Random Number Table

.68587 .25848 .85227 .78724 .05302 .70712 .76552 .70326 .80402 .49479

.73253 .41629 .37913 .00236 .60196 .59048 .59946 .75657 .61849 .90181

.84448 .42477 .94829 .86678 .14030 .04072 .45580 .36833 .10783 .33199

.49564 .98590 .92880 .69970 .83898 .21077 .71374 .85967 .20857 .51433

.68304 .46922 .14218 .63014 .50116 .33569 .97793 .84637 .27681 .04354

.76992 .70179 .75568 .21792 .50646 .07744 .38064 .06107 .41481 .93919

.37604 .27772 .75615 .51157 .73821 .29928 .62603 .06259 .21552 .72977

.43898 .06592 .44474 .07517 .44831 .01337 .04538 .15198 .50345 .65288

.86039 .28645 .44931 .59203 .98254 .56697 .55897 .25109 .47585 .59524

.28877 .84966 .97319 .66633 .71350 .28403 .28265 .61379 .13886 .78325

.44973 .12332 .16649 .88908 .31019 .33358 .68401 .10177 .92873 .13065

.42529 .37593 .90208 .50331 .37531 .72208 .42884 .07435 .58647 .84972

.82004 .74696 .10136 .35971 .72014 .08345 .49366 .68501 .14135 .15718

.67090 .08493 .47151 .06464 .14425 .28381 .40455 .87302 .07135 .04507

.62825 .83809 .37425 .17693 .69327 .04144 .00924 .68246 .48573 .24647

.10720 .89919 .90448 .80838 .70997 .98438 .51651 .71379 .10830 .69984

.69854 .89270 .54348 .22658 .94233 .08889 .52655 .83351 .73627 .39018

.71460 .25022 .06988 .64146 .69407 .39125 .10090 .08415 .07094 .14244

.69040 .33461 .79399 .22664 .68810 .56303 .65947 .88951 .40180 .87943

.13452 .36642 .98785 .62929 .88509 .64690 .38981 .99092 .91137 .02411

.94232 .91117 .98610 .71605 .89560 .92921 .51481 .20016 .56769 .60462

.99269 .98876 .47254 .93637 .83954 .60990 .10353 .13206 .33480 .29440

.75323 .86974 .91355 .12780 .01906 .96412 .61320 .47629 .33890 .22099

.75003 .98538 .63622 .94890 .96744 .73870 .72527 .17745 .01151 .47200
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For an illustration of the use of random numbers, suppose that a medical center is
planning to test a new drug designed to reduce its users’ blood cholesterol levels. To test
its effectiveness, the medical center has recruited 1,000 volunteers to be subjects in the
test. To take into account the possibility that the subjects’ blood cholesterol levels may be
affected by factors external to the test (such as changing weather conditions), it has been
decided to split the volunteers into 2 groups of size 500 — a treatment group that will
be given the drug and a control group that will be given a placebo. Both the volunteers
and the administrators of the drug will not be told who is in each group (such a test
is called a double-blind test). It remains to determine which of the volunteers should be
chosen to constitute the treatment group. Clearly, one would want the treatment group
and the control group to be as similar as possible in all respects with the exception that
members in the first group are to receive the drug while those in the other group receive
a placebo; then it will be possible to conclude that any difference in response between
the groups is indeed due to the drug. There is general agreement that the best way to
accomplish this is to choose the 500 volunteers to be in the treatment group in a com-
pletely random fashion. That is, the choice should be made so that each of the

(1000
500

)

subsets of 500 volunteers is equally likely to constitute the control group. How can this be
accomplished?

*EXAMPLE 5.4.d (Choosing a Random Subset) From a set of n elements — numbered
1, 2, . . . , n — suppose we want to generate a random subset of size k that is to be chosen
in such a manner that each of the

(n
k

)
subsets is equally likely to be the subset chosen.

How can we do this?
To answer this question, let us work backward and suppose that we have indeed

randomly generated such a subset of size k. Now for each j = 1, . . . , n, we set

Ij =
{

1 if element j is in the subset

0 otherwise

and compute the conditional distribution of Ij given I1, . . . , Ij−1. To start, note that the
probability that element 1 is in the subset of size k is clearly k/n (which can be seen
either by noting that there is probability 1/n that element 1 would have been the jth
element chosen, j = 1, . . . , k; or by noting that the proportion of outcomes of the random

selection that results in element 1 being chosen is
(

1
1

) (
n−1
k−1

)
/
(n

k

)
= k/n). Therefore,

we have that

P{I1 = 1} = k/n (5.4.1)

To compute the conditional probability that element 2 is in the subset given I1, note
that if I1 = 1, then aside from element 1 the remaining k − 1 members of the subset
would have been chosen “at random” from the remaining n − 1 elements (in the sense

* Optional.
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that each of the subsets of size k − 1 of the numbers 2, . . . , n is equally likely to be the
other elements of the subset). Hence, we have that

P{I2 = 1|I1 = 1} = k − 1
n − 1

(5.4.2)

Similarly, if element 1 is not in the subgroup, then the k members of the subgroup would
have been chosen “at random” from the other n − 1 elements, and thus

P{I2 = 1|I1 = 0} = k
n − 1

(5.4.3)

From Equations 5.4.2 and 5.4.3, we see that

P{I2 = 1|I1} = k − I1

n − 1

In general, we have that

P{Ij = 1|I1, . . . , Ij−1} =
k −

j−1∑
i=1

Ii

n − j + 1
, j = 2, . . . , n (5.4.4)

The preceding formula follows since
∑j−1

i=1 Ii represents the number of the first j − 1
elements that are included in the subset, and so given I1, . . . , Ij−1 there remain k−∑j−1

i=1 Ii
elements to be selected from the remaining n − ( j − 1).

Since P{U < a} = a, 0 ≤ a ≤ 1, when U is a uniform (0, 1) random variable,
Equations 5.4.1 and 5.4.4 lead to the following method for generating a random subset
of size k from a set of n elements: Namely, generate a sequence of (at most n) random
numbers U1, U2, . . . and set

I1 =





1 if U1 <

k
n

0 otherwise

I2 =





1 if U2 <

k − I1

n − 1
0 otherwise

...

Ij =
{

1 if Uj <
k−I1−···−Ij−1

n−j+1

0 otherwise
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U1 , .4 U1 . .4

U2 , .5 U2 . .5U2 . .25U2 , .25

U3 , –13 U3 . –13 U3 , –13 U3 . –13

U4 . –12 U4 . –12

U3 , –23

U4 , –12 U4 , –12 U4 , –12
U4 . –12

S 5 {1, 3}

S 5 {1, 2}

S 5 {2, 3}

U3 . –23

S 5 {4, 5}

S 5 {3, 5}S 5 {3, 4}S 5 {2, 5}S 5 {2, 4}S 5 {1, 5}S 5 {1, 4}

FIGURE 5.6 Tree diagram.

This process stops when I1+· · ·+Ij = k and the random subset consists of the k elements
whose I-value equals 1. That is, S = {i : Ii = 1} is the subset.

For instance, if k = 2, n = 5, then the tree diagram of Figure 5.6 illustrates the forego-
ing technique. The random subset S is given by the final position on the tree. Note that
the probability of ending up in any given final position is equal to 1/10, which can be seen
by multiplying the probabilities of moving through the tree to the desired endpoint. For
instance, the probability of ending at the point labeled S = {2, 4} is P{U1 > .4}P{U2 <

.5}P{U3 > 1
3 }P{U4 > 1

2 } = (.6)(.5)
(2

3

) (1
2

)
= .1.

As indicated in the tree diagram (see the rightmost branches that result in S = {4, 5}),
we can stop generating random numbers when the number of remaining places in the
subset to be chosen is equal to the remaining number of elements. That is, the general
procedure would stop whenever either

∑j
i=1 Ii = k or

∑j
i=1 Ii = k − (n − j). In the

latter case, S = {i ≤ j : Ii = 1, j + 1, . . . , n}. !

EXAMPLE 5.4e The random vector X, Y is said to have a uniform distribution over the
two-dimensional region R if its joint density function is constant for points in R, and is 0
for points outside of R. That is, if

f (x, y) =
{

c if (x, y) ∈ R
0 if otherwise
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Because

1 =
∫

R
f (x, y) dx dy

=
∫

R
c dx dy

= c × Area of R

it follows that

c = 1
Area of R

For any region A ⊂ R,

P{(X , Y ) ∈ A} =
∫ ∫

(x,y) ∈ A
f (x, y) dx dy

=
∫ ∫

(x,y) ∈ A
c dx dy

= Area of A
Area of R

Suppose now that X, Y is uniformly distributed over the following rectangular region R:

a, b0, b

0, 0 a, 0

R

Its joint density function is

f (x, y) =
{

c if 0 ≤ x ≤ a, 0 ≤ y ≤ b
0 otherwise

where c = 1
Area of rectangle = 1

ab . In this case, X and Y are independent uniform random

variables. To show this, note that for 0 ≤ x ≤ a, 0 ≤ y ≤ b

P{X ≤ x, Y ≤ y} = c
∫ x

0

∫ y

0
dy dx = xy

ab
(5.4.5)
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0 3"3

(a)

f(x) ! 1
2#

e"x 2/2

(b)

0.399
$

% % # $% " $% " 3$ % # 3$

FIGURE 5.7 The normal density function (a) with µ = 0, σ = 1 and (b) with arbitrary µ and σ 2.

First letting y = b, and then letting x = a, in the preceding shows that

P{X ≤ x} = x
a

, P{Y ≤ y} = y
b

(5.4.6)

Thus, from Equations 5.4.5 and 5.4.6 we can conclude that X and Y are independent,
with X being uniform on (0, a) and Y being uniform on (0, b). !

5.5 NORMAL RANDOM VARIABLES
A random variable is said to be normally distributed with parameters µ and σ 2, and we
write X ∼ N (µ, σ 2), if its density is

f (x) = 1√
2πσ

e−(x−µ)2/2σ 2
, −∞ < x < ∞∗

The normal density f (x) is a bell-shaped curve that is symmetric about µ and that
attains its maximum value of 1√

2π σ
≈ 0.399/σ at x = µ (see Figure 5.7).

The normal distribution was introduced by the French mathematician Abraham de
Moivre in 1733 and was used by him to approximate probabilities associated with binomial
random variables when the binomial parameter n is large. This result was later extended by
Laplace and others and is now encompassed in a probability theorem known as the central
limit theorem, which gives a theoretical base to the often noted empirical observation that,
in practice, many random phenomena obey, at least approximately, a normal probability
distribution. Some examples of this behavior are the height of a person, the velocity in
any direction of a molecule in gas, and the error made in measuring a physical quantity.

* To verify that this is indeed a density function, see Problem 29.
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To compute E[X ] note that

E[X − µ] = 1√
2πσ

∫ ∞

−∞
(x − µ)e−(x−µ)2/2σ 2

dx

Letting y = (x − µ)/σ gives that

E[X − µ] = σ√
2π

∫ ∞

−∞
ye−y2/2dy

But
∫ ∞

−∞
ye−y2/2dy = −e−y2/2|∞−∞ = 0

showing that E[X − µ] = 0, or equivalently that

E[X ] = µ

Using this, we now compute Var(X ) as follows:

Var(X ) = E[(X − µ)2]
= 1√

2πσ

∫ ∞

−∞
(x − µ)2e−(x−µ)2/2σ 2

dx

= 1√
2π

∫ ∞

−∞
σ 2y2e−y2/2dy (5.5.1)

With u = y and dv = ye−y2/2, the integration by parts formula
∫

u dv = uv −
∫

v du

yields that
∫ ∞

−∞
y2e−y2/2dy = −ye−y2/2∣∣∞

−∞ +
∫ ∞

−∞
e−y2/2dy

=
∫ ∞

−∞
e−y2/2dy

Hence, from (5.5.1)

Var(X ) = σ 2 1√
2π

∫ ∞

−∞
e−y2/2dy

= σ 2
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where the preceding used that 1√
2π

e−y2/2dy is the density function of a normal random
variable with parameters µ = 0 and σ = 1, so its integral must equal 1.

Thus µ and σ 2 represent, respectively, the mean and variance of the normal distribution.
A very important property of normal random variables is that if X is normal with

mean µ and variance σ 2, then for any constants a and b, b )= 0, the random variable
Y = a + bX is also a normal random variable with parameters

E[Y ] = E[a + bX ] = a + bE[X ] = a + bµ

and variance

Var(Y ) = Var(a + bX ) = b2Var(X ) = b2σ 2

To verify this, let FY ( y) be the distribution function of Y . Then, for b > 0

FY (y) = P(Y ≤ y)

= P(a + bX ≤ y)

= P
(

X ≤ y − a
b

)

= FX

(
y − a

b

)

where FX is the distribution function of X . Similarly, if b < 0, then

FY ( y) = P(a + bX ≤ y)

= P
(

X ≥ y − a
b

)

= 1 − FX

(
y − a

b

)

Differentiation yields that the density function of Y is

fY ( y) =






1
b fX

(
y−a

b

)
, if b > 0

− 1
b fX

(
y−a

b

)
, if b < 0

which can be written as

fY ( y) = 1
|b| fX

(
y − a

b

)

= 1√
2πσ |b|

e
−

(
y−a

b −µ
)2

/2σ 2
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= 1√
2πσ |b|

e−( y−a−bµ)2/2b2σ 2

showing that Y = a + bX is normal with mean a + bµ and variance b2σ 2.
It follows from the foregoing that if X ∼ N (µ, σ 2), then

Z = X − µ

σ

is a normal random variable with mean 0 and variance 1. Such a random variable Z is
said to have a standard, or unit, normal distribution. Let '(·) denote its distribution
function. That is,

'(x) = 1√
2π

∫ x

−∞
e−y2/2dy, −∞ < x < ∞

This result that Z = (X − µ)/σ has a standard normal distribution when X is normal
with parameters µ and σ 2 is quite important, for it enables us to write all probability
statements about X in terms of probabilities for Z. For instance, to obtain P{X < b}, we
note that X will be less than b if and only if (X − µ)/σ is less than (b − µ)/σ , and so

P{X < b} = P
{

X − µ

σ
<

b − µ

σ

}

= '

(
b − µ

σ

)

Similarly, for any a < b,

P{a < X < b} = P
{

a − µ

σ
<

X − µ

σ
<

b − µ

σ

}

= P
{

a − µ

σ
< Z <

b − µ

σ

}

= P
{

Z <
b − µ

σ

}
− P

{
Z <

a − µ

σ

}

= '

(
b − µ

σ

)
− '

(
a − µ

σ

)
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0 x2x

P {Z ,2x} P {Z . x}

FIGURE 5.8 Standard normal probabilities.

It remains for us to compute '(x). This has been accomplished by an approxima-
tion and the results are presented in Table A1 of the Appendix, which tabulates '(x)
(to a 4-digit level of accuracy) for a wide range of nonnegative values of x. In addition,
Program 5.5a of the text disk can be used to obtain '(x).

While Table A1 tabulates '(x) only for nonnegative values of x, we can also obtain
'(−x) from the table by making use of the symmetry (about 0) of the standard normal
probability density function. That is, for x > 0, if Z represents a standard normal random
variable, then (see Figure 5.8)

'(−x) = P{Z < −x}
= P{Z > x} by symmetry

= 1 − '(x)

Thus, for instance,

P{Z < −1} = '(−1) = 1 − '(1) = 1 − .8413 = .1587

EXAMPLE 5.5a If X is a normal random variable with mean µ = 3 and variance
σ 2 = 16, find

(a) P{X < 11};
(b) P{X > −1};
(c) P{2 < X < 7}.

SOLUTION

(a) P{X < 11} = P
{

X − 3
4

<
11 − 3

4

}

= '(2)

= .9772

(b) P{X > −1} = P
{

X − 3
4

>
−1 − 3

4

}

= P{Z > −1}



5.5 Normal Random Variables 173

= P{Z < 1}
= .8413

(c) P{2 < X < 7} = P
{

2 − 3
4

<
X − 3

4
<

7 − 3
4

}

= '(1) − '(−1/4)

= '(1) − (1 − '(1/4))

= .8413 + .5987 − 1 = .4400 !

EXAMPLE 5.5b Suppose that a binary message — either “0” or “1” — must be transmitted
by wire from location A to location B. However, the data sent over the wire are subject
to a channel noise disturbance and so to reduce the possibility of error, the value 2 is sent
over the wire when the message is “1” and the value −2 is sent when the message is “0.” If
x, x = ±2, is the value sent at location A then R, the value received at location B, is given
by R = x + N , where N is the channel noise disturbance. When the message is received
at location B, the receiver decodes it according to the following rule:

if R ≥ .5, then “1” is concluded

if R < .5, then “0” is concluded

Because the channel noise is often normally distributed, we will determine the error prob-
abilities when N is a standard normal random variable.

There are two types of errors that can occur: One is that the message “1” can be incor-
rectly concluded to be “0” and the other that “0” is incorrectly concluded to be “1.” The
first type of error will occur if the message is “1” and 2 + N < .5, whereas the second will
occur if the message is “0” and −2 + N ≥ .5.

Hence,

P{error|message is “1”} = P{N < −1.5}
= 1 − '(1.5) = .0668

and

P{error|message is “0”} = P{N > 2.5}
= 1 − '(2.5) = .0062 !

EXAMPLE 5.5c The power W dissipated in a resistor is proportional to the square of the
voltage V. That is,

W = rV 2
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where r is a constant. If r = 3, and V can be assumed (to a very good approximation) to
be a normal random variable with mean 6 and standard deviation 1, find

(a) E [W];
(b) P{W > 120}.

SOLUTION

(a) E[W ] = E[3V 2]
= 3E[V 2]
= 3(Var[V ] + E2[V ])
= 3(1 + 36) = 111

(b) P{W > 120} = P{3V 2 > 120}
= P{V >

√
40}

= P{V − 6 >
√

40 − 6}
= P{Z > .3246}
= 1 − '(.3246)

= .3727 !

Let us now compute the moment generating function of a normal random variable.
To start, we compute the moment generating function of a standard normal random
variable Z .

E[etZ ] =
∫ ∞

−∞
etx 1√

2π
e−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−(x2−2tx)/2dx

= e−t2/2 1√
2π

∫ ∞

−∞
e−(x−t)2/2dx

= e−t2/2 1√
2π

∫ ∞

−∞
e−y2/2dy

= e−t2/2

Now, if Z is a standard normal, then X = µ+σZ is normal with mean µ and variance σ 2.
Using the preceding, its moment generating function is

E[etX ] = E[etµ+tσZ ]
= E[etµetσZ ]
= etµE[etσZ ]
= etµe−(σ t)2/2

= eµt−σ 2t2/2
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Another important result is that the sum of independent normal random variables is
also a normal random variable. To see this, suppose that Xi , i = 1, . . . , n, are independent,
with Xi being normal with mean µi and variance σ 2

i . The moment generating function
of

∑n
i=1 Xi is as follows.

E
[
et

∑n
i=1 Xi

]
= E

[
etX1 etX2 · · · etXn

]

=
n∏

i=1

E
[
etXi

]
by independence

=
n∏

i=1

eµi t+σ 2
i t2/2

= eµt+σ 2t2/2

where

µ =
n∑

i=1

µi, σ 2 =
n∑

i=1

σ 2
i

Therefore,
∑n

i=1 Xi has the same moment generating function as a normal random
variable having mean µ and variance σ 2. Hence, from the one-to-one correspondence
between moment generating functions and distributions, we can conclude that

∑n
i=1 Xi

is normal with mean
∑n

i=1 µi and variance
∑n

i=1 σ 2
i .

EXAMPLE 5.5d Data from the National Oceanic and Atmospheric Administration indicate
that the yearly precipitation in Los Angeles is a normal random variable with a mean of
12.08 inches and a standard deviation of 3.1 inches.

(a) Find the probability that the total precipitation during the next 2 years will exceed
25 inches.

(b) Find the probability that next year’s precipitation will exceed that of the follow-
ing year by more than 3 inches.
Assume that the precipitation totals for the next 2 years are independent.

SOLUTION Let X1 and X2 be the precipitation totals for the next 2 years.

(a) Since X1+X2 is normal with mean 24.16 and variance 2(3.1)2 = 19.22, it follows
that

P{X1 + X2 > 25} = P
{

X1 + X2 − 24.16√
19.22

>
25 − 24.16√

19.22

}

= P{Z > .1916}
≈ .4240
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(b) Since −X2 is a normal random variable with mean −12.08 and variance
(−1)2(3.1)2, it follows that X1 − X2 is normal with mean 0 and variance 19.22.
Hence,

P{X1 > X2 + 3} = P{X1 − X2 > 3}

= P
{

X1 − X2√
19.22

>
3√

19.22

}

= P{Z > .6843}
≈ .2469

Thus there is a 42.4 percent chance that the total precipitation in Los Angeles
during the next 2 years will exceed 25 inches, and there is a 24.69 percent chance
that next year’s precipitation will exceed that of the following year by more than
3 inches. !

For α ∈ (0, 1), let zα be such that

P{Z > zα} = 1 − '(zα) = α

That is, the probability that a standard normal random variable is greater than zα is equal
to α (see Figure 5.9).

The value of zα can, for any α, be obtained from Table A1. For instance, since

1 − '(1.645) = .05

1 − '(1.96) = .025

1 − '(2.33) = .01

it follows that

z.05 = 1.645, z.025 = 1.96, z.01 = 2.33

Program 5.5b on the text disk can also be used to obtain the value of zα .

12 ! !

0 z!

FIGURE 5.9 P{Z > zα} = α.
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Since

P{Z < zα} = 1 − α

it follows that 100(1 − α) percent of the time a standard normal random variable will
be less than zα . As a result, we call zα the 100(1 − α) percentile of the standard normal
distribution.

5.6 EXPONENTIAL RANDOM VARIABLES
A continuous random variable whose probability density function is given, for some
λ > 0, by

f (x) =
{

λe−λx if x ≥ 0

0 if x < 0

is said to be an exponential random variable (or, more simply, is said to be exponentially
distributed) with parameter λ. The cumulative distribution function F(x) of an exponen-
tial random variable is given by

F(x) = P{X ≤ x}

=
∫ x

0
λe−λy dy

= 1 − e−λx, x ≥ 0

The exponential distribution often arises, in practice, as being the distribution of the
amount of time until some specific event occurs. For instance, the amount of time (start-
ing from now) until an earthquake occurs, or until a new war breaks out, or until a
telephone call you receive turns out to be a wrong number are all random variables that
tend in practice to have exponential distributions (see Section 5.6.1 for an explanation).

The moment generating function of the exponential is given by

φ(t) = E[etX ]

=
∫ ∞

0
etxλe−λx dx

= λ

∫ ∞

0
e−(λ−t)x dx

= λ

λ − t
, t < λ
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Differentiation yields

φ′(t) = λ

(λ − t)2

φ′′(t) = 2λ

(λ − t)3

and so

E[X ] = φ′(0) = 1/λ

Var(X ) = φ′′(0) − (E[X ])2

= 2/λ2 − 1/λ2

= 1/λ2

Thus λ is the reciprocal of the mean, and the variance is equal to the square of the mean.
The key property of an exponential random variable is that it is memoryless, where we

say that a nonnegative random variable X is memoryless if

P{X > s + t|X > t} = P{X > s} for all s, t ≥ 0 (5.6.1)

To understand why Equation 5.6.1 is called the memoryless property, imagine that X
represents the length of time that a certain item functions before failing. Now let us
consider the probability that an item that is still functioning at age t will continue to
function for at least an additional time s. Since this will be the case if the total functional
lifetime of the item exceeds t + s given that the item is still functioning at t, we see that

P{additional functional life of t-unit-old item exceeds s}
= P{X > t + s|X > t}

Thus, we see that Equation 5.6.1 states that the distribution of additional functional life
of an item of age t is the same as that of a new item — in other words, when Equation
5.6.1 is satisfied, there is no need to remember the age of a functional item since as long
as it is still functional it is “as good as new.”

The condition in Equation 5.6.1 is equivalent to

P{X > s + t, X > t}
P{X > t} = P{X > s}

or

P{X > s + t} = P{X > s}P{X > t} (5.6.2)
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When X is an exponential random variable, then

P{X > x} = e−λx, x > 0

and so Equation 5.6.2 is satisfied (since e−λ(s+t) = e−λse−λt). Hence, exponentially dis-
tributed random variables are memoryless (and in fact it can be shown that they are the only
random variables that are memoryless).

EXAMPLE 5.6a Suppose that a number of miles that a car can run before its battery wears
out is exponentially distributed with an average value of 10,000 miles. If a person desires
to take a 5,000-mile trip, what is the probability that she will be able to complete her trip
without having to replace her car battery? What can be said when the distribution is not
exponential?

SOLUTION It follows, by the memoryless property of the exponential distribution, that the
remaining lifetime (in thousands of miles) of the battery is exponential with parameter
λ = 1/10. Hence the desired probability is

P{remaining lifetime > 5} = 1 − F(5)

= e−5λ

= e−1/2 ≈ .604

However, if the lifetime distribution F is not exponential, then the relevant probability is

P{lifetime > t + 5|lifetime > t} = 1 − F(t + 5)

1 − F(t)

where t is the number of miles that the battery had been in use prior to the start of the
trip. Therefore, if the distribution is not exponential, additional information is needed
(namely, t) before the desired probability can be calculated. !

For another illustration of the memoryless property, consider the following example.

EXAMPLE 5.6b A crew of workers has 3 interchangeable machines, of which 2 must be
working for the crew to do its job. When in use, each machine will function for an expo-
nentially distributed time having parameter λ before breaking down. The workers decide
initially to use machines A and B and keep machine C in reserve to replace whichever of
A or B breaks down first. They will then be able to continue working until one of the
remaining machines breaks down. When the crew is forced to stop working because only
one of the machines has not yet broken down, what is the probability that the still operable
machine is machine C?

SOLUTION This can be easily answered, without any need for computations, by invoking
the memoryless property of the exponential distribution. The argument is as follows:
Consider the moment at which machine C is first put in use. At that time either A or B
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would have just broken down and the other one — call it machine 0 — will still be
functioning. Now even though 0 would have already been functioning for some time,
by the memoryless property of the exponential distribution, it follows that its remaining
lifetime has the same distribution as that of a machine that is just being put into use.
Thus, the remaining lifetimes of machine 0 and machine C have the same distribution
and so, by symmetry, the probability that 0 will fail before C is 1

2 . !

The following proposition presents another property of the exponential distribution.

PROPOSITION 5.6.1 If X1, X2, . . . , Xn are independent exponential random variables hav-
ing respective parameters λ1, λ2, . . . , λn, then min(X1, X2, . . . , Xn) is exponential with
parameter

∑n
t=1 λi.

Proof

Since the smallest value of a set of numbers is greater than x if and only if all values are
greater than x, we have

P{min(X1, X2, . . . , Xn) > x} = P{X1 > x, X2 > x, . . . , Xn > x}

=
n∏

i=1

P{Xi > x} by independence

=
n∏

i=1

e−λix

= e−
∑n

i=1 λi x !

EXAMPLE 5.6c A series system is one that needs all of its components to function in
order for the system itself to be functional. For an n-component series system in which
the component lifetimes are independent exponential random variables with respective
parameters λ1, λ2, . . . , λn, what is the probability that the system survives for a time t?

SOLUTION Since the system life is equal to the minimal component life, it follows from
Proposition 5.6.1 that

P{system life exceeds t} = e−
∑

i λi t !

Another useful property of exponential random variables is that cX is exponential with
parameter λ/c when X is exponential with parameter λ, and c > 0. This follows since

P{cX ≤ x} = P{X ≤ x/c}
= 1 − e−λx/c

The parameter λ is called the rate of the exponential distribution.
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*5.6.1 The Poisson Process
Suppose that “events” are occurring at random time points, and let N (t) denote the num-
ber of events that occurs in the time interval [0, t]. These events are said to constitute a
Poisson process having rate λ, λ > 0, if

(a) N (0) = 0
(b) The number of events that occur in disjoint time intervals are independent.
(c) The distribution of the number of events that occur in a given interval depends

only on the length of the interval and not on its location.

(d) lim
h→0

P{N (h) = 1}
h

= λ

(e) lim
h→0

P{N (h) ≥ 2}
h

= 0

Thus, Condition (a) states that the process begins at time 0. Condition (b), the inde-
pendent increment assumption, states for instance that the number of events by time t
[that is, N (t)] is independent of the number of events that occurs between t and t + s
[that is, N (t + s) − N (t)]. Condition (c), the stationary increment assumption, states that
probability distribution of N (t + s) − N (t) is the same for all values of t. Conditions (d)
and (e) state that in a small interval of length h, the probability of one event occurring is
approximately λh, whereas the probability of 2 or more is approximately 0.

We will now show that these assumptions imply that the number of events occurring
in any interval of length t is a Poisson random variable with parameter λt. To be precise,
let us call the interval [0, t] and denote by N (t) the number of events occurring in that
interval. To obtain an expression for P{N (t) = k}, we start by breaking the interval [0, t]
into n nonoverlapping subintervals each of length t/n (Figure 5.10). Now there will be k
events in [0, t] if either

(i) N (t) equals k and there is at most one event in each subinterval;
(ii) N (t) equals k and at least one of the subintervals contains 2 or more events.

Since these two possibilities are clearly mutually exclusive, and since Condition (i) is
equivalent to the statement that k of the n subintervals contain exactly 1 event and the
other n − k contain 0 events, we have that

P{N (t) = k} = P{k of the n subintervals contain exactly 1 event (5.6.3)

and the other n − k contain 0 events} + P{N (t) = k

and at least 1 subinterval contains 2 or more events}

0 t
n

2t
n

3t
n

t 5 nt
n

t
n(n 21)

FIGURE 5.10

* Optional section.
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Now it can be shown, using Condition (e), that

P{N (t) = k and at least 1 subinterval contains 2 or more events}
−→ 0 as n → ∞ (5.6.4)

Also, it follows from Conditions (d) and (e) that

P{exactly 1 event in a subinterval} ≈ λt
n

P{0 events in a subinterval} ≈ 1 − λt
n

Hence, since the number of events that occur in different subintervals are independent
[from Condition (b)], it follows that

P{k of the subintervals contain exactly 1 event and the other n − k contain 0 events}

≈
(n

k

)(
λt
n

)k (
1 − λt

n

)n−k

(5.6.5)

with the approximation becoming exact as the number of subintervals, n, goes to ∞.
However, the probability in Equation 5.6.5 is just the probability that a binomial random
variable with parameters n and p = λt/n equals k. Hence, as n becomes larger and larger,
this approaches the probability that a Poisson random variable with mean nλt/n = λt
equals k. Hence, from Equations 5.6.3, 5.6.4, and 5.6.5, we see upon letting n approach
∞ that

P{N (t) = k} = e−λt (λt)k

k!
We have shown:

PROPOSITION 5.6.2 For a Poisson process having rate λ

P{N (t) = k} = e−λt (λt)k

k! , k = 0, 1, . . .

That is, the number of events in any interval of length t has a Poisson distribution with
mean λt.

For a Poisson process, let X1 denote the time of the first event. Further, for n > 1, let
Xn denote the elapsed time between (n − 1)st and the nth events. The sequence {Xn, n =
1, 2, . . .} is called the sequence of interarrival times. For instance, if X1 = 5 and X2 = 10,
then the first event of the Poisson process would have occurred at time 5 and the second
at time 15.
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We now determine the distribution of the Xn. To do so, we first note that the event
{X1 > t} takes place if and only if no events of the Poisson process occur in the interval
[0, t], and thus,

P{X1 > t} = P{N (t) = 0} = e−λt

Hence, X1 has an exponential distribution with mean 1/λ. To obtain the distribution of
X2, note that

P{X2 > t|X1 = s} = P{0 events in (s, s + t]|X1 = s}
= P{0 events in (s, s + t]}
= e−λt

where the last two equations followed from independent and stationary increments. There-
fore, from the foregoing we see that X2 is also an exponential random variable with mean
1/λ, and furthermore, that X2 is independent of X1. Repeating the same argument yields:

PROPOSITION 5.6.3 X1, X2, . . . are independent exponential random variables, each with
mean 1/λ.

*5.6.2 The Pareto Distribution
If X is an exponential random variable with rate λ, then

Y = α e X

is said to be a Pareto random variable with parametersα andλ. The parameter λ >0 is called
the index parameter, and α is called the minimum parameter (because P(Y ≥ α) = 1).
The distribution function of Y is derived as follows: For y ≥ α,

P{Y > y} = P{α e X > y}
= P{e X > y/α}
= P{X > log(y/α)}
= e−λ log(y/α)

= e− log((y/α)λ)

= (α/y)λ

Hence, the distribution function of Y is

FY (y) = 1 − P(Y > y) = 1 − αλy−λ , y ≥ α

Differentiating the distribution function yields the density function of Y :

fY (y) = λαλy−(λ+1) , y ≥ α

* Optional section.
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It can be shown (see Problem 5-49) that E[Y ] = ∞ when λ ≤ 1. When λ > 1, the
mean is obtained as follows.

E[Y ] =
∫ ∞

α
y λαλ y−(λ+1) dy

= λαλ

∫ ∞

α
y−λ dy

= αλ λ

1 − λ
y1−λ|∞α

= αλ λ

λ − 1
α1−λ

= α
λ

λ − 1

An important feature of Pareto distributions is that for y0 > α the conditional distribution
of a Pareto random variable Y with parameters α and λ, given that it exceeds y0, is the
Pareto distribution with parameters y0 and λ. To verify this, note for y > y0 that

P{Y > y|Y > y0} = P{Y > y, Y > y0}
P{Y > y0}

= P{Y > y}
P{Y > y0}

= αλ y−λ

αλ y−λ
0

= yλ
0 y−λ

Thus, the conditional distribution is indeed Pareto with parameters y0 and λ.
One of the earliest uses of the Pareto was as the distribution of the annual income of

the members of a population. In fact, it has been widely supposed that incomes in many
populations can be modeled as coming from a Pareto distribution with index parameter
λ = log(5)/ log(4) ≈ 1.161. Under this supposition, it turns out that the total income
of the top 20 percent of earners is 80 percent of the population’s total income earnings,
and that the top 20 percent of these high earners earn 80 percent of the total of all high
earners income, and that the top 20 percent of these very high earners earn 80 percent of
the total of all very high earners income, and so on.

To verify the preceding claim, let y.8 be the 80 percentile of the Pareto distribution.
Because FY (y) = 1 − (α/y)λ, we see that .8 = F(y.8) = 1 − (α/y.8)

λ, showing that

(α/y.8)
λ = .2 or (y.8/α)λ = 5

and thus
y.8 = α 51/λ

Now suppose, from this point on, that λ = log(5)/ log(4), and note that log(4) =
(1/λ) log(5) = log(51/λ), showing that 4 = 51/λ, or equivalently that 1/λ = log5(4).
Hence,

y.8 = α 5log5(4) = 4α

The average income of a randomly chosen individual in the top 20 percent is E[Y |Y >

y.8], which is easily obtained by using that the conditional distribution of Y given that it
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exceeds y.8 is Pareto with parameters y.8 and λ. Using the previously derived formula for
E[Y ], this yields that

E[Y |Y > y.8] = y.8
λ

λ − 1
= 4α

λ

λ − 1

To obtain E[Y |Y < y.8], the average income of a randomly chosen individual in the
bottom 80 percent, we use the identity

E[Y ] = E[Y |Y < y.8](.8) + E[Y |Y > y.8](.2)

Using the previously derived expressions for E[Y ] and E[Y |Y > y.8], the preceding
equation yields that

α
λ

λ − 1
= 4

5
E[Y |Y < y.8] + 4

5
α

λ

λ − 1

showing that

E[Y |Y < y.8] = α

4
λ

λ − 1
Thus,

E[Y |Y < y.8] = 1
16

E[Y |Y > y.8]

Hence, the average earnings of someone in the top 20 percent of income earned is 16 times
that of someone in the lower 80 percent, thus showing that, although there are 4 times as
many people in the lower earning group, the total income of the lower income group is
only 20 percent of the total earnings of the population. (On average, for every 5 people
in the population, 4 are in the lower 80 percent and 1 is in the upper 20 percent; the 4
in the lower earnings group earn on average a total of 4 a

4
λ

λ−1 = a λ
λ−1 , whereas the one

in the higher income group earns on average 4a λ
λ−1 . Thus, 4 out of every 5 dollars of the

population’s total income is earned by someone in the highest 20 percent.)
Because the conditional distribution of a high income earner (that is, one who earns

more than y.8) is Pareto with parameters y.8 and λ, it also follows from the preceding that
80 percent of the total of the earnings of this group are earned by the top 20 percent of
these high earners, and so on.

The Pareto distribution has been applied in a variety of areas. For instance, it has been
used as the distribution of

(a) the file size of internet traffic (under the TCP protocol);

(b) the time to compete a job assigned to a supercomputer;

(c) the size of a meteorite;

(d) the yearly maximum one day rainfalls in different regions.
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*5.7 THE GAMMA DISTRIBUTION
A random variable is said to have a gamma distribution with parameters (α, λ), λ > 0,
α > 0, if its density function is given by

f (x) =





λe−λx(λx)α−1

((α) x ≥ 0

0 x < 0

where

((α) =
∫ ∞

0
λe−λx(λx)α−1 dx

=
∫ ∞

0
e−yyα−1 dy (by letting y = λx)

The integration by parts formula
∫

u dv = uv−
∫

v du yields, with u = yα−1, dv = e−ydy,
v = −e−y, that for α > 1,

∫ ∞

0
e−yyα−1 dy = −e−yyα−1

∣∣∣∣
y = ∞
y = 0

+
∫ ∞

0
e−y(α − 1)yα−2 dy

= (α − 1)

∫ ∞

0
e−yyα−2 dy

or
((α) = (α − 1)((α − 1) (5.7.1)

When α is an integer — say, α = n — we can iterate the foregoing to obtain that
((n) = (n − 1)((n − 1)

= (n − 1)(n − 2)((n − 2) by letting α = n − 1 in Eq. 5.7.1

= (n − 1)(n − 2)(n − 3)((n − 3) by letting α = n − 2 in Eq. 5.7.1
...

= (n − 1)!((1)

Because

((1) =
∫ ∞

0
e−y dy = 1

we see that
((n) = (n − 1)!

The function ((α) is called the gamma function.

* Optional section.
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It should be noted that when α = 1, the gamma distribution reduces to the exponential
with mean 1/λ.

The moment generating function of a gamma random variable X with parameters
(α, λ) is obtained as follows:

φ(t) = E[et X ]

= λα

((α)

∫ ∞

0
et xe−λxxα−1 dx

= λα

((α)

∫ ∞

0
e−(λ−t)xxα−1 dx

=
(

λ

λ − t

)α 1
((α)

∫ ∞

0
e−yyα−1 dy [by y = (λ − t)x]

=
(

λ

λ − t

)α

(5.7.2)

where the final equality used that e−y yα−1/((α) is a density function, and thus integrates
to 1.

Differentiation of Equation 5.7.2 yields

φ′(t) = αλα

(λ − t)α+1

φ′′(t) = α(α + 1)λα

(λ − t)α+2

Hence,
E[X ] = φ′(0) = α

λ
(5.7.3)

Var(X ) = E[X 2] − (E[X ])2

= φ′′(0) −
(α

λ

)2

= α(α + 1)

λ2 − α2

λ2 = α

λ2 (5.7.4)

An important property of the gamma is that if X1 and X2 are independent gamma
random variables having respective parameters (α1, λ) and (α2, λ), then X1 + X2 is a
gamma random variable with parameters (α1 + α2, λ). This result easily follows since

φX1+X2(t) = E[et(X1+X2)] (5.7.5)

= φX1(t)φX2(t)

=
(

λ

λ − t

)α1
(

λ

λ − t

)α2

from Equation 5.7.2

=
(

λ

λ − t

)α1+α2
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which is seen to be the moment generating function of a gamma (α1 + α2, λ) random
variable. Since a moment generating function uniquely characterizes a distribution, the
result entails.

The foregoing result easily generalizes to yield the following proposition.

PROPOSITION 5.7.1 If Xi , i = 1, . . . , n are independent gamma random variables with
respective parameters (αi, λ), then

∑n
i=1 Xi is gamma with parameters

∑n
i=1 αi , λ.

Since the gamma distribution with parameters (1, λ) reduces to the exponential with
the rate λ, we have thus shown the following useful result.

Corollary 5.7.2
If X1, . . . , Xn are independent exponential random variables, each having rate λ, then∑n

i=1 Xi is a gamma random variable with parameters (n, λ).

EXAMPLE 5.7a The lifetime of a battery is exponentially distributed with rate λ. If a stereo
cassette requires one battery to operate, then the total playing time one can obtain from a
total of n batteries is a gamma random variable with parameters (n, λ). !

Figure 5.11 presents a graph of the gamma (α, 1) density for a variety of values of α. It
should be noted that as α becomes large, the density starts to resemble the normal density.
This is theoretically explained by the central limit theorem, which will be presented in the
next chapter.

5.8 DISTRIBUTIONS ARISING FROM THE NORMAL

5.8.1 The Chi-Square Distribution

Definition
If Z1, Z2, . . . , Zn are independent standard normal random variables, then X , defined by

X = Z2
1 + Z2

2 + · · · + Z2
n (5.8.1)

is said to have a chi-square distribution with n degrees of freedom. We will use the notation

X ∼ χ2
n

to signify that X has a chi-square distribution with n degrees of freedom.
The chi-square distribution has the additive property that if X1 and X2 are independent

chi-square random variables with n1 and n2 degrees of freedom, respectively, then X1 +X2
is chi-square with n1 + n2 degrees of freedom. This can be formally shown either by the
use of moment generating functions or, most easily, by noting that X1 + X2 is the sum of
squares of n1 + n2 independent standard normals and thus has a chi-square distribution
with n1 + n2 degrees of freedom.
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FIGURE 5.11 Graphs of the gamma (α, 1) density for (a) α = .5, 2, 3, 4, 5 and (b) α = 50.

If X is a chi-square random variable with n degrees of freedom, then for any α ∈ (0, 1),
the quantity χ2

α,n is defined to be such that

P{X ≥ χ2
α,n} = α

This is illustrated in Figure 5.12.
In Table A2 of the Appendix, we list χ2

α,n for a variety of values of α and n (including
all those needed to solve problems and examples in this text). In addition, Programs 5.8.1a
and 5.8.1b on the text disk can be used to obtain chi-square probabilities and the values
of χ2

α,n.
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8 2
!, n

Area ! !

FIGURE 5.12 The chi-square density function with 8 degrees of freedom.

EXAMPLE 5.8a Determine P{χ2
26 ≤ 30} when χ2

26 is a chi-square random variable with
26 degrees of freedom.

SOLUTION Using Program 5.8.1a gives the result

P{χ2
26 ≤ 30} = .7325 !

EXAMPLE 5.8b Find χ2
.05,15.

SOLUTION Use Program 5.8.1b to obtain:

χ2
.05,15 = 24.996 !

EXAMPLE 5.8c Suppose that we are attempting to locate a target in three-dimensional
space, and that the three coordinate errors (in meters) of the point chosen are independent
normal random variables with mean 0 and standard deviation 2. Find the probability that
the distance between the point chosen and the target exceeds 3 meters.

SOLUTION If D is the distance, then

D2 = X 2
1 + X 2

2 + X 2
3

where Xi is the error in the ith coordinate. Since Zi = Xi/2, i = 1, 2, 3, are all standard
normal random variables, it follows that

P{D2 > 9} = P{Z2
1 + Z2

2 + Z2
3 > 9/4}

= P{χ2
3 > 9/4}

= .5222

where the final equality was obtained from Program 5.8.1a. !

* Optional section.
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*5.8.1.1 The Relation Between Chi-Square and Gamma Random Variables

Let us compute the moment generating function of a chi-square random variable with n
degrees of freedom. To begin, we have, when n = 1, that

E[et X ] = E[et Z2] where Z ∼ N (0, 1) (5.8.2)

=
∫ ∞

−∞
et x2

fZ (x) dx

= 1√
2π

∫ ∞

−∞
et x2

e−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−x2(1−2t)/2 dx

= 1√
2π

∫ ∞

−∞
e−x2/2σ̄ 2

dx where σ̄ 2 = (1 − 2t)−1

= (1 − 2t)−1/2 1√
2πσ̄

∫ ∞

−∞
e−x2/2σ̄ 2

dx

= (1 − 2t)−1/2

where the last equality follows since the integral of the normal (0, σ̄ 2) density equals 1.
Hence, in the general case of n degrees of freedom

E[e t X ] = E
[
e t

∑n
i=1 Z2

i

]

= E

[ n∏

i=1

e t Z2
i

]

=
n∏

i=1

E[e t Z2
i ] by independence of the Zi

=
(

1/2
1/2 − t

)n/2

= (1 − 2t)−n/2 from Equation 5.8.2

which we recognize as being the moment generating function of a gamma random variable
with parameters (n/2, 1/2). Hence, by the uniqueness of moment generating functions, it
follows that these two distributions — chi-square with n degrees of freedom and gamma
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n 5 1

n 5 3

n 5 10

FIGURE 5.13 The chi-square density function with n degrees of freedom.

with parameters n/2 and 1/2 — are identical, and thus we can conclude that the density
of X is given by

f (x) =
1
2

e−x/2
( x

2

)(n/2)−1

(
(n

2

) , x > 0

The chi-square density functions having 1, 3, and 10 degrees of freedom, respectively,
are plotted in Figure 5.13.

Let us reconsider Example 5.8c, this time supposing that the target is located in the
two-dimensional plane.

EXAMPLE 5.8d When we attempt to locate a target in two-dimensional space, suppose
that the coordinate errors are independent normal random variables with mean 0 and
standard deviation 2. Find the probability that the distance between the point chosen and
the target exceeds 3.

SOLUTION If D is the distance and Xi , i = 1, 2, are the coordinate errors, then

D2 = X 2
1 + X 2

2

Since Zi = Xi/2, i = 1, 2, are standard normal random variables, we obtain

P{D2 > 9} = P{Z2
1 + Z2

2 > 9/4} = P{χ2
2 > 9/4} = e−9/8 ≈ .3247

where the preceding calculation used the fact that the chi-square distribution with
2 degrees of freedom is the same as the exponential distribution with parameter 1/2. !

Since the chi-square distribution with n degrees of freedom is identical to the gamma
distribution with parameters α = n/2 and λ = 1/2, it follows from Equations 5.7.3
and 5.7.4 that the mean and variance of a random variable X having this distribution is

E[X ] = n, Var(X ) = 2n
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5.8.2 The t-Distribution
If Z and χ2

n are independent random variables, with Z having a standard normal distribu-
tion and χ2

n having a chi-square distribution with n degrees of freedom, then the random
variable Tn defined by

Tn = Z
√

χ2
n /n

is said to have a t-distribution with n degrees of freedom. A graph of the density function of
Tn is given in Figure 5.14 for n = 1, 5, and 10.

Like the standard normal density, the t-density is symmetric about zero. In addition, as
n becomes larger, it becomes more and more like a standard normal density. To understand
why, recall that χ2

n can be expressed as the sum of the squares of n standard normals,
and so

χ2
n

n
= Z2

1 + · · · + Z2
n

n

where Z1, . . . , Zn are independent standard normal random variables. It now follows from
the weak law of large numbers that, for large n, χ2

n /n will, with probability close to 1, be
approximately equal to E[Z2

i ] = 1. Hence, for n large, Tn = Z /
√

χ2
n /n will have approxi-

mately the same distribution as Z .
Figure 5.15 shows a graph of the t-density function with 5 degrees of freedom com-

pared with the standard normal density. Notice that the t-density has thicker “tails,”
indicating greater variability, than does the normal density.

The mean and variance of Tn can be shown to equal

E[Tn] = 0, n > 1

Var(Tn) = n
n − 2

, n > 2

n 5 10

n 5 5

n 5 1

FIGURE 5.14 Density function of Tn.
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FIGURE 5.15 Comparing standard normal density with the density of T5.

Thus the variance of Tn decreases to 1 — the variance of a standard normal random
variable — as n increases to ∞. For α, 0 < α < 1, let tα,n be such that

P{Tn ≥ tα,n} = α

It follows from the symmetry about zero of the t-density function that −Tn has the same
distribution as Tn, and so

α = P{−Tn ≥ tα,n}
= P{Tn ≤ −tα,n}
= 1 − P{Tn > −tα,n}

Therefore,

P{Tn ≥ −tα,n} = 1 − α

leading to the conclusion that

−tα,n = t1−α,n

which is illustrated in Figure 5.16.

Area 5 !

02t!, n 5 t12!, n t!, n

Area 5 !

FIGURE 5.16 t1−α,n = −tα,n.
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The values of tα,n for a variety of values of n and α have been tabulated in Table A3
in the Appendix. In addition, Programs 5.8.2a and 5.8.2b on the text disk compute the
t-distribution function and the values tα,n, respectively.

EXAMPLE 5.8e Find (a) P{T12 ≤ 1.4} and (b) t.025,9.

SOLUTION Run Programs 5.8.2a and 5.8.2b to obtain the results.

(a) .9066 (b) 2.2625 !

5.8.3 The F-Distribution
If χ2

n and χ2
m are independent chi-square random variables with n and m degrees of free-

dom, respectively, then the random variable Fn,m defined by

Fn,m = χ2
n /n

χ2
m/m

is said to have an F-distribution with n and m degrees of freedom.
For any α ∈ (0, 1), let Fα,n,m be such that

P{Fn,m > Fα,n,m} = α

This is illustrated in Figure 5.17.
The quantities Fα,n,m are tabulated in Table A4 of the Appendix for different values

of n, m, and α ≤ 1
2 . If Fα,n,m is desired when α > 1

2 , it can be obtained by using the
following equalities:

α = P
{

χ2
n /n

χ2
m/m

> Fα,n,m

}

= P
{

χ2
m/m

χ2
n /n

<
1

Fα,n,m

}

= 1 − P
{

χ2
m/m

χ2
n /n

≥ 1
Fα,n,m

}

0

Area 5 !

F!, n, m

FIGURE 5.17 Density function of Fn,m.
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or, equivalently,

P
{

χ2
m/m

χ2
n /n

≥ 1
Fα,n,m

}
= 1 − α (5.8.3)

But because (χ2
m/m)/(χ2

n /n) has an F -distribution with degrees of freedom m and n, it
follows that

1 − α = P
{

χ2
m/m

χ2
n /n

≥ F1−α,m,n

}

implying, from Equation 5.8.3, that

1
Fα,n,m

= F1−α,m,n

Thus, for instance, F.9,5,7 = 1/F.1,7,5 = 1/3.37 = .2967 where the value of F.1,7,5 was
obtained from Table A4 of the Appendix.

Program 5.8.3 computes the distribution function of Fn,m.

EXAMPLE 5.8f Determine P{F6,14 ≤ 1.5}.
SOLUTION Run Program 5.8.3 to obtain the solution .7518. !

*5.9 THE LOGISTICS DISTRIBUTION
A random variable X is said to have a logistics distribution with parameters µ and v > 0 if
its distribution function is

F(x) = e(x−µ)/v

1 + e(x−µ)/v , −∞ < x < ∞

Differentiating F(x) = 1 − 1/(1 + e(x−µ)/v) yields the density function

f (x) = e(x−µ)/v

v(1 + e(x−µ)/v)2 , −∞ < x < ∞

To obtain the mean of a logistics random variable,

E[X ] =
∫ ∞

−∞
x

e(x−µ)/v

v(1 + e(x−µ)/v)2 dx

* Optional section.
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make the substitution y = (x − µ)/v. This yields

E[X ] = v
∫ ∞

−∞

yey

(1 + ey)2 dy + µ

∫ ∞

−∞

ey

(1 + ey)2 dy

= v
∫ ∞

−∞

yey

(1 + ey)2 dy + µ (5.9.1)

where the preceding equality used that ey/((1 + ey)2) is the density function of a logistic
random variable with parameters µ = 0, v = 1 (such a random variable is called a
standard logistic) and thus integrates to 1. Now,

∫ ∞

−∞

yey

(1 + ey)2 dy =
∫ 0

−∞

yey

(1 + ey)2 dy +
∫ ∞

0

yey

(1 + ey)2 dy

= −
∫ ∞

0

xe−x

(1 + e−x)2 dx +
∫ ∞

0

yey

(1 + ey)2 dy

= −
∫ ∞

0

xex

(ex + 1)2 dx +
∫ ∞

0

yey

(1 + ey)2 dy

= 0 (5.9.2)

where the second equality is obtained by making the substitution x = −y, and the third
by multiplying the numerator and denominator by e2x . From Equations 5.9.1 and 5.9.2
we obtain

E[X ] = µ

Thus µ is the mean of the logistic; v is called the dispersion parameter.

Problems

1. A satellite system consists of 4 components and can function adequately if at
least 2 of the 4 components are in working condition. If each component is,
independently, in working condition with probability .6, what is the probability
that the system functions adequately?

2. A communications channel transmits the digits 0 and 1. However, due to static,
the digit transmitted is incorrectly received with probability .2. Suppose that we
want to transmit an important message consisting of one binary digit. To reduce
the chance of error, we transmit 00000 instead of 0 and 11111 instead of 1.
If the receiver of the message uses “majority” decoding, what is the probability
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that the message will be incorrectly decoded? What independence assumptions
are you making? (By majority decoding we mean that the message is decoded
as “0” if there are at least three zeros in the message received and as “1”
otherwise.)

3. If each voter is for Proposition A with probability .7, what is the probability that
exactly 7 of 10 voters are for this proposition?

4. Suppose that a particular trait (such as eye color or left-handedness) of a person
is classified on the basis of one pair of genes, and suppose that d represents a
dominant gene and r a recessive gene. Thus, a person with dd genes is pure
dominance, one with rr is pure recessive, and one with rd is hybrid. The pure
dominance and the hybrid are alike in appearance. Children receive 1 gene from
each parent. If, with respect to a particular trait, 2 hybrid parents have a total
of 4 children, what is the probability that 3 of the 4 children have the outward
appearance of the dominant gene?

5. At least one-half of an airplane’s engines are required to function in order for it
to operate. If each engine independently functions with probability p, for what
values of p is a 4-engine plane more likely to operate than a 2-engine plane?

6. Let X be a binomial random variable with

E[X ] = 7 and Var(X ) = 2.1

Find

(a) P{X = 4};
(b) P{X > 12}.

7. If X and Y are binomial random variables with respective parameters (n, p) and
(n, 1 − p), verify and explain the following identities:

(a) P{X ≤ i} = P{Y ≥ n − i};
(a) P{X = k} = P{Y = n − k}.

8. If X is a binomial random variable with parameters n and p, where 0 < p < 1,
show that

(a) P{X = k + 1} = p
1 − p

n − k
k + 1

P{X = k}, k = 0, 1, . . . , n − 1.

(b) As k goes from 0 to n, P{X = k} first increases and then decreases, reach-
ing its largest value when k is the largest integer less than or equal to
(n + 1)p.

9. Derive the moment generating function of a binomial random variable and
then use your result to verify the formulas for the mean and variance given in
the text.
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10. Compare the Poisson approximation with the correct binomial probability for
the following cases:

(a) P{X = 2} when n = 10, p = .1;
(b) P{X = 0} when n = 10, p = .1;
(c) P{X = 4} when n = 9, p = .2.

11. If you buy a lottery ticket in 50 lotteries, in each of which your chance of winning
a prize is 1

100 , what is the (approximate) probability that you will win a prize (a)
at least once, (b) exactly once, and (c) at least twice?

12. The number of times that an individual contracts a cold in a given year is a
Poisson random variable with parameter λ = 3. Suppose a new wonder drug
(based on large quantities of vitamin C) has just been marketed that reduces the
Poisson parameter to λ = 2 for 75 percent of the population. For the other
25 percent of the population, the drug has no appreciable effect on colds. If an
individual tries the drug for a year and has 0 colds in that time, how likely is it
that the drug is beneficial for him or her?

13. In the 1980s, an average of 121.95 workers died on the job each week. Give
estimates of the following quantities:

(a) the proportion of weeks having 130 deaths or more;
(b) the proportion of weeks having 100 deaths or less.

Explain your reasoning.

14. Approximately 80,000 marriages took place in the state of New York last year.
Estimate the probability that for at least one of these couples

(a) both partners were born on April 30;
(b) both partners celebrated their birthday on the same day of the year.

State your assumptions.

15. The game of frustration solitaire is played by turning the cards of a randomly
shuffled deck of 52 playing cards over one at a time. Before you turn over the
first card, say ace; before you turn over the second card, say two, before you turn
over the third card, say three. Continue in this manner (saying ace again before
turning over the fourteenth card, and so on). You lose if you ever turn over a card
that matches what you have just said. Use the Poisson paradigm to approximate
the probability of winning. (The actual probability is .01623.)

16. The probability of error in the transmission of a binary digit over a communica-
tion channel is 1/103. Write an expression for the exact probability of more than
3 errors when transmitting a block of 103 bits. What is its approximate value?
Assume independence.
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17. If X is a Poisson random variable with mean λ, show that P{X = i } first increases
and then decreases as i increases, reaching its maximum value when i is the largest
integer less than or equal to λ.

18. A contractor purchases a shipment of 100 transistors. It is his policy to test 10
of these transistors and to keep the shipment only if at least 9 of the 10 are in
working condition. If the shipment contains 20 defective transistors, what is the
probability it will be kept?

19. Let X denote a hypergeometric random variable with parameters n, m, and k.
That is,

P{X = i} =

(n
i

)(
m

k − i

)

(
n + m

k

) , i = 0, 1, . . . , min(k, n)

(a) Derive a formula for P{X = i} in terms of P{X = i − 1}.
(b) Use part (a) to compute P{X = i} for i = 0, 1, 2, 3, 4, 5 when n = m = 10,

k = 5, by starting with P{X = 0}.
(c) Based on the recursion in part (a), write a program to compute the hyper-

geometric distribution function.
(d) Use your program from part (c) to compute P{X ≤ 10} when n = m = 30,

k = 15.

20. Independent trials, each of which is a success with probability p, are successively
performed. Let X denote the first trial resulting in a success. That is, X will equal
k if the first k−1 trials are all failures and the kth a success. X is called a geometric
random variable. Compute

(a) P{X = k}, k = 1, 2, . . . ;
(b) E[X].

Let Y denote the number of trials needed to obtain r successes. Y is called a
negative binomial random variable. Compute

(c) P{Y = k}, k = r, r + 1, . . . .

(Hint: In order for Y to equal k, how many successes must result in the first k−1
trials and what must be the outcome of trial k?)

(d) Show that

E[Y ] = r/p

(Hint: Write Y = Y1 + · · · + Yr where Yi is the number of trials needed to go
from a total of i − 1 to a total of i successes.)
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21. If U is uniformly distributed on (0, 1), show that a + (b − a)U is uniform
on (a, b).

22. You arrive at a bus stop at 10 o’clock, knowing that the bus will arrive at some
time uniformly distributed between 10 and 10:30. What is the probability that
you will have to wait longer than 10 minutes? If at 10:15 the bus has not yet
arrived, what is the probability that you will have to wait at least an additional
10 minutes?

23. If X is a normal random variable with parameters µ = 10, σ 2 = 36, compute

(a) P{X > 5};
(b) P{4 < X < 16};
(c) P{X < 8};
(d) P{X < 20};
(e) P{X > 16}.

24. The Scholastic Aptitude Test mathematics test scores across the population of
high school seniors follow a normal distribution with mean 500 and standard
deviation 100. If five seniors are randomly chosen, find the probability that
(a) all scored below 600 and (b) exactly three of them scored above 640.

25. The annual rainfall (in inches) in a certain region is normally distributed with
µ = 40, σ = 4. What is the probability that in 2 of the next 4 years the
rainfall will exceed 50 inches? Assume that the rainfalls in different years are
independent.

26. The weekly demand for a product approximately has a normal distribution with
mean 1,000 and standard deviation 200. The current on hand inventory is 2,200
and no deliveries will be occurring in the next two weeks. Assuming that the
demands in different weeks are independent,

(a) what is the probability that the demand in each of the next 2 weeks is less
than 1,100?

(b) what is the probability that the total of the demands in the next 2 weeks
exceeds 2,200?

27. A certain type of lightbulb has an output that is normally distributed with mean
2,000 end foot candles and standard deviation 85 end foot candles. Determine a
lower specification limit L so that only 5 percent of the lightbulbs produced will
be below this limit. (That is, determine L so that P{X ≥ L} = .95, where X is
the output of a bulb.)

28. A manufacturer produces bolts that are specified to be between 1.19 and
1.21 inches in diameter. If its production process results in a bolt’s diameter
being normally distributed with mean 1.20 inches and standard deviation .005,
what percentage of bolts will not meet specifications?
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29. Let I =
∫ ∞
−∞ e−x2/2 dx.

(a) Show that for any µ and σ

1√
2πσ

∫ ∞

−∞
e−(x−µ)2/2σ 2

dx = 1

is equivalent to I =
√

2π .
(b) Show that I =

√
2π by writing

I2 =
∫ ∞

−∞
e−x2/2 dx

∫ ∞

−∞
e−y2/2 dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2 dx dy

and then evaluating the double integral by means of a change of variables
to polar coordinates. (That is, let x = r cos θ , y = r sin θ , dx dy = r dr dθ .)

30. A random variable X is said to have a lognormal distribution if log X is normally
distributed. If X is lognormal with E[log X ] = µ and Var(log X ) = σ 2, deter-
mine the distribution function of X. That is, what is P{X ≤ x}?

31. The salaries of pediatric physicians are approximately normally distributed. If
25 percent of these physicians earn below 180, 000 and 25 percent earn above
320, 000, what fraction earn

(a) below 250, 000;
(b) between 260, 00 and 300, 000?

32. The sample mean and sample standard deviation on your economics examina-
tion were 60 and 20, respectively; the sample mean and sample standard devia-
tion on your statistics examination were 55 and 10, respectively. You scored 70
on the economics exam and 62 on the statistics exam. Assuming that the two
histograms of test scores are approximately normal histograms,

(a) on which exam was your percentile score highest?
(b) approximate the percentage of the scores on the economics exam that were

below your score.
(c) approximate the percentage of the scores on the statistics exam that were

below your score.

33. Value at risk (VAR) has become a key concept in financial calculations. The VAR
of an investment is defined as that value v such that there is only a 1 percent
chance that the loss from the investment will exceed v.

(a) If the gain from an investment is a normal random variable with mean 10
and variance 49, determine the value at risk. (If X is the gain, then −X is
the loss.)

(b) Among a set of investments whose gains are all normally distributed show
that the one having the smallest VAR is the one having the largest value of
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µ− 2.33σ , where µ and σ 2 are the mean and variance of the gain from the
investment.

34. The annual rainfall in Cincinnati is normally distributed with mean 40.14 inches
and standard deviation 8.7 inches.

(a) What is the probability this year’s rainfall will exceed 42 inches?
(b) What is the probability that the sum of the next 2 years’ rainfall will exceed

84 inches?
(c) What is the probability that the sum of the next 3 years’ rainfall will exceed

126 inches?
(d) For parts (b) and (c), what independence assumptions are you making?

35. The height of adult women in the United States is normally distributed with
mean 64.5 inches and standard deviation 2.4 inches. Find the probability that
a randomly chosen woman is

(a) less than 63 inches tall;
(b) less than 70 inches tall;
(c) between 63 and 70 inches tall.
(d) Alice is 72 inches tall. What percentage of women is shorter than Alice?
(e) Find the probability that the average of the heights of two randomly chosen

women exceeds 66 inches.
(f ) Repeat part (e) for four randomly chosen women.

36. An IQ test produces scores that are normally distributed with mean value 100
and standard deviation 14.2. The top 1 percent of all scores are in what range?

37. The time (in hours) required to repair a machine is an exponentially distributed
random variable with parameter λ = 1.

(a) What is the probability that a repair time exceeds 2 hours?
(b) What is the conditional probability that a repair takes at least 3 hours, given

that its duration exceeds 2 hours?

38. The number of years a radio functions is exponentially distributed with param-
eter λ = 1

8 . If Jones buys a used radio, what is the probability that it will be
working after an additional 10 years?

39. Jones figures that the total number of thousands of miles that a used auto can be
driven before it would need to be junked is an exponential random variable with
parameter 1

20 . Smith has a used car that he claims has been driven only 10,000
miles. If Jones purchases the car, what is the probability that she would get
at least 20,000 additional miles out of it? Repeat under the assumption that
the lifetime mileage of the car is not exponentially distributed but rather is (in
thousands of miles) uniformly distributed over (0, 40).
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*40. Let X1, X2, . . . , Xn denote the first n interarrival times of a Poisson process and
set Sn = ∑n

i=1 Xi .

(a) What is the interpretation of Sn?
(b) Argue that the two events {Sn ≤ t} and {N (t) ≥ n} are identical.
(c) Use part (b) to show that

P{Sn ≤ t} = 1 −
n−1∑

j=0

e−λt(λt) j/j!
(d) By differentiating the distribution function of Sn given in part (c), conclude

that Sn is a gamma random variable with parameters n and λ. (This result
also follows from Corollary 5.7.2.)

*41. Earthquakes occur in a given region in accordance with a Poisson process with
rate 5 per year.

(a) What is the probability there will be at least two earthquakes in the first half
of 2015?

(b) Assuming that the event in part (a) occurs, what is the probability that there
will be no earthquakes during the first 9 months of 2016?

(c) Assuming that the event in part (a) occurs, what is the probability that there
will be at least four earthquakes over the first 9 months of the year 2015?

*42. When shooting at a target in a two-dimensional plane, suppose that the hor-
izontal miss distance is normally distributed with mean 0 and variance 4 and
is independent of the vertical miss distance, which is also normally distributed
with mean 0 and variance 4. Let D denote the distance between the point at
which the shot lands and the target. Find E[D].

43. If X is a chi-square random variable with 6 degrees of freedom, find

(a) P{X ≤ 6};
(b) P{3 ≤ X ≤ 9}.

44. If X and Y are independent chi-square random variables with 3 and 6 degrees of
freedom, respectively, determine the probability that X + Y will exceed 10.

45. Show that ((1/2) = √
π (Hint: Evaluate

∫ ∞
0 e−xx−1/2 dx by letting x = y2/2,

dx = y dy.)

46. If T has a t-distribution with 8 degrees of freedom, find (a) P{T ≥ 1},
(b) P{T ≤ 2}, and (c) P{−1 < T < 1}.

47. If Tn has a t-distribution with n degrees of freedom, show that T 2
n has an

F -distribution with 1 and n degrees of freedom.

* From optional sections.



Problems 205

48. Let ' be the standard normal distribution function. If, for constants a and b > 0

P{X ≤ x} = '

(
x − a

b

)

characterize the distribution of X.

*49. Suppose that Y has a Pareto distribution with minimal parameter α and index
parameter λ.

(a) Find E[Y ] when λ > 1, and show that E[Y ] = ∞ when λ ≤ 1.
(b) Find Var(Y ) when λ > 2.

*50. Suppose that Y = αeX , where X is exponential with rate λ. Use the lack of
memory property of the exponential to argue that the conditional distribution
of Y given that Y > y0 > α is Pareto with parameters y0 and λ.

* From optional sections.



Chapter 6

DISTRIBUTIONS OF SAMPLING
STATISTICS

6.1 INTRODUCTION
The science of statistics deals with drawing conclusions from observed data. For instance,
a typical situation in a technological study arises when one is confronted with a large
collection, or population, of items that have measurable values associated with them. By
suitably sampling from this collection, and then analyzing the sampled items, one hopes
to be able to draw some conclusions about the collection as a whole.

To use sample data to make inferences about an entire population, it is necessary to
make some assumptions about the relationship between the two. One such assumption,
which is often quite reasonable, is that there is an underlying (population) probability
distribution such that the measurable values of the items in the population can be thought
of as being independent random variables having this distribution. If the sample data
are then chosen in a random fashion, then it is reasonable to suppose that they too are
independent values from the distribution.

Definition
If X1, . . . , Xn are independent random variables having a common distribution F, then
we say that they constitute a sample (sometimes called a random sample) from the distri-
bution F.

In most applications, the population distribution F will not be completely specified and
one will attempt to use the data to make inferences about F. Sometimes it will be supposed
that F is specified up to some unknown parameters (for instance, one might suppose that
F was a normal distribution function having an unknown mean and variance, or that it
is a Poisson distribution function whose mean is not given), and at other times it might
be assumed that almost nothing is known about F (except maybe for assuming that it is
a continuous, or a discrete, distribution). Problems in which the form of the underlying
distribution is specified up to a set of unknown parameters are called parametric inference

207
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problems, whereas those in which nothing is assumed about the form of F are called
nonparametric inference problems.

EXAMPLE 6.1a Suppose that a new process has just been installed to produce computer
chips, and suppose that the successive chips produced by this new process will have useful
lifetimes that are independent with a common unknown distribution F. Physical reasons
sometimes suggest the parametric form of the distribution F; for instance, it may lead us
to believe that F is a normal distribution, or that F is an exponential distribution. In such
cases, we are confronted with a parametrical statistical problem in which we would want
to use the observed data to estimate the parameters of F. For instance, if F were assumed
to be a normal distribution, then we would want to estimate its mean and variance; if F
were assumed to be exponential, we would want to estimate its mean. In other situations,
there might not be any physical justification for supposing that F has any particular form;
in this case the problem of making inferences about F would constitute a nonparametric
inference problem. !

In this chapter, we will be concerned with the probability distributions of certain statis-
tics that arise from a sample, where a statistic is a random variable whose value is deter-
mined by the sample data. Two important statistics that we will discuss are the sample
mean and the sample variance. In Section 6.2, we consider the sample mean and derive
its expectation and variance. We note that when the sample size is at least moderately
large, the distribution of the sample mean is approximately normal. This follows from
the central limit theorem, one of the most important theoretical results in probability,
which is discussed in Section 6.3. In Section 6.4, we introduce the sample variance and
determine its expected value. In Section 6.5, we suppose that the population distribution
is normal and present the joint distribution of the sample mean and the sample variance.
In Section 6.6, we suppose that we are sampling from a finite population of elements and
explain what it means for the sample to be a “random sample.” When the population size
is large in relation to the sample size, we often treat it as if it were of infinite size; this is
illustrated and its consequences are discussed.

6.2 THE SAMPLE MEAN
Consider a population of elements, each of which has a numerical value attached to it.
For instance, the population might consist of the adults of a specified community and the
value attached to each adult might be his or her annual income, or height, or age, and so
on. We often suppose that the value associated with any member of the population can
be regarded as being the value of a random variable having expectation µ and variance
σ 2. The quantities µ and σ 2 are called the population mean and the population variance,
respectively. Let X1, X2, . . . , Xn be a sample of values from this population. The sample
mean is defined by

X = X1 + · · · + Xn

n
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Since the value of the sample mean X is determined by the values of the random variables
in the sample, it follows that X is also a random variable. Its expected value and variance
are obtained as follows:

E[X ] = E
[

X1 + · · · + Xn

n

]

= 1
n
(E[X1] + · · · + E[Xn])

= µ

and

Var(X ) = Var
(

X1 + · · · + Xn

n

)

= 1
n2 [Var(X1) + · · · + Var(Xn)] by independence

= nσ 2

n2

= σ 2

n

where µ and σ 2 are the population mean and variance, respectively. Hence, the expected
value of the sample mean is the population mean µ whereas its variance is 1/n times the
population variance. As a result, we can conclude that X is also centered about the popula-
tion mean µ, but its spread becomes more and more reduced as the sample size increases.
Figure 6.1 plots the probability density function of the sample mean from a standard
normal population for a variety of sample sizes.

n 5 10
n 5 4

n 5 2

n 5 1

−4 −2 2 4

FIGURE 6.1 Densities of sample means from a standard normal population.
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6.3 THE CENTRAL LIMIT THEOREM
In this section, we will consider one of the most remarkable results in probability —
namely, the central limit theorem. Loosely speaking, this theorem asserts that the sum of
a large number of independent random variables has a distribution that is approximately
normal. Hence, it not only provides a simple method for computing approximate prob-
abilities for sums of independent random variables, but it also helps explain the remarkable
fact that the empirical frequencies of so many natural populations exhibit a bell-shaped
(that is, a normal) curve.

In its simplest form, the central limit theorem is as follows:

Theorem 6.3.1 The Central Limit Theorem
Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random vari-
ables each having mean µ and variance σ 2. Then for n large, the distribution of

X1 + · · · + Xn

is approximately normal with mean nµ and variance nσ 2.
It follows from the central limit theorem that

X1 + · · · + Xn − nµ

σ
√

n

is approximately a standard normal random variable; thus, for n large,

P
{

X1 + · · · + Xn − nµ

σ
√

n
< x

}
≈ P{Z < x}

where Z is a standard normal random variable.

EXAMPLE 6.3a An insurance company has 25,000 automobile policy holders. If the yearly
claim of a policy holder is a random variable with mean 320 and standard deviation 540,
approximate the probability that the total yearly claim exceeds 8.3 million.

SOLUTION Let X denote the total yearly claim. Number the policy holders, and let Xi
denote the yearly claim of policy holder i. With n = 25,000, we have from the central
limit theorem that X = ∑n

i=1 Xi will have approximately a normal distribution with
mean 320 × 25,000 = 8 × 106 and standard deviation 540

√
25,000 = 8.5381 × 104.

Therefore,

P{X > 8.3 × 106} = P
{

X − 8 × 106

8.5381 × 104
>

8.3 × 106 − 8 × 106

8.5381 × 104

}

= P
{

X − 8 × 106

8.5381 × 104
>

.3 × 106

8.5381 × 104

}
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≈ P{Z > 3.51} where Z is a standard normal

≈ .00023

Thus, there are only 2.3 chances out of 10,000 that the total yearly claim will exceed
8.3 million. !

EXAMPLE 6.3b Civil engineers believe that W, the amount of weight (in units of
1,000 pounds) that a certain span of a bridge can withstand without structural dam-
age resulting, is normally distributed with mean 400 and standard deviation 40. Suppose
that the weight (again, in units of 1,000 pounds) of a car is a random variable with mean
3 and standard deviation .3. How many cars would have to be on the bridge span for the
probability of structural damage to exceed .1?

SOLUTION Let Pn denote the probability of structural damage when there are n cars on
the bridge. That is,

Pn = P{X1 + · · · + Xn ≥ W }
= P{X1 + · · · + Xn − W ≥ 0}

where Xi is the weight of the ith car, i = 1, . . . , n. Now it follows from the central
limit theorem that

∑n
i=1 Xi is approximately normal with mean 3n and variance .09n.

Hence, since W is independent of the Xi , i = 1, . . . , n, and is also normal, it follows that∑n
i=1 Xi − W is approximately normal, with mean and variance given by

E

[ n∑

1

Xi − W

]
= 3n − 400

Var

( n∑

1

Xi − W

)

= Var

( n∑

1

Xi

)

+ Var(W ) = .09n + 1,600

Thus,

Pn = P
{

X1 + · · · + Xn − W − (3n − 400)√
.09n + 1,600

≥ −(3n − 400)√
.09n + 1,600

}

≈ P
{

Z ≥ 400 − 3n√
.09n + 1,600

}

where Z is a standard normal random variable. Now P{Z ≥ 1.28} ≈ .1, and so if the
number of cars n is such that

400 − 3n√
.09n + 1,600

≤ 1.28
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or
n ≥ 117

then there is at least 1 chance in 10 that structural damage will occur. !

The central limit theorem is illustrated by Program 6.1 on the text disk. This program
plots the probability mass function of the sum of n independent and identically distributed
random variables that each take on one of the values 0, 1, 2, 3, 4. When using it, one
enters the probabilities of these five values, and the desired value of n. Figures 6.2(a)–(f )
give the resulting plot for a specified set of probabilities when n = 1, 3, 5, 10,
25, 100.

One of the most important applications of the central limit theorem is in regard to
binomial random variables. Since such a random variable X having parameters (n, p)
represents the number of successes in n independent trials when each trial is a success
with probability p, we can express it as

X = X1 + · · · + Xn

where

Xi =
{

1 if the ith trial is a success
0 otherwise

Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 1 2 4
i

0.4

0.3

0.2

0.1

0.0

p(
i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

P0

P1

P2

P3

P4

1n 5

3

(a)

FIGURE 6.2 (a) n = 1, (b) n = 3, (c) n = 5, (d) n = 10, (e) n = 25, ( f ) n = 100.
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Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

100 5 15
i

0.15

0.10

0.05

0.00

p
(i

)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

3n 5

(b)

P0

P1

P2

P3

P4

Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

i

0.15

0.10

0.05

0.00

p
(i

)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

5n 5

(c)

Mean 5 10.75
Variance 5 12.6375

20151050

P0

P1

P2

P3

P4

FIGURE 6.2 (continued)
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Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 10 20 30
i

0.08

0.06

0.04

0.02

0.00

p(
i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

10n 5

(d)

Mean 5 21.5
Variance 5 25.275

40

P0

P1

P2

P3

P4

Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

i

0.05
0.04
0.03
0.02
0.01
0.00

p(
i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

25n 5

(e)

Mean 5 53.75
Variance 5 63.1875

10040200 60 80
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P1

P2

P3

P4

FIGURE 6.2 (continued)
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Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 100
i

0.030
0.025
0.020
0.015
0.010
0.005
0.000

p(
i)

Central Limit Theorem

.25

.15

.1

.2

.3

100n 5

(f)

Mean 5 215.

Variance 5 252.75

400200 300

P0

P1

P2

P3

P4

Start

Quit

FIGURE 6.2 (continued)

Because
E[Xi] = p, Var(Xi) = p(1 − p)

it follows from the central limit theorem that for n large

X − np
√

np(1 − p)

will approximately be a standard normal random variable [see Figure 6.3, which graph-
ically illustrates how the probability mass function of a binomial (n, p) random variable
becomes more and more “normal” as n becomes larger and larger].

EXAMPLE 6.3c The ideal size of a first-year class at a particular college is 150 students.
The college, knowing from past experience that, on the average, only 30 percent of those
accepted for admission will actually attend, uses a policy of approving the applications of
450 students. Compute the probability that more than 150 first-year students attend this
college.

SOLUTION Let X denote the number of students that attend; then assuming that each
accepted applicant will independently attend, it follows that X is a binomial random
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0.30

0.25

0.20

0.15

0.10

0.05

0.0
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x

(10, 0.7)
0.20

0.15
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0.0
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0.0
0 5 10 15 20 25

x

(30, 0.7)
0.14

0.12

0.10

0.08

0.06

0.04

0.02
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FIGURE 6.3 Binomial probability mass functions converging to the normal density.

variable with parameters n = 450 and p = .3. Since the binomial is a discrete and the nor-
mal a continuous distribution, it is best to compute P{X = i} as P{i − .5 < X < i + .5}
when applying the normal approximation (this is called the continuity correction). This
yields the approximation

P{X > 150.5} = P

{
X − (450)(.3)
√

450(.3)(.7)
≥ 150.5 − (450)(.3)

√
450(.3)(.7)

}

≈ P{Z > 1.59} = .06

Hence, only 6 percent of the time do more than 150 of the first 450 accepted actually
attend. !

It should be noted that we now have two possible approximations to binomial proba-
bilities: The Poisson approximation, which yields a good approximation when n is large
and p small, and the normal approximation, which can be shown to be quite good when
np(1 − p) is large. [The normal approximation will, in general, be quite good for values
of n satisfying np(1 − p) ≥ 10.]

6.3.1 Approximate Distribution of the Sample Mean
Let X1, . . . , Xn be a sample from a population having mean µ and variance σ 2. The
central limit theorem can be used to approximate the distribution of the sample mean
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X =
n∑

i=1

Xi/n

Since a constant multiple of a normal random variable is also normal, it follows from
the central limit theorem that X will be approximately normal when the sample size n is
large. Since the sample mean has expected value µ and standard deviation σ /

√
n, it then

follows that
X − µ

σ /
√

n

has approximately a standard normal distribution.

EXAMPLE 6.3d The weights of a population of workers have mean 167 and standard
deviation 27.

(a) If a sample of 36 workers is chosen, approximate the probability that the sample
mean of their weights lies between 163 and 170.

(b) Repeat part (a) when the sample is of size 144.

SOLUTION Let Z be a standard normal random variable.

(a) It follows from the central limit theorem that X is approximately normal with
mean 167 and standard deviation 27/

√
36 = 4.5. Therefore, with Z being a

standard normal random variable,

P{163 < X < 170} = P

{
163 − 167

4.5
<

X − 167
4.5

<
170 − 167

4.5

}

≈ P{−.8889 < Z < .8889}
= P{Z < .8889} − P{Z < −.8889}
= 2P{Z < .8889} − 1

≈ .6259

(b) For a sample of size 144, the sample mean will be approximately normal with
mean 167 and standard deviation 27/

√
144 = 2.25. Therefore,

P{163 < X < 170} = P

{
163 − 167

2.25
<

X − 167
2.25

<
170 − 167

2.25

}

= P

{

−1.7778 <
X − 167

4.5
< 1.7778

}

≈ 2P{Z < 1.7778} − 1

≈ .9246

Thus increasing the sample size from 36 to 144 increases the probability from .6259
to .9246. !
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EXAMPLE 6.3e An astronomer wants to measure the distance from her observatory to a
distant star. However, due to atmospheric disturbances, any measurement will not yield
the exact distance d. As a result, the astronomer has decided to make a series of mea-
surements and then use their average value as an estimate of the actual distance. If the
astronomer believes that the values of the successive measurements are independent ran-
dom variables with a mean of d light years and a standard deviation of 2 light years, how
many measurements need she make to be at least 95 percent certain that her estimate is
accurate to within ± .5 light years?

SOLUTION If the astronomer makes n measurements, then X , the sample mean of these
measurements, will be approximately a normal random variable with mean d and stan-
dard deviation 2/

√
n. Thus, the probability that it will lie between d ± .5 is obtained as

follows:

P{−.5 < X − d < .5} = P

{
−.5

2/
√

n
<

X − d
2/

√
n

<
.5

2/
√

n

}

≈ P{−√
n/4 < Z <

√
n/4}

= 2P{Z <
√

n/4} − 1

where Z is a standard normal random variable.
Thus, the astronomer should make n measurements, where n is such that

2P{Z <
√

n/4} − 1 ≥ .95

or, equivalently,
P{Z <

√
n/4} ≥ .975

Since P{Z < 1.96} = .975, it follows that n should be chosen so that
√

n/4 ≥ 1.96

That is, at least 62 observations are necessary. !

6.3.2 How Large a Sample Is Needed?
The central limit theorem leaves open the question of how large the sample size n needs
to be for the normal approximation to be valid, and indeed the answer depends on the
population distribution of the sample data. For instance, if the underlying population dis-
tribution is normal, then the sample mean X will also be normal regardless of the sample
size. A general rule of thumb is that one can be confident of the normal approximation
whenever the sample size n is at least 30. That is, practically speaking, no matter how
nonnormal the underlying population distribution is, the sample mean of a sample of
size at least 30 will be approximately normal. In most cases, the normal approximation is
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FIGURE 6.4 Densities of the average of n exponential random variables having mean 1.

valid for much smaller sample sizes. Indeed, a sample of size 5 will often suffice for the
approximation to be valid. Figure 6.4 presents the distribution of the sample means from
an exponential population distribution for samples of sizes n = 1, 5, 10.

6.4 THE SAMPLE VARIANCE
Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance σ 2.
Let X be the sample mean, and recall the following definition from Section 2.3.2.

Definition
The statistic S2, defined by

S2 =

n∑
i=1

(Xi − X )2

n − 1

is called the sample variance. S =
√

S2 is called the sample standard deviation.
To compute E[S2], we use an identity that was proven in Section 2.3.2: For any

numbers x1, . . . , xn
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2
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where x = ∑n
i=1 xi/n. It follows from this identity that

(n − 1)S2 =
n∑

i=1

X 2
i − nX

2

Taking expectations of both sides of the preceding yields, upon using the fact that for any
random variable W , E[W 2] = Var(W ) + (E[W ])2,

(n − 1)E[S2] = E

[ n∑

i=1

X 2
i

]
− nE[X 2]

= nE[X 2
1 ] − nE[X 2]

= nVar(X1) + n(E[X1])2 − nVar(X ) − n(E[X ])2

= nσ 2 + nµ2 − n(σ 2/n) − nµ2

= (n − 1)σ 2

or
E[S2] = σ 2

That is, the expected value of the sample variance S2 is equal to the population
variance σ 2.

6.5 SAMPLING DISTRIBUTIONS FROM A
NORMAL POPULATION

Let X1, X2, . . . , Xn be a sample from a normal population having mean µ and variance σ 2.
That is, they are independent and Xi ∼ N (µ, σ 2), i = 1, . . . , n. Also let

X =
n∑

i=1

Xi/n

and

S2 =

n∑
i=1

(Xi − X )2

n − 1

denote the sample mean and sample variance, respectively. We would like to compute
their distributions.
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6.5.1 Distribution of the Sample Mean
Since the sum of independent normal random variables is normally distributed, it follows
that X is normal with mean

E[X ] =
n∑

i=1

E[Xi]
n

= µ

and variance

Var(X ) = 1
n2

n∑

i=1

Var(Xi) = σ 2/n

That is, X , the average of the sample, is normal with a mean equal to the population mean
but with a variance reduced by a factor of 1/n. It follows from this that

X − µ

σ /
√

n

is a standard normal random variable.

6.5.2 Joint Distribution of X and S2

In this section, we not only obtain the distribution of the sample variance S2, but we also
discover a fundamental fact about normal samples — namely, that X and S2 are indepen-
dent with (n − 1)S2/σ 2 having a chi-square distribution with n − 1 degrees of freedom.

To start, for numbers x1, . . . , xn, let yi = xi − µ, i = 1, . . . , n. Then as y = x − µ,
it follows from the identity

n∑

i=1

( yi − y)2 =
n∑

i=1

y2
i − ny2

that
n∑

i=1

(xi − x)2 =
n∑

i=1

(xi − µ)2 − n(x − µ)2

Now, if X1, . . . , Xn is a sample from a normal population having mean µ and variance
σ 2, then we obtain from the preceding identity that

n∑
i=1

(Xi − µ)2

σ 2 =

n∑
i=1

(Xi − X )2

σ 2 + n(X − µ)2

σ 2
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or, equivalently,

n∑

i=1

(
Xi − µ

σ

)2

=

n∑
i=1

(Xi − X )2

σ 2 +
[√

n(X − µ)

σ

]2

(6.5.1)

Because (Xi − µ)/σ , i = 1, . . . , n are independent standard normals, it follows that the
left side of Equation 6.5.1 is a chi-square random variable with n degrees of freedom.
Also, as shown in Section 6.5.1,

√
n(X − µ)/σ is a standard normal random variable

and so its square is a chi-square random variable with 1 degree of freedom. Thus Equa-
tion 6.5.1 equates a chi-square random variable having n degrees of freedom to the sum
of two random variables, one of which is chi-square with 1 degree of freedom. But it has
been established that the sum of two independent chi-square random variables is also chi-
square with a degree of freedom equal to the sum of the two degrees of freedom. Thus,
it would seem that there is a reasonable possibility that the two terms on the right side of
Equation 6.5.1 are independent, with

∑n
i=1(Xi −X )2/σ 2 having a chi-square distribution

with n − 1 degrees of freedom. Since this result can indeed be established, we have the
following fundamental result.

Theorem 6.5.1
If X1, . . . , Xn is a sample from a normal population having mean µ and variance σ 2,
then X and S2 are independent random variables, with X being normal with mean µ and
variance σ 2/n and (n − 1)S2/σ 2 being chi-square with n − 1 degrees of freedom.

Theorem 6.5.1 not only provides the distributions of X and S2 for a normal popula-
tion but also establishes the important fact that they are independent. In fact, it turns out
that this independence of X and S2 is a unique property of the normal distribution. Its
importance will become evident in the following chapters.

EXAMPLE 6.5a The time it takes a central processing unit to process a certain type of
job is normally distributed with mean 20 seconds and standard deviation 3 seconds. If
a sample of 15 such jobs is observed, what is the probability that the sample variance will
exceed 12?

SOLUTION Since the sample is of size n = 15 and σ 2 = 9, write

P{S2 > 12} = P
{

14S2

9
>

14
9

. 12
}

= P{χ2
14 > 18.67}

= 1 − .8221 from Program 5.8.1a

= .1779 !
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The following corollary of Theorem 6.5.1 will be quite useful in the following chapters.

Corollary 6.5.2
Let X1, . . . , Xn be a sample from a normal population with mean µ. If X denotes the
sample mean and S the sample standard deviation, then

√
n
(X − µ)

S
∼ tn−1

That is,
√

n(X − µ)/S has a t-distribution with n − 1 degrees of freedom.

Proof

Recall that a t-random variable with n degrees of freedom is defined as the distribution of

Z
√

χ2
n /n

where Z is a standard normal random variable that is independent of χ2
n , a chi-square

random variable withn degreesof freedom. Because Theorem 6.5.1 gives that
√

n(X −µ)/σ
is a standard normal that is independent of (n − 1)S2/σ 2, which is chi-square with n − 1
degrees of freedom, we can conclude that

√
n(X − µ)/σ√

S2/σ 2
= √

n
(X − µ)

S

is a t-random variable with n − 1 degrees of freedom. !

6.6 SAMPLING FROM A FINITE POPULATION
Consider a population of N elements, and suppose that p is the proportion of the popu-
lation that has a certain characteristic of interest; that is, Np elements have this character-
istic, and N (1− p) do not. A sample of size n from this population is said to be a random
sample if it is chosen in such a manner that each of the

(N
n

)
population subsets of size

n is equally likely to be the sample. For instance, if the population consists of the three
elements a, b, c, then a random sample of size 2 is one that is chosen so that each of the
subsets {a, b}, {a, c}, and {b, c} is equally likely to be the sample. A random subset can be
chosen sequentially by letting its first element be equally likely to be any of the N ele-
ments of the population, then letting its second element be equally likely to be any of the
remaining N − 1 elements of the population, and so on.

Suppose now that a random sample of size n has been chosen from a population of size
N. For i = 1, . . . , n, let

Xi =
{

1 if the ith member of the sample has the characteristic
0 otherwise
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Consider now the sum of the Xi ; that is, consider

X = X1 + X2 + · · · + Xn

Because the term Xi contributes 1 to the sum if the ith member of the sample has the
characteristic and 0 otherwise, it follows that X is equal to the number of members of the
sample that possess the characteristic. In addition, the sample mean

X = X /n =
n∑

i=1

Xi/n

is equal to the proportion of the members of the sample that possess the characteristic.
Let us now consider the probabilities associated with the statistics X and X . To begin,

note that since each of the N members of the population is equally likely to be the ith
member of the sample, it follows that

P{Xi = 1} = Np
N

= p

Also,
P{Xi = 0} = 1 − P{Xi = 1} = 1 − p

That is, each Xi is equal to either 1 or 0 with respective probabilities p and 1 − p.
It should be noted that the random variables X1, X2, . . . , Xn are not independent. For

instance, since the second selection is equally likely to be any of the N members of the
population, of which Np have the characteristic, it follows that the probability that the
second selection has the characteristic is Np/N = p. That is, without any knowledge of
the outcome of the first selection,

P{X2 = 1} = p

However, the conditional probability that X2 = 1, given that the first selection has the
characteristic, is

P{X2 = 1|X1 = 1} = Np − 1
N − 1

which is seen by noting that if the first selection has the characteristic, then the second
selection is equally likely to be any of the remaining N −1 elements, of which Np−1 have
the characteristic. Similarly, the probability that the second selection has the characteristic
given that the first one does not is

P{X2 = 1|X1 = 0} = Np
N − 1

Thus, knowing whether or not the first element of the random sample has the character-
istic changes the probability for the next element. However, when the population size N
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is large in relation to the sample size n, this change will be very slight. For instance, if
N = 1,000, p = .4, then

P{X2 = 1|X1 = 1} = 399
999

= .3994

which is very close to the unconditional probability that X2 = 1; namely,

P{X2 = 1} = .4

Similarly, the probability that the second element of the sample has the characteristic given
that the first does not is

P{X2 = 1|X1 = 0} = 400
999

= .4004

which is again very close to .4.
Indeed, it can be shown that when the population size N is large with respect to the

sample size n, then X1, X2, . . . , Xn are approximately independent. Now if we think of
each Xi as representing the result of a trial that is a success if Xi equals 1 and a failure
otherwise, it follows that X = ∑n

i=1 Xi can be thought of as representing the total number
of successes in n trials. Hence, if the Xi were independent, then X would be a binomial
random variable with parameters n and p. In other words, when the population size N
is large in relation to the sample size n, then the distribution of the number of members
of the sample that possess the characteristic is approximately that of a binomial random
variable with parameters n and p.

REMARK

Of course, X is a hypergeometric random variable (Section 5.4); and so the preceding
shows that a hypergeometric can be approximated by a binomial random variable when
the number chosen is small in relation to the total number of elements.

For the remainder of this text, we will suppose that the underlying popula-
tion is large in relation to the sample size and we will take the distribution
of X to be binomial.

By using the formulas given in Section 5.1 for the mean and standard deviation of
a binomial random variable, we see that

E[X ] = np and SD(X ) =
√

np(1 − p)

Moreover X = X /n, the proportion of the sample that has the characteristic, has mean
and variance given by

E[X ] = E[X ]/n = p
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and
Var(X ) = Var(X )/n2 = p(1 − p)/n

EXAMPLE 6.6a Suppose that 45 percent of the population favors a certain candidate in an
upcoming election. If a random sample of size 200 is chosen, find

(a) the expected value and standard deviation of the number of members of the sam-
ple that favor the candidate;

(b) the probability that more than half the members of the sample favor the candidate.

SOLUTION
(a) The expected value and standard deviation of the proportion that favor the can-

didate are

E[X ] = 200(.45) = 90, SD(X ) =
√

200(.45)(1 − .45) = 7.0356

(b) Since X is binomial with parameters 200 and .45, the text disk gives the solution

P{X ≥ 101} = .0681

If this program were not available, then the normal approximation to the binomial
(Section 6.3) could be used:

P{X ≥ 101} = P{X ≥ 100.5} (the continuity correction)

= P
{

X − 90
7.0356

≥ 100.5 − 90
7.0356

}

≈ P{Z ≥ 1.4924}
≈ .0678

The solution obtained by the normal approximation is correct to 3 decimal
places. !

Even when each element of the population has more than two possible values, it still
remains true that if the population size is large in relation to the sample size, then the
sample data can be regarded as being independent random variables from the population
distribution.

EXAMPLE 6.6b According to the U.S. Department of Agriculture’s World Livestock Situa-
tion, the country with the greatest per capita consumption of pork is Denmark. In 2013,
the amount of pork consumed by a person residing in Denmark had a mean value of
147 pounds with a standard deviation of 62 pounds. If a random sample of 25 Danes is
chosen, approximate the probability that the average amount of pork consumed by the
members of this group in 2013 exceeded 150 pounds.
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SOLUTION If we let Xi be the amount consumed by the ith member of the sample,
i = 1, . . . , 25, then the desired probability is

P
{

X1 + · · · + X25

25
> 150

}
= P{X > 150}

where X is the sample mean of the 25 sample values. Since we can regard the Xi as being
independent random variables with mean 147 and standard deviation 62, it follows from
the central limit theorem that their sample mean will be approximately normal with mean
147 and standard deviation 62/5. Thus, with Z being a standard normal random variable,
we have

P{X > 150} = P

{
X − 147

12.4
>

150 − 147
12.4

}

≈ P{Z > .242}
≈ .404 !

Problems

1. Suppose that X1, X2, X3 are independent with the common probability mass func-
tion

P{Xi = 0} = .2, P{Xi = 1} = .3, P{Xi = 3} = .5, i = 1, 2, 3

(a) Plot the probability mass function of X 2 = X1 + X2

2
.

(b) Determine E[X 2] and Var(X 2).

(c) Plot the probability mass function of X 3 = X1 + X2 + X3

3
.

(d) Determine E[X 3] and Var(X 3).

2. If 10 fair dice are rolled, approximate the probability that the sum of the values
obtained (which ranges from 10 to 60) is between 30 and 40 inclusive.

3. Approximate the probability that the sum of 16 independent uniform (0, 1) ran-
dom variables exceeds 10.

4. A roulette wheel has 38 slots, numbered 0, 00, and 1 through 36. If you bet
1 on a specified number, you either win 35 if the roulette ball lands on that
number or lose 1 if it does not. If you continually make such bets, approximate the
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probability that

(a) you are winning after 34 bets;
(b) you are winning after 1,000 bets;
(c) you are winning after 100,000 bets.

Assume that each roll of the roulette ball is equally likely to land on any of the
38 numbers.

5. A highway department has enough salt to handle a total of 80 inches of snow-
fall. Suppose the daily amount of snow has a mean of 1.5 inches and a standard
deviation of .3 inches.

(a) Approximate the probability that the salt on hand will suffice for the next
50 days.

(b) What assumption did you make in solving part (a)?
(c) Do you think this assumption is justified? Explain briefly.

6. Fifty numbers are rounded off to the nearest integer and then summed. If the
individual roundoff errors are uniformly distributed between −.5 and .5, what is
the approximate probability that the resultant sum differs from the exact sum by
more than 3?

7. A six-sided die, in which each side is equally likely to appear, is repeatedly rolled
until the total of all rolls exceeds 400. Approximate the probability that this will
require more than 140 rolls.

8. The amount of time that a certain type of battery functions is a random variable
with mean 5 weeks and standard deviation 1.5 weeks. Upon failure, it is imme-
diately replaced by a new battery. Approximate the probability that 13 or more
batteries will be needed in a year.

9. The lifetime of a certain electrical part is a random variable with mean 100 hours
and standard deviation 20 hours. If 16 such parts are tested, find the probability
that the sample mean is

(a) less than 104;
(b) between 98 and 104 hours.

10. A tobacco company claims that the amount of nicotine in its cigarettes is a ran-
dom variable with mean 2.2 mg and standard deviation .3 mg. However, the
sample mean nicotine content of 100 randomly chosen cigarettes was 3.1 mg.
What is the approximate probability that the sample mean would have been as
high or higher than 3.1 if the company’s claims were true?

11. The lifetime (in hours) of a type of electric bulb has expected value 500 and
standard deviation 80. Approximate the probability that the sample mean of n
such bulbs is greater than 525 when

(a) n = 4;
(b) n = 16;
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(c) n = 36;
(d) n = 64.

12. An instructor knows from past experience that student exam scores have mean
77 and standard deviation 15. At present the instructor is teaching two separate
classes — one of size 25 and the other of size 64.

(a) Approximate the probability that the average test score in the class of size 25
lies between 72 and 82.

(b) Repeat part (a) for a class of size 64.
(c) What is the approximate probability that the average test score in the class of

size 25 is higher than that of the class of size 64?
(d) Suppose the average scores in the two classes are 76 and 83. Which class, the

one of size 25 or the one of size 64, do you think was more likely to have
averaged 83?

13. If X is binomial with parameters n = 150, p = .6, compute the exact value of
P{X ≤ 80} and compare with its normal approximation both (a) making use of
and (b) not making use of the continuity correction.

14. Each computer chip made in a certain plant will, independently, be defective
with probability .25. If a sample of 1,000 chips is tested, what is the approximate
probability that fewer than 200 chips will be defective?

15. A club basketball team will play a 60-game season. Thirty-two of these games
are against class A teams and 28 are against class B teams. The outcomes of
all the games are independent. The team will win each game against a class
A opponent with probability .5, and it will win each game against a class B
opponent with probability .7. Let X denote its total number of victories in the
season.

(a) Is X a binomial random variable?
(b) Let XA and XB denote, respectively, the number of victories against class A

and class B teams. What are the distributions of XA and XB?
(c) What is the relationship between XA, XB, and X ?
(d) Approximate the probability that the team wins 40 or more games.

16. Argue, based on the central limit theorem, that a Poisson random variable hav-
ing mean λ will approximately have a normal distribution with mean and vari-
ance both equal to λ when λ is large. If X is Poisson with mean 100, com-
pute the exact probability that X is less than or equal to 116 and compare it
with its normal approximation both when a continuity correction is utilized and
when it is not. The convergence of the Poisson to the normal is indicated in
Figure 6.5.

17. Use the text disk to compute P{X ≤ 10} when X is a binomial random variable
with parameters n = 100, p = .1. Now compare this with its (a) Poisson and
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(b) normal approximation. In using the normal approximation, write the desired
probability as P{X < 10.5} so as to utilize the continuity correction.

18. The temperature at which a thermostat goes off is normally distributed with vari-
ance σ 2. If the thermostat is to be tested five times, find

(a) P{S2/σ 2 ≤ 1.8}
(b) P{.85 ≤ S2/σ 2 ≤ 1.15}
where S2 is the sample variance of the five data values.

19. In Problem 18, how large a sample would be necessary to ensure that the proba-
bility in part (a) is at least .95?

20. Consider two independent samples — the first of size 10 from a normal popula-
tion having variance 4 and the second of size 5 from a normal population having
variance 2. Compute the probability that the sample variance from the second
sample exceeds the one from the first. (Hint: Relate it to the F-distribution.)

21. Twelve percent of the population is left-handed. Find the probability that there
are between 10 and 14 left-handers in a random sample of 100 members of this
population. That is, find P{10 ≤ X ≤ 14}, where X is the number of left-handers
in the sample.

22. Fifty-two percent of the residents of a certain city are in favor of teaching evolution
in high school. Find or approximate the probability that at least 50 percent of a
random sample of size n is in favor of teaching evolution, when

(a) n = 10;
(b) n = 100;
(c) n = 1,000;
(d) n = 10,000.

23. The following table gives the percentages of individuals of a given city, categorized
by gender, that follow certain negative health practices. Suppose a random sample
of 300 men is chosen. Approximate the probability that

(a) at least 150 of them rarely eat breakfast;
(b) fewer than 100 of them smoke.

Sleeps 6 Hours Rarely Eats Is 20 Percent or
or Less per Night Smoker Breakfast More Overweight

Men 22.7 28.4 45.4 29.6
Women 21.4 22.8 42.0 25.6

Source: U.S. National Center for Health Statistics, Health Promotion and Disease Prevention.

24. (Use the table from Problem 23.) Suppose a random sample of 300 women is
chosen. Approximate the probability that
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(a) at least 60 of them are overweight by 20 percent or more;
(b) fewer than 50 of them sleep 6 hours or less nightly.

25. (Use the table from Problem 23.) Suppose random samples of 300 women and
of 300 men are chosen. Approximate the probability that more women than men
rarely eat breakfast.

26. The following table uses data concerning the percentages of teenage male and
female full-time workers whose annual salaries fall in different salary groupings.
Suppose random samples of 1,000 men and 1,000 women were chosen. Use the
table to approximate the probability that

(a) at least half of the women earned less than $20,000;
(b) more than half of the men earned $20,000 or more;
(c) more than half of the women and more than half of the men earned $20,000

or more;
(d) 250 or fewer of the women earned at least $25,000;
(e) at least 200 of the men earned $50,000 or more;
(f ) more women than men earned between $20,000 and $24,999.

Earnings Range Percentage of Women Percentage of Men

$4,999 or less 2.8 1.8
$5,000 to $9,999 10.4 4.7
$10,000 to $19,999 41.0 23.1
$20,000 to $24,999 16.5 13.4
$25,000 to $49,999 26.3 42.1
$50,000 and over 3.0 14.9

Source: U.S. Department of Commerce, Bureau of the Census.

27. In 1995 the percentage of the labor force that belonged to a union was 14.9. If
five workers had been randomly chosen in that year, what is the probability that
none of them would have belonged to a union? Compare your answer to what it
would be for the year 1945, when an all-time high of 35.5 percent of the labor
force belonged to a union.

28. The sample mean and sample standard deviation of all San Francisco student
scores on the most recent Scholastic Aptitude Test examination in mathematics
were 517 and 120. Approximate the probability that a random sample of 144
students would have an average score exceeding

(a) 507;
(b) 517;
(c) 537;
(d) 550.
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29. The average salary of newly graduated students with bachelor’s degrees in chemical
engineering is $53,600, with a standard deviation of $3,200. Approximate the
probability that the average salary of a sample of 12 recently graduated chemical
engineers exceeds $55,000.

30. A certain component is critical to the operation of an electrical system and must be
replaced immediately upon failure. If the mean lifetime of this type of component
is 100 hours and its standard deviation is 30 hours, how many of the components
must be in stock so that the probability that the system is in continual operation
for the next 2000 hours is at least .95?
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PARAMETER ESTIMATION

7.1 INTRODUCTION
Let X1, . . . , Xn be a random sample from a distribution Fθ that is specified up to a vector
of unknown parameters θ . For instance, the sample could be from a Poisson distribu-
tion whose mean value is unknown; or it could be from a normal distribution having an
unknown mean and variance. Whereas in probability theory it is usual to suppose that
all of the parameters of a distribution are known, the opposite is true in statistics, where
a central problem is to use the observed data to make inferences about the unknown
parameters.

In Section 7.2, we present the maximum likelihood method for determining estimators
of unknown parameters. The estimates so obtained are called point estimates, because they
specify a single quantity as an estimate of θ . In Section 7.3, we consider the problem
of obtaining interval estimates. In this case, rather than specifying a certain value as our
estimate of θ , we specify an interval in which we estimate that θ lies. Additionally, we
consider the question of how much confidence we can attach to such an interval estimate.
We illustrate by showing how to obtain an interval estimate of the unknown mean of
a normal distribution whose variance is specified. We then consider a variety of interval
estimation problems. In Section 7.3.1, we present an interval estimate of the mean of a
normal distribution whose variance is unknown. In Section 7.3.2, we obtain an interval
estimate of the variance of a normal distribution. In Section 7.4, we determine an interval
estimate for the difference of two normal means, both when their variances are assumed to
be known and when they are assumed to be unknown (although in the latter case we sup-
pose that the unknown variances are equal). In Sections 7.5 and the optional Section 7.6,
we present interval estimates of the mean of a Bernoulli random variable and the mean of
an exponential random variable.

In the optional Section 7.7, we return to the general problem of obtaining point esti-
mates of unknown parameters and show how to evaluate an estimator by considering its
mean square error. The bias of an estimator is discussed, and its relationship to the mean
square error is explored.

235
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In the optional Section 7.8, we consider the problem of determining an estimate of an
unknown parameter when there is some prior information available. This is the Bayesian
approach, which supposes that prior to observing the data, information about θ is always
available to the decision maker, and that this information can be expressed in terms of
a probability distribution on θ . In such a situation, we show how to compute the Bayes
estimator, which is the estimator whose expected squared distance from θ is minimal.

7.2 MAXIMUM LIKELIHOOD ESTIMATORS
Any statistic used to estimate the value of an unknown parameter θ is called an estimator
of θ . The observed value of the estimator is called the estimate. For instance, as we shall
see, the usual estimator of the mean of a normal population, based on a sample X1, . . . , Xn
from that population, is the sample mean X = ∑

i Xi/n. If a sample of size 3 yields the
data X1 = 2, X2 = 3, X3 = 4, then the estimate of the population mean, resulting from the
estimator X , is the value 3.

Suppose that the random variables X1, . . . , Xn, whose joint distribution is assumed
given except for an unknown parameter θ , are to be observed. The problem of interest
is to use the observed values to estimate θ . For example, the Xi’s might be independent,
exponential random variables each having the same unknown mean θ . In this case, the
joint density function of the random variables would be given by

f (x1, x2, . . . , xn)

= fX1(x1)fX2(x2) · · · fXn(xn)

= 1
θ

e−x1/θ 1
θ

e−x2/θ · · · 1
θ

e−xn/θ , 0 < xi < ∞, i = 1, . . . , n

= 1
θn exp

{

−
n∑

1

xi/θ

}

, 0 < xi < ∞, i = 1, . . . , n

and the objective would be to estimate θ from the observed data X1, X2, . . . , Xn.
A particular type of estimator, known as the maximum likelihood estimator, is widely

used in statistics. It is obtained by reasoning as follows. Let f (x1, . . . , xn|θ ) denote the
joint probability mass function of the random variables X1, X2, . . . , Xn when they are
discrete, and let it be their joint probability density function when they are jointly con-
tinuous random variables. Because θ is assumed unknown, we also write f as a function
of θ . Now since f (x1, . . . , xn|θ ) represents the likelihood that the values x1, x2, . . . , xn
will be observed when θ is the true value of the parameter, it would seem that a rea-
sonable estimate of θ would be that value yielding the largest likelihood of the observed
values. In other words, the maximum likelihood estimate θ̂ is defined to be that value
of θ maximizing f (x1, . . . , xn|θ ) where x1, . . . , xn are the observed values. The function
f (x1, . . . , xn|θ ) is often referred to as the likelihood function of θ .
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In determining the maximizing value of θ , it is often useful to use the fact that
f (x1, . . . , xn|θ ) and log[ f (x1, . . . , xn|θ)] have their maximum at the same value of θ .
Hence, we may also obtain θ̂ by maximizing log[ f (x1, . . . , xn|θ)].
EXAMPLE 7.2a (Maximum Likelihood Estimator of a Bernoulli Parameter) Suppose that
n independent trials, each of which is a success with probability p, are performed. What
is the maximum likelihood estimator of p?

SOLUTION The data consist of the values of X1, . . . , Xn where

Xi =
{

1 if trial i is a success

0 otherwise

Now

P{Xi = 1} = p = 1 − P{Xi = 0}

which can be succinctly expressed as

P{Xi = x} = px(1 − p)1−x, x = 0, 1

Hence, by the assumed independence of the trials, the likelihood (that is, the joint prob-
ability mass function) of the data is given by

f (x1, . . . , xn|p) = P{X1 = x1, . . . , Xn = xn|p}

= px1(1 − p)1−x1 · · · pxn(1 − p)1−xn

= p"n
1 xi(1 − p)n−"n

1xi , xi = 0, 1, i = 1, . . . , n

To determine the value of p that maximizes the likelihood, first take logs to obtain

log f (x1, . . . , xn|p) =
n∑

1

xi log p +
(

n −
n∑

1

xi

)
log(1 − p)

Differentiation yields

d
dp

log f (x1, . . . , xn|p) =

n∑
1

xi

p
−

(
n −

n∑
1

xi

)

1 − p
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Upon equating to zero and solving, we obtain that the maximum likelihood estimate p̂
satisfies

n∑
1

xi

p̂
=

n −
n∑
1

xi

1 − p̂

or

p̂ =

n∑
i=1

xi

n

Hence, the maximum likelihood estimator of the unknown mean of a Bernoulli distribu-
tion is given by

d(X1, . . . , Xn) =

n∑
i=1

Xi

n

Since
∑n

i=1 Xi is the number of successful trials, we see that the maximum likelihood
estimator of p is equal to the proportion of the observed trials that result in successes. For
an illustration, suppose that each RAM (random access memory) chip produced by a cer-
tain manufacturer is, independently, of acceptable quality with probability p. Then if out
of a sample of 1,000 tested 921 are acceptable, it follows that the maximum likelihood
estimate of p is .921. !

EXAMPLE 7.2b Two proofreaders were given the same manuscript to read. If proofreader 1
found n1 errors, and proofreader 2 found n2 errors, with n1,2 of these errors being found
by both proofreaders, estimate N, the total number of errors that are in the manuscript.

SOLUTION Before we can estimate N we need to make some assumptions about the under-
lying probability model. So let us assume that the results of the proofreaders are indepen-
dent, and that each error in the manuscript is independently found by proofreader i with
probability pi, i = 1, 2.

To estimate N, we will start by deriving an estimator of p1. To do so, note that each
of the n2 errors found by reader 2 will, independently, be found by proofreader 1 with
probability pi. Because proofreader 1 found n1,2 of those n2 errors, a reasonable estimate
of p1 is given by

p̂1 = n1,2

n2
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However, because proofreader 1 found n1 of the N errors in the manuscript, it is reason-
able to suppose that p1 is also approximately equal to n1

N . Equating this to p̂1 gives that

n1,2

n2
≈ n1

N

or

N ≈ n1n2

n1,2

Because the preceding estimate is symmetric in n1 and n2, it follows that it is the same
no matter which proofreader is designated as proofreader 1.

An interesting application of the preceding occurred when two teams of researchers
recently announced that they had decoded the human genetic code sequence. As part
of their work both teams estimated that the human genome consisted of approximately
33,000 genes. Because both teams independently arrived at the same number, many sci-
entists found this number believable. However, most scientists were quite surprised by
this relatively small number of genes; by comparison it is only about twice as many as a
fruit fly has. However, a closer inspection of the findings indicated that the two groups
only agreed on the existence of about 17,000 genes. (That is, 17,000 genes were found by
both teams.) Thus, based on our preceding estimator, we would estimate that the actual
number of genes, rather than being 33,000, is

n1n2

n1,2
= 33,000 × 33,000

17,000
≈ 64,000

(Because there is some controversy about whether some of genes claimed to be found are
actually genes, 64,000 should probably be taken as an upper bound on the actual number
of genes.)

The estimation approach used when there are two proofreaders does not work when
there are m proofreaders, when m > 2. Because, if for each i, we let p̂i be the frac-
tion of the errors found by at least one of the other proofreaders j, ( j %= i), that
are also found by i, and then set that equal to ni

N , then the estimate of N, namely
ni
p̂i

, would differ for different values of i. Moreover, with this approach it is possi-
ble that we may have that p̂i > p̂j even if proofreader i finds fewer errors than does
proofreader j. For instance, for m = 3, suppose proofreaders 1 and 2 find exactly
the same set of 10 errors whereas proofreader 3 finds 20 errors with only 1 of them
in common with the set of errors found by the others. Then, because proofreader 1
(and 2) found 10 of the 29 errors found by at least one of the other proofreaders,
p̂i = 10/29, i = 1, 2. On the other hand, because proofreader 3 only found 1 of the
10 errors found by the others, p̂3 = 1/10. Therefore, although proofreader 3 found
twice the number of errors as did proofreader 1, the estimate of p3 is less than that of p1. To
obtain more reasonable estimates, we could take the preceding values of p̂i, i = 1, . . . , m,
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as preliminary estimates of the pi. Now, let nf be the number of errors that are found by
at least one proofreader. Because nf /N is the fraction of errors that are found by at least
one proofreader, this should approximately equal 1 −∏m

i=1(1 − pi), the probability that
an error is found by at least one proofreader. Therefore, we have

nf

N
≈ 1 −

m∏

i=1

(1 − pi)

suggesting that N ≈ N̂ , where

N̂ = nf

1 −∏m
i=1(1 − p̂i)

(7.2.1)

With this estimate of N, we can then reset our estimates of the pi by using

p̂i = ni

N̂
, i = 1, . . . , m (7.2.2)

We can then reestimate N by using the new value (Equation 7.2.1). (The estimation need
not stop here; each time we obtain a new estimate N̂ of N we can use Equation 7.2.2 to
obtain new estimates of the pi, which can then be used to obtain a new estimate of N, and
so on.) !

EXAMPLE 7.2c (Maximum Likelihood Estimator of a Poisson Parameter) Suppose X1, . . . , Xn
are independent Poisson random variables each having mean λ. Determine the maxi-
mum likelihood estimator of λ.

SOLUTION The likelihood function is given by

f (x1, . . . , xn|λ) = e−λλx1

x1!
· · · e−λλxn

xn!

= e−nλλ"n
1 xi

x1! . . . xn!
Thus,

log f (x1, . . . , xn|λ) = −nλ +
n∑

1

xi log λ − log c

where c = ∏n
i=1 xi! does not depend on λ. Differentiation yields

d
dλ

log f (x1, . . . , xn|λ) = −n +

n∑
1

xi

λ
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By equating to zero, we obtain that the maximum likelihood estimate λ̂ equals

λ̂ =

n∑
1

xi

n

and so the maximum likelihood estimator is given by

d(X1, . . . , Xn) =

n∑
i=1

Xi

n

For example, suppose that the number of people who enter a certain retail establishment
in any day is a Poisson random variable having an unknown mean λ, which must be
estimated. If after 20 days a total of 857 people have entered the establishment, then
the maximum likelihood estimate of λ is 857/20 = 42.85. That is, we estimate that
on average, 42.85 customers will enter the establishment on a given day. !

EXAMPLE 7.2d The number of traffic accidents in Berkeley, California, in 10 randomly
chosen nonrainy days in 1998 is as follows:

4, 0, 6, 5, 2, 1, 2, 0, 4, 3

Use these data to estimate the proportion of nonrainy days that had 2 or fewer accidents
that year.

SOLUTION Since there are a large number of drivers, each of whom has a small probability
of being involved in an accident in a given day, it seems reasonable to assume that the
daily number of traffic accidents is a Poisson random variable. Since

X = 1
10

10∑

i=1

Xi = 2.7

it follows that the maximum likelihood estimate of the Poisson mean is 2.7. Since
the long-run proportion of nonrainy days that have 2 or fewer accidents is equal to
P{X ≤ 2}, where X is the random number of accidents in a day, it follows that the
desired estimate is

e−2.7(1 + 2.7 + (2.7)2/2) = .4936

That is, we estimate that a little less than half of the nonrainy days had 2 or fewer
accidents. !
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EXAMPLE 7.2e (Maximum Likelihood Estimator in a Normal Population) Suppose X1, . . . , Xn
are independent, normal random variables each with unknown mean µ and unknown
standard deviation σ . The joint density is given by

f (x1, . . . , xn|µ, σ ) =
n∏

i=1

1√
2πσ

exp
[−(xi − µ)2

2σ 2

]

=
(

1
2π

)n/2 1
σ n exp





−
n∑
1

(xi − µ)2

2σ 2





The logarithm of the likelihood is thus given by

log f (x1, . . . , xn|µ, σ ) = −n
2

log(2π) − n log σ −

n∑
1

(xi − µ)2

2σ 2

In order to find the value of µ and σ maximizing the foregoing, we compute

∂

∂µ
log f (x1, . . . , xn|µ, σ ) =

n∑
i=1

(xi − µ)

σ 2

∂

∂σ
log f (x1, . . . , xn|µ, σ ) = − n

σ
+

n∑
1

(xi − µ)2

σ 3

Equating these equations to zero yields that

µ̂ =
n∑

i=1

xi/n

and

σ̂ =
[ n∑

i=1

(xi − µ̂)2/n

]1/2
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Hence, the maximum likelihood estimators of µ and σ are given, respectively, by

X and

[ n∑

i=1

(Xi − X )2/n

]1/2

(7.2.3)

It should be noted that the maximum likelihood estimator of the standard deviation σ

differs from the sample standard deviation

S =
[ n∑

i=1

(Xi − X )2/(n − 1)

]1/2

in that the denominator in Equation 7.2.3 is
√

n rather than
√

n − 1. However, for n of
reasonable size, these two estimators of σ will be approximately equal. !

EXAMPLE 7.2f Kolmogorov’s law of fragmentation states that the size of an individual
particle in a large collection of particles resulting from the fragmentation of a mineral
compound will have an approximate lognormal distribution, where a random variable X
is said to have a lognormal distribution if log(X ) has a normal distribution. The law, which
was first noted empirically and then later given a theoretical basis by Kolmogorov, has been
applied to a variety of engineering studies. For instance, it has been used in the analysis of
the size of randomly chosen gold particles from a collection of gold sand. A less obvious
application of the law has been to a study of the stress release in earthquake fault zones
(see Lomnitz, C., “Global Tectonics and Earthquake Risk,” Developments in Geotectonics,
Elsevier, Amsterdam, 1979).

Suppose that a sample of 10 grains of metallic sand taken from a large sand pile have
respective lengths (in millimeters):

2.2, 3.4, 1.6, 0.8, 2.7, 3.3, 1.6, 2.8, 2.5, 1.9

Estimate the percentage of sand grains in the entire pile whose length is between 2
and 3 mm.

SOLUTION Taking the natural logarithm of these 10 data values, the following transformed
data set results

.7885, 1.2238, .4700, −.2231, .9933, 1.1939, .4700, 1.0296, .9163, .6419

Because the sample mean and sample standard deviation of these data are

x = .7504, s = .4351



244 Chapter 7: Parameter Estimation

it follows that the logarithm of the length of a randomly chosen grain has a normal distri-
bution with mean approximately equal to .7504 and with standard deviation approxi-
mately equal to .4351. Hence, if X is the length of the grain, then

P{2 < X < 3} = P{log(2) < log(X ) < log(3)}

= P
{

log(2) − .7504
.4351

<
log(X ) − .7504

.4351
<

log(3) − .7504
.4351

}

= P
{
−.1316 <

log(X ) − .7504
.4351

< .8003
}

≈ '(.8003) − '(−.1316)

= .3405 !

The lognormal distribution is often assumed in situations where the random variable
under interest can be regarded as the product of a large number of independent and
identically distributed random variables. For instance, it is commonly used in finance as
the distribution of the price of a security at some future time. To see why this might be
reasonable, suppose that the current price of the security is s and that we are interested
in S(t), the price of the security after an additional time t. For a large value n, let ti = it/n,
and consider S(t1), . . . , S(tn), the prices of the security at the times t1, . . . , tn. Now, a
common assumption in finance is that the ratios S(ti)/S(ti−1) are approximately indepen-
dent and identically distributed. Consequently, if we let Xi = S(ti)/S(ti−1), then writing

S(t) = S(tn) = S(t0) · S(t1)
S(t0)

· S(t2)
S(t1)

· · · S(tn)
S(tn−1)

= s
n∏

i=1

Xi

we obtain, upon taking logarithms, that

log(S(t)) = log(s) +
n∑

i=1

log(Xi)

Thus, by the central limit theorem log(S(t)) will approximately have a normal
distribution.

The lognormal distribution has also been shown to be a good fit for such random
variables as length of patient stays in hospitals, and vehicle travel times.

In all of the foregoing examples, the maximum likelihood estimator of the population
mean turned out to be the sample mean X . To show that this is not always the situation,
consider the following example.

EXAMPLE 7.2g (Estimating the Mean of a Uniform Distribution) Suppose X1, . . . , Xn con-
stitute a sample from a uniform distribution on (0, θ ), where θ is unknown. Their joint
density is thus
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f (x1, x2, . . . , xn|θ) =
{ 1

θn 0 < xi < θ , i = 1, . . . , n

0 otherwise

This density is maximized by choosing θ as small as possible. Since θ must be at least as
large as all of the observed values xi, it follows that the smallest possible choice of θ is
equal to max(x1, x2, . . . , xn). Hence, the maximum likelihood estimator of θ is

θ̂ = max(X1, X2, . . . , Xn)

It easily follows from the foregoing that the maximum likelihood estimator of θ /2, the
mean of the distribution, is max(X1, X2, . . . , Xn)/2. !

*7.2.1 Estimating Life Distributions
Let X denote the age at death of a randomly chosen child born today. That is, X = i if
the newborn dies in its ith year, i ≥ 1. To estimate the probability mass function of X,
let λi denote the probability that a newborn who has survived his or her first i − 1 years
dies in year i. That is,

λi = P{X = i|X > i − 1} = P{X = i}
P{X > i − 1}

Also, let

si = 1 − λi = P{X > i}
P{X > i − 1}

be the probability that a newborn who survives her first i − 1 years also survives year i.
The quantity λi is called the failure rate, and si is called the survival rate, of an individual
who is entering his or her ith year. Now,

s1s2 · · · si = P{X > 1}P{X > 2}P{X > 3}
P{X > 1}P{X > 2} · · · P{X > i}

P{X > i − 1}
= P{X > i}

Therefore,

P{X = n} = P{X > n − 1}λn = s1 · · · sn−1(1 − sn)

Consequently, we can estimate the probability mass function of X by estimating the quan-
tities si, i = 1, . . . , n. The value si can be estimated by looking at all individuals in the

* Optional section.
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population who reached age i 1 year ago, and then letting the estimate ŝi be the fraction
of them who are alive today. We would then use ŝ1 ŝ2 · · · ŝn−1

(
1 − ŝn

)
as the estimate of

P{X = n}. (Note that although we are using the most recent possible data to estimate the
quantities si, our estimate of the probability mass function of the lifetime of a newborn
assumes that the survival rate of the newborn when it reaches age i will be the same as
last year’s survival rate of someone of age i.)

The use of the survival rate to estimate a life distribution is also of importance in
health studies with partial information. For instance, consider a study in which a new
drug is given to a random sample of 12 lung cancer patients. Suppose that after some
time we have the following data on the number of months of survival after starting the
new drug:

4, 7∗, 9, 11∗, 12, 3, 14∗, 1, 8, 7, 5, 3∗

where x means that the patient died in month x after starting the drug treatment, and x∗

means that the patient has taken the drug for x months and is still alive.
Let X equal the number of months of survival after beginning the drug treatment,

and let

si = P{X > i|X > i − 1} = P{X > i}
P{X > i − 1}

To estimate si, the probability that a patient who has survived the first i − 1 months will
also survive month i, we should take the fraction of those patients who began their ith
month of drug taking and survived the month. For instance, because 11 of the 12 patients
survived month 1, ŝ1 = 11/12. Because all 11 patients who began month 2 survived,
ŝ2 = 11/11. Because 10 of the 11 patients who began month 3 survived, ŝ3 = 10/11.
Because 8 of the 9 patients who began their fourth month of taking the drug (the 9 being
all but the ones labelled 1, 3, and 3∗) survived month 4, ŝ4 = 8/9. Similar reasoning holds
for the others, giving the following survival rate estimates:

ŝ1 = 11/12

ŝ2 = 11/11

ŝ3 = 10/11

ŝ4 = 8/9

ŝ5 = 7/8

ŝ6 = 7/7

ŝ7 = 6/7

ŝ8 = 4/5

ŝ9 = 3/4

ŝ10 = 3/3

ŝ11 = 3/3
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ŝ12 = 1/2

ŝ13 = 1/1

ŝ14 = 1/1

We can now use
∏ j

i=1 ŝi to estimate the probability that a drug taker survives at least j
time periods, j = 1, . . . , 14. For instance, our estimate of P{X > 6} is 35/54.

7.3 INTERVAL ESTIMATES
Suppose that X1, . . . , Xn is a sample from a normal population having unknown mean µ

and known variance σ 2. It has been shown that X = ∑n
i=1 Xi/n is the maximum likeli-

hood estimator for µ. However, we don’t expect that the sample mean X will exactly equal
µ, but rather that it will “be close.” Hence, rather than a point estimate, it is sometimes
more valuable to be able to specify an interval for which we have a certain degree of confi-
dence that µ lies within. To obtain such an interval estimator, we make use of the probabil-
ity distribution of the point estimator. Let us see how it works for the preceding situation.

In the foregoing, since the point estimator X is normal with mean µ and variance
σ 2/n, it follows that

X − µ

σ /
√

n
= √

n
(X − µ)

σ

has a standard normal distribution. Therefore,

P

{
−1.96 <

√
n
(X − µ)

σ
< 1.96

}
= .95

or, equivalently,

P
{
−1.96

σ√
n

< X − µ < 1.96
σ√

n

}
= .95

Multiplying through by −1 yields the equivalent statement

P
{
−1.96

σ√
n

< µ − X < 1.96
σ√

n

}
= .95

or, equivalently,

P
{

X − 1.96
σ√

n
< µ < X + 1.96

σ√
n

}
= .95

That is, 95 percent of the time the value of the sample average X̄ will be such that the
distance between it and the mean µ will be less than 1.96 σ /

√
n. If we now observe the

sample and it turns out that X = x, then we say that “with 95 percent confidence”

x − 1.96
σ√

n
< µ < x + 1.96

σ√
n

(7.3.1)
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That is, “with 95 percent confidence” we assert that the true mean lies within 1.96 σ /
√

n
of the observed sample mean. The interval

(
x − 1.96

σ√
n

, x + 1.96
σ√

n

)

is called a 95 percent confidence interval estimate of µ.

EXAMPLE 7.3a Suppose that when a signal having value µ is transmitted from location
A the value received at location B is normally distributed with mean µ and variance 4.
That is, if µ is sent, then the value received is µ+N where N , representing noise, is normal
with mean 0 and variance 4. To reduce error, suppose the same value is sent 9 times. If
the successive values received are 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, let us construct a
95 percent confidence interval for µ.

Since

x = 81
9

= 9

It follows, under the assumption that the values received are independent, that a 95 per-
cent confidence interval for µ is

(
9 − 1.96

σ

3
, 9 + 1.96

σ

3

)
= (7.69, 10.31)

Hence, we are “95 percent confident” that the true message value lies between 7.69 and
10.31. !

The interval in Equation 7.3.1 is called a two-sided confidence interval. Sometimes,
however, we are interested in determining a value so that we can assert with, say, 95
percent confidence, that µ is at least as large as that value.

To determine such a value, note that if Z is a standard normal random variable then

P{Z < 1.645} = .95

As a result,

P

{
√

n
(X − µ)

σ
< 1.645

}
= .95

or

P
{

X − 1.645
σ√

n
< µ

}
= .95
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Thus, a 95 percent one-sided upper confidence interval for µ is

(
x − 1.645

σ√
n

, ∞
)

where x is the observed value of the sample mean.
A one-sided lower confidence interval is obtained similarly; when the observed value of

the sample mean is x, then the 95 percent one-sided lower confidence interval for µ is

(
−∞, x + 1.645

σ√
n

)

EXAMPLE 7.3b Determine the upper and lower 95 percent confidence interval estimates
of µ in Example 7.3a.

SOLUTION Since
1.645

σ√
n

= 3.29
3

= 1.097

the 95 percent upper confidence interval is

(9 − 1.097, ∞) = (7.903, ∞)

and the 95 percent lower confidence interval is

(−∞, 9 + 1.097) = (−∞, 10.097) !

We can also obtain confidence intervals of any specified level of confidence. To do so,
recall that zα is such that

P{Z > zα} = α

when Z is a standard normal random variable. But this implies (see Figure 7.1) that for
any α

P{−zα/2 < Z < zα/2} = 1 − α

Area 5

02z!/2 z!/2

–!
2

Area 5 –!
2

FIGURE 7.1 P{−zα/2 < Z < zα/2} = 1 − α.
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As a result, we see that

P

{

−zα/2 <
√

n
(X − µ)

σ
< zα/2

}

= 1 − α

or

P
{
−zα/2

σ√
n

< X − µ < zα/2
σ√

n

}
= 1 − α

or

P
{
−zα/2

σ√
n

< µ − X < zα/2
σ√

n

}
= 1 − α

That is,

P
{

X − zα/2
σ√

n
< µ < X + zα/2

σ√
n

}
= 1 − α

Hence, a 100(1 − α) percent two-sided confidence interval for µ is
(

x − zα/2
σ√

n
, x + zα/2

σ√
n

)

where x is the observed sample mean.

Similarly, knowing that Z = √
n (X−µ)

σ is a standard normal random variable, along
with the identities

P{Z > zα} = α

and
P{Z < −zα} = α

results in one-sided confidence intervals of any desired level of confidence. Specifically, we
obtain that

(
x − zα

σ√
n

, ∞
)

and (
−∞, x + zα

σ√
n

)

are, respectively, 100(1 − α) percent one-sided upper and 100(1 − α) percent one-sided
lower confidence intervals for µ.

EXAMPLE 7.3c Use the data of Example 7.3a to obtain a 99 percent confidence interval
estimate of µ, along with 99 percent one-sided upper and lower intervals.

SOLUTION Since z.005 = 2.58, and

2.58
α√
n

= 5.16
3

= 1.72
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it follows that a 99 percent confidence interval for µ is

9 ± 1.72

That is, the 99 percent confidence interval estimate is (7.28, 10.72).
Also, since z.01 = 2.33, a 99 percent upper confidence interval is

(9 − 2.33(2/3), ∞) = (7.447, ∞)

Similarly, a 99 percent lower confidence interval is

(−∞, 9 + 2.33(2/3)) = (−∞, 10.553) !

Sometimes we are interested in a two-sided confidence interval of a certain level, say
1 − α, and the problem is to choose the sample size n so that the interval is of a certain
size. For instance, suppose that we want to compute an interval of length .1 that we can
assert, with 99 percent confidence, contains µ. How large need n be? To solve this, note
that as z.005 = 2.58 it follows that the 99 percent confidence interval for µ from a sample
of size n is (

x − 2.58
σ√

n
, x + 2.58

σ√
n

)

Hence, its length is

5.16
σ√

n

Thus, to make the length of the interval equal to .1, we must choose

5.16
σ√

n
= .1

or

n = (51.6 σ )2

REMARK

The interpretation of “a 100(1 − α) percent confidence interval” can be con-
fusing. It should be noted that we are not asserting that the probability that
µ ∈ (x −1.96σ /

√
n, x +1.96σ /

√
n) is .95, for there are no random variables involved in

this assertion. What we are asserting is that the technique utilized to obtain this interval
is such that 95 percent of the time that it is employed it will result in an interval in which
µ lies. In other words, before the data are observed we can assert that with probability .95
the interval that will be obtained will contain µ, whereas after the data are obtained we
can only assert that the resultant interval indeed contains µ “with confidence .95.”
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EXAMPLE 7.3d From past experience it is known that the weights of salmon grown at
a commercial hatchery are normal with a mean that varies from season to season but with
a standard deviation that remains fixed at 0.3 pounds. If we want to be 95 percent certain
that our estimate of the present season’s mean weight of a salmon is correct to within
±0.1 pounds, how large a sample is needed?

SOLUTION A 95 percent confidence interval estimate for the unknown mean µ, based on
a sample of size n, is

µ ∈
(

x − 1.96
σ√

n
, x + 1.96

σ√
n

)

Because the estimate x is within 1.96(σ /
√

n) = .588/
√

n of any point in the interval, it
follows that we can be 95 percent certain that x is within 0.1 of µ provided that

.588√
n

≤ 0.1

That is, provided that √
n ≥ 5.88

or
n ≥ 34.57

That is, a sample size of 35 or larger will suffice. !

7.3.1 Confidence Interval for a Normal Mean When
the Variance Is Unknown

Suppose now that X1, . . . , Xn is a sample from a normal distribution with unknown
mean µ and unknown variance σ 2, and that we wish to construct a 100(1 − α) per-
cent confidence interval for µ. Since σ is unknown, we can no longer base our interval
on the fact that

√
n(X − µ)/σ is a standard normal random variable. However, by letting

S2 = ∑n
i=1(Xi − X )2/(n − 1) denote the sample variance, then from Corollary 6.5.2 it

follows that √
n

(X − µ)

S
is a t-random variable with n − 1 degrees of freedom. Hence, from the symmetry of the
t-density function (see Figure 7.2), we have that for any α ∈ (0, 1/2),

P

{

−tα/2,n−1 <
√

n
(X − µ)

S
< tα/2,n−1

}

= 1 − α

or, equivalently,

P{−tα/2,n−1
S√
n

< X̄ − µ < tα/2,n−1
S√
n
} = 1 − α
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t

Area 5 !/2

t!/2, n 212t!/2, n 21
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FIGURE 7.2 t-density function.

Multiplying all sides of the preceding by −1 and then adding X̄ yields that

P
{

X − tα/2,n−1
S√
n

< µ < X + tα/2,n−1
S√
n

}
= 1 − α

Thus, if it is observed that X = x and S = s, then we can say that “with 100(1 − α)

percent confidence”

µ ∈
(

x − tα/2,n−1
s√
n

, x + tα/2,n−1
s√
n

)

EXAMPLE 7.3e Let us again consider Example 7.3a but let us now suppose that when
the value µ is transmitted at location A then the value received at location B is normal
with mean µ and variance σ 2 but with σ 2 being unknown. If 9 successive values are, as
in Example 7.3a, 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, compute a 95 percent confidence
interval for µ.

SOLUTION A simple calculation yields that

x = 9

and

s2 =
∑

x2
i − 9(x)2

8
= 9.5

or
s = 3.082

Hence, as t.025,8 = 2.306, a 95 percent confidence interval for µ is
[

9 − 2.306
(3.082)

3
, 9 + 2.306

(3.082)

3

]
= (6.63, 11.37)
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a larger interval than obtained in Example 7.3a. The reason why the interval just obtained
is larger than the one in Example 7.3a is twofold. The primary reason is that we have
a larger estimated variance than in Example 7.3a. That is, in Example 7.3a we assumed
that σ 2 was known to equal 4, whereas in this example we assumed it to be unknown
and our estimate of it turned out to be 9.5, which resulted in a larger confidence interval.
In fact, the confidence interval would have been larger than in Example 7.3a even if our
estimate of σ 2 was again 4 because by having to estimate the variance we need to utilize
the t-distribution, which has a greater variance and thus a larger spread than the standard
normal (which can be used when σ 2 is assumed known). For instance, if it had turned
out that x = 9 and s2 = 4, then our confidence interval would have been

(9 − 2.306 · 2
3 , 9 + 2.306 · 2

3 ) = (7.46, 10.54)

which is larger than that obtained in Example 7.3a. !

REMARKS

(a) The confidence interval for µ when σ is known is based on the fact that
√

n(X −
µ)/σ has a standard normal distribution. When σ is unknown, the foregoing
approach is to estimate it by S and then use the fact that

√
n(X − µ)/S has a

t-distribution with n − 1 degrees of freedom.
(b) The length of a 100(1−2α) percent confidence interval for µ is not always larger

when the variance is unknown. For the length of such an interval is 2zασ /
√

n
when σ is known, whereas it is 2tα,n−1S/

√
n when σ is unknown; and it is cer-

tainly possible that the sample standard deviation S can turn out to be much
smaller than σ . However, it can be shown that the mean length of the interval is
longer when σ is unknown. That is, it can be shown that

tα,n−1E[S] ≥ zασ

Indeed, E[S] is evaluated in Chapter 14 and it is shown, for instance, that

E[S] =
{

.94 σ when n = 5

.97 σ when n = 9

Since
z.025 = 1.96, t.025,4 = 2.78, t.025,8 = 2.31

the length of a 95 percent confidence interval from a sample of size 5 is
2 × 1.96 σ /

√
5 = 1.75 σ when σ is known, whereas its expected length is

2 × 2.78 × .94 σ /
√

5 = 2.34 σ when σ is unknown — an increase of 33.7
percent. If the sample is of size 9, then the two values to compare are 1.31 σ and
1.49 σ — a gain of 13.7 percent. !
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A one-sided upper confidence interval can be obtained by noting that

P

{
√

n
(X − µ)

S
< tα,n−1

}
= 1 − α

or

P
{

X − µ <
S√
n

tα, n−1

}
= 1 − α

or

P
{
µ > X − S√

n
tα, n−1

}
= 1 − α

Hence, if it is observed that X = x, S = s, then we can assert “with 100(1 − α) percent
confidence” that

µ ∈
(

x − s√
n

tα,n−1, ∞
)

Similarly, a 100(1 − α) lower confidence interval would be

µ ∈
(

−∞, x + s√
n

tα, n−1

)

Program 7.3.1 will compute both one- and two-sided confidence intervals for the mean
of a normal distribution when the variance is unknown.

EXAMPLE 7.3f Determine a 95 percent confidence interval for the average resting pulse
of the members of a health club if a random selection of 15 members of the club yielded
the data 54, 63, 58, 72, 49, 92, 70, 73, 69, 104, 48, 66, 80, 64, 77. Also determine
a 95 percent lower confidence interval for this mean.

SOLUTION We use Program 7.3.1 to obtain the solution (see Figure 7.3). !

Our derivations of the 100(1 − α) percent confidence intervals for the population
mean µ have assumed that the population distribution is normal. However, even when
this is not the case, if the sample size is reasonably large then the intervals obtained will
still be approximate 100(1−α) percent confidence intervals for µ. This is true because, by
the central limit theorem,

√
n(X − µ)/σ will have approximately a normal distribution,

and
√

n(X − µ)/S will have approximately a t-distribution.

EXAMPLE 7.3g Simulation provides a powerful method for evaluating single and multi-
dimensional integrals. For instance, let f be a function of an r-valued vector ( y1, . . . , yr),
and suppose that we want to estimate the quantity θ , defined by

θ =
∫ 1

0

∫ 1

0
· · ·
∫ 1

0
f ( y1, y2, . . . , yr) dy1dy2, . . . , dyr
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The 95% confidence interval for the mean is (60.865, 77.6683)

Confidence Interval: Unknown Variance

(a)

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

.05

Data value = 77 54
63
58
72
49
92
70

Sample size = 15
Data Values

Start

QuitAdd This Point To List

Remove Selected Point From List

Clear List

The 95% lower confidence interval for the mean is (!infinity, 76.1662)

Confidence Interval: Unknown Variance

Start

Quit

(b)

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

.05

Data value = 77 54
63
58
72
49
92
70

Sample size = 15

Add This Point To List

Remove Selected Point From List

Data Values

Clear List

FIGURE 7.3 (a) Two-sided and (b) lower 95 percent confidence intervals for Example 7.3f.
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To accomplish this, note that if U1, U2, . . . , Ur are independent uniform random vari-
ables on (0, 1), then

θ = E[ f (U1, U2, . . . , Ur)]
Now, the values of independent uniform (0, 1) random variables can be approximated on
a computer (by so-called pseudo random numbers); if we generate a vector of r of them,
and evaluate f at this vector, then the value obtained, call it X1, will be a random variable
with mean θ . If we now repeat this process, then we obtain another value, call it X2,
which will have the same distribution as X1. Continuing on, we can generate a sequence
X1, X2, . . . , Xn of independent and identically distributed random variables with mean θ ;
we then use their observed values to estimate θ . This method of approximating integrals
is called Monte Carlo simulation.

For instance, suppose we wanted to estimate the one-dimensional integral

θ =
∫ 1

0

√
1 − y2 dy = E[

√
1 − U 2]

where U is a uniform (0, 1) random variable. To do so, let U1, . . . , U100 be independent
uniform (0, 1) random variables, and set

Xi =
√

1 − U 2
i , i = 1, . . . , 100

In this way, we have generated a sample of 100 random variables having mean θ . Suppose
that the computer generated values of U1, . . . , U100, resulting in X1, . . . , X100 having
sample mean .786 and sample standard deviation .03. Consequently, since t.025,99 =
1.985, it follows that a 95 percent confidence interval for θ would be given by

.786 ± 1.985(.003)

As a result, we could assert, with 95 percent confidence, that θ (which can be shown to
equal π /4) is between .780 and .792. !

7.3.2 Prediction Intervals
Suppose that X1, . . . , Xn, Xn+1 is a sample from a normal distribution with unknown
mean µ and unknown variance σ 2. Suppose further that the values of X1, . . . , Xn are to
be observed and that we want to use them to predict the value of Xn+1. To begin, note that
if the mean µ were known, then it would be the natural predictor for Xn+1. As it is not
known, it seems natural to use its current estimator after observing X1, . . . , Xn, namely
the average of these observed values, as the predicted value of Xn+1. That is, we should
use the observed value of X̄n = ∑n

i=1 Xi/n, as the predicted value of Xn+1.
Suppose now that we want to determine an interval in which we predict, with a certain

degree of confidence, that Xn+1 will lie. To obtain such a prediction interval, note that
as X̄n is normal with mean µ and variance σ 2/n, and is independent of Xn+1 which is
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normal with mean µ and variance σ 2, it follows that Xn+1 − X̄n is normal with mean 0
and variance σ 2/n + σ 2. Consequently,

Xn+1 − X̄n

σ
√

1 + 1/n
is a standard normal random variable.

Because this is independent of S2
n = ∑n

i=1(Xi − X̄n)
2/(n − 1), it follows from the same

argument used to establish Corollary 6.5.2, that replacing σ by its estimator Sn in the
preceding expression will yield a t-random variable with n − 1 degrees of freedom. That is,

Xn+1 − X̄n

Sn
√

1 + 1/n

is a t-random variable with n − 1 degrees of freedom. Hence, for any α ∈ (0, 1/2),

P{−tα/2,n−1 <
Xn+1 − X̄n

Sn
√

1 + 1/n
< tα/2,n−1} = 1 − α

which is equivalent to

P{X̄n − tα/2,n−1 Sn
√

1 + 1/n < Xn+1 < X̄n + tα/2,n−1 Sn
√

1 + 1/n}

Hence, if the observed values of X̄n and Sn are, respectively, x̄n and sn, then we can predict,
with 100(1−α) percent confidence, that Xn+1 will lie between x̄n − tα/2,n−1 sn

√
1 + 1/n

and x̄n + tα/2,n−1 sn
√

1 + 1/n. That is, with 100(1 − α) percent confidence, we can
predict that

Xn+1 ∈
(

x̄n − tα/2,n−1 sn
√

1 + 1/n, x̄n + tα/2,n−1 sn
√

1 + 1/n
)

EXAMPLE 7.3h The following are the number of steps walked in each of the last 7 days

6822 5333 7420 7432 6252 7005 6752

Assuming that the daily number of steps can be thought of as being independent reali-
zations from a normal distribution, give a prediction interval that, with 95 percent
confidence, will contain the number of steps that will be walked tomorrow.

SOLUTION A simple calculation gives that the sample mean and sample variance of the 7
data values are

X̄7 = 6716.57 S7 = 733.97

Because t.025,6 = 2.447, and 2.4447 · 733.97
√

1 + 1/7 = 1920.03, we can predict,
with 95 percent confidence, that tomorrow’s number of steps will be between
6716.57 − 1920.03 and 6716.57 + 1920.03. That is, with 95 percent confidence, X8 will
lie in the interval (4796.54, 8636.60).
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7.3.3 Confidence Intervals for the Variance of a
Normal Distribution

If X1, . . . , Xn is a sample from a normal distribution having unknown parameters µ and
σ 2, then we can construct a confidence interval for σ 2 by using the fact that

(n − 1)
S2

σ 2 ∼ χ2
n−1

Hence,

P
{
χ2

1−α/2,n−1 ≤ (n − 1)
S2

σ 2 ≤ χ2
α/2,n−1

}
= 1 − α

or, equivalently,

P

{
(n − 1)S2

χ2
α/2,n−1

≤ σ 2 ≤ (n − 1)S2

χ2
1−α/2,n−1

}

= 1 − α

Hence when S2 = s2, a 100(1 − α) percent confidence interval for σ 2 is
(

(n − 1)s2

χ2
α/2,n−1

,
(n − 1)s2

χ2
1−α/2,n−1

)

EXAMPLE 7.3i A standardized procedure is expected to produce washers with very small
deviation in their thicknesses. Suppose that 10 such washers were chosen and measured.
If the thicknesses of these washers were, in inches,

.123 .133

.124 .125

.126 .128

.120 .124

.130 .126

what is a 90 percent confidence interval for the standard deviation of the thickness of a
washer produced by this procedure?

SOLUTION A computation gives that

S2 = 1.366 × 10−5

Because χ2
.05,9 = 16.917 and χ2

.95,9 = 3.334, and because

9 × 1.366 × 10−5

16.917
= 7.267 × 10−6,

9 × 1.366 × 10−5

3.334
= 36.875 × 10−6

it follows that, with confidence .90,

σ 2 ∈ (7.267 × 10−6, 36.875 × 10−6)
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Taking square roots yields that, with confidence .90,

σ ∈ (2.696 × 10−3, 6.072 × 10−3) !

One-sided confidence intervals for σ 2 are obtained by similar reasoning and are pre-
sented in Table 7.1, which sums up the results of this section.

7.4 ESTIMATING THE DIFFERENCE IN MEANS OF TWO
NORMAL POPULATIONS

Let X1, X2, . . . , Xn be a sample of size n from a normal population having mean µ1 and
variance σ 2

1 and let Y1, . . . , Ym be a sample of size m from a different normal population
having mean µ2 and variance σ 2

2 and suppose that the two samples are independent of
each other. We are interested in estimating µ1 − µ2.

Since X = ∑n
i=1 Xi/n and Y = ∑m

i=1 Yi/m are the maximum likelihood estimators of
µ1 and µ2 it seems intuitive (and can be proven) that X − Y is the maximum likelihood
estimator of µ1 − µ2.

To obtain a confidence interval estimator, we need the distribution of X − Y . Because

X ∼ N (µ1, σ 2
1 /n)

Y ∼ N (µ2, σ 2
2 /m)

it follows from the fact that the sum of independent normal random variables is also
normal, that

X − Y ∼ N
(

µ1 − µ2,
σ 2

1

n
+ σ 2

2

m

)

TABLE 7.1 100(1 −α) Percent Confidence Intervals
X1, . . . , Xn ∼ N (µ, σ 2)

X =
n∑

i=1

Xi/n, S =

√√√√
n∑

i=1

(Xi − X )2/(n − 1)

Assumption Parameter Confidence Interval Lower Interval Upper Interval

σ 2 known µ X ± zα/2
σ√

n

(
−∞, X + zα

σ√
n

) (
X + zα

σ√
n

, ∞
)

σ 2 unknown µ X ± tα/2, n−1
S√
n

(
−∞, X + tα, n−1

S√
n

) (
X − tα, n−1

S√
n

, ∞
)

µ unknown σ 2

(
(n − 1)S2

χ2
α/2, n−1

,
(n − 1)S2

χ2
1−α/2, n−1

) (

0,
(n − 1)S2

χ2
1−α, n−1

) (
(n − 1)S2

χ2
α, n−1

, ∞
)
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Hence, assuming σ 2
1 and σ 2

2 are known, we have that

X − Y − (µ1 − µ2)√
σ 2

1

n
+ σ 2

2

m

∼ N (0, 1) (7.4.1)

and so

P





−zα/2 <

X − Y − (µ1 − µ2)√
σ 2

1

n
+ σ 2

2

m

< zα/2





= 1 − α

or, equivalently,

P




X − Y − zα/2

√
σ 2

1

n
+ σ 2

2

m
< µ1 − µ2 < X − Y + zα/2

√
σ 2

1

n
+ σ 2

2

m




 = 1 − α

Hence, if X and Y are observed to equal x and y, respectively, then a 100(1−α) two-sided
confidence interval estimate for µ1 − µ2 is

µ1 − µ2 ∈


x − y − zα/2

√
σ 2

1

n
+ σ 2

2

m
, x − y + zα/2

√
σ 2

1

n
+ σ 2

2

m





One-sided confidence intervals for µ1 − µ2 are obtained in a similar fashion, and we
leave it for the reader to verify that a 100(1 − α) percent one-sided interval is given by

µ1 − µ2 ∈
(
−∞, x − y + zα

√
σ 2

1 /n + σ 2
2 /m

)

Program 7.4.1 will compute both one- and two-sided confidence intervals for µ1 −µ2.

EXAMPLE 7.4a Two different types of electrical cable insulation have recently been tested
to determine the voltage level at which failures tend to occur. When specimens were sub-
jected to an increasing voltage stress in a laboratory experiment, failures for the two types
of cable insulation occurred at the following voltages:

Type A Type B
36 54 52 60
44 52 64 44
41 37 38 48
53 51 68 46
38 44 66 70
36 35 52 62
34 44
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Suppose that it is known that the amount of voltage that cables having type A insulation
can withstand is normally distributed with unknown mean µA and known variance
σ 2

A = 40, whereas the corresponding distribution for type B insulation is normal with
unknown mean µB and known variance σ 2

B = 100. Determine a 95 percent confidence
interval for µA − µB. Determine a value that we can assert, with 95 percent confidence,
exceeds µA − µB.

SOLUTION We run Program 7.4.1 to obtain the solution (see Figure 7.4). !

Let us suppose now that we again desire an interval estimator of µ1 − µ2 but that the
population variances σ 2

1 and σ 2
2 are unknown. In this case, it is natural to try to replace

σ 2
1 and σ 2

2 in Equation 7.4.1 by the sample variances

The 95% confidence interval for the mean is (!19.6056, !6.4897)

Confidence Interval: Two Normal Means, Known Variance

(a)

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

0.05

Data value = 62

Data value = 44
34
54
52
37
51
44
35
44

List 1 Sample size = 14

List 2 Sample size = 12 66
52
60
44
48
46
70
62

40
Population
Variance
of List 1

=

100
Population
Variance
of List 2

=

Start

Quit

Clear List 2

Clear List 1

Add This Point To List 1

Remove Selected Point From List 1

Add This Point To List 2

Remove Selected Point From List 2

FIGURE 7.4 (a) Two-sided and (b) lower 95 percent confidence intervals for Example 7.4a.
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The 95% lower confidence interval for the mean is (!infinity, !7.544)

Confidence Interval: Two Normal Means, Known Variance

Start

Quit

(b)

Clear List 2

Clear List 1

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

0.05

Data value = 62

Data value = 44
34
54
52
37
51
44
35
44

List 1 Sample size = 14
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=
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of List 2

=

FIGURE 7.4 (continued)

S2
1 =

n∑

i=1

(Xi − X )2

n − 1

S2
2 =

m∑

i=1

(Yi − Y )2

m − 1

That is, it is natural to base our interval estimate on something like

X − Y − (µ1 − µ2)√
S2

1/n + S2
2/m
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However, to utilize the foregoing to obtain a confidence interval, we need its distribution
and it must not depend on any of the unknown parameters σ 2

1 and σ 2
2 . Unfortunately,

this distribution is both complicated and does indeed depend on the unknown parameters
σ 2

1 and σ 2
2 . In fact, it is only in the special case when σ 2

1 = σ 2
2 that we will be able

to obtain an interval estimator. So let us suppose that the population variances, though
unknown, are equal and let σ 2 denote their common value. Now, from Theorem 6.5.1 it
follows that

(n − 1)
S2

1

σ 2 ∼ χ2
n−1

and

(m − 1)
S2

2

σ 2 ∼ χ2
m−1

Also, because the samples are independent, it follows that these two chi-square random
variables are independent. Hence, from the additive property of chi-square random
variables, which states that the sum of independent chi-square random variables is also
chi-square with a degree of freedom equal to the sum of their degrees of freedom,
it follows that

(n − 1)
S2

1

σ 2 + (m − 1)
S2

2

σ 2 ∼ χ2
n+m−2 (7.4.2)

Also, since

X − Y ∼ N
(

µ1 − µ2,
σ 2

n
+ σ 2

m

)

we see that
X − Y − (µ1 − µ2)√

σ 2

n
+ σ 2

m

∼ N (0, 1) (7.4.3)

Now it follows from the fundamental result that in normal sampling X and S2 are inde-
pendent (Theorem 6.5.1), that X 1, S2

1, X 2, S2
2 are independent random variables. Hence,

using the definition of a t-random variable (as the ratio of two independent random vari-
ables, the numerator being a standard normal and the denominator being the square root
of a chi-square random variable divided by its degree of freedom parameter), it follows
from Equations 7.4.2 and 7.4.3 that if we let

S2
p = (n − 1)S2

1 + (m − 1)S2
2

n + m − 2

then
X − Y − (µ1 − µ2)√

σ 2(1/n + 1/m)
÷
√

S2
p /σ 2 = X − Y − (µ1 − µ2)√

S2
p (1/n + 1/m)
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has a t-distribution with n + m − 2 degrees of freedom. Consequently,

P

{
−tα/2,n+m−2 ≤ X − Y − (µ1 − µ2)

Sp
√

1/n + 1/m
≤ tα/2,n+m−2

}
= 1 − α

Therefore, when the data result in the values X = x, Y = y, Sp = sp, we obtain the
following 100(1 − α) percent confidence interval for µ1 − µ2:

(
x − y − tα/2,n+m−2 sp

√
1/n + 1/m, x − y + tα/2,n+m−2 sp

√
1/n + 1/m

)
(7.4.4)

One-sided confidence intervals are similarly obtained.
Program 7.4.2 can be used to obtain both one- and two-sided confidence intervals for

the difference in means in two normal populations having unknown but equal variances.

EXAMPLE 7.4b There are two different techniques a given manufacturer can employ to
produce batteries. A random selection of 12 batteries produced by technique I and of 14
produced by technique II resulted in the following capacities (in ampere hours):

Technique I Technique II
140 132 144 134
136 142 132 130
138 150 136 146
150 154 140 128
152 136 128 131
144 142 150 137

130 135

Determine a 90 percent level two-sided confidence interval for the difference in means,
assuming a common variance. Also determine a 95 percent upper confidence interval for
µI − µII.

SOLUTION We run Program 7.4.2 to obtain the solution (see Figure 7.5). !

REMARK

The confidence interval given by Equation 7.4.4 was obtained under the assumption that
the population variances are equal; with σ 2 as their common value, it follows that

X − Y − (µ1 − µ2)√
σ 2/n + σ 2/m

= X − Y − (µ1 − µ2)

σ
√

1/n + 1/m

has a standard normal distribution. However, since σ 2 is unknown this result cannot be
immediately applied to obtain a confidence interval; σ 2 must first be estimated. To do so,
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note that both sample variances are estimators of σ 2; moreover, since S2
1 has n−1 degrees

of freedom and S2
2 has m−1, the appropriate estimator is to take a weighted average of the

two sample variances, with the weights proportional to these degrees of freedom. That is,
the estimator of σ 2 is the pooled estimator

S2
p = (n − 1)S2

1 + (m − 1)S2
2

n + m − 2

The 90% confidence interval for the mean difference is (2.4971, 11.9315)

Confidence Interval: Unknown But Equal Variances
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List 2 Sample size = 14 134
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Remove Selected Point From List 2

FIGURE 7.5 (a) Two-sided and (b) upper 90 percent confidence intervals for Example 7.4b.
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The 95% lower confidence interval for the mean difference is (2.4971, infinity)

Confidence Interval: Unknown but Equal Variances
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Add This Point To List 1

Remove Selected Point From List 1

List 2 Sample size = 14 134
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135

Add This Point To List 2

Remove Selected Point From List 2

FIGURE 7.5 (continued)

and the confidence interval is then based on the statistic

X − Y − (µ1 − µ2)√
S2

p
√

1/n + 1/m

which, by our previous analysis, has a t-distribution with n + m − 2 degrees of freedom.
The results of this section are summarized in Table 7.2.
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TABLE 7.2 100(1 − σ ) Percent Confidence Intervals for µ1 − µ2

X1, . . . , Xn ∼ N (µ1, σ 2
1 )

Y1, . . . , Ym ∼ N (µ2, σ 2
2 )

X =
n∑

i=1

Xi/n, S2
1 =

n∑

i=1

(Xi − X )2/(n − 1)

Y =
m∑

i=1

Yi/n, S2
2 =

m∑

i=1

(Yi − Y )2/(m − 1)

Assumption Confidence Interval

σ1, σ2 known X − Y ± zα/2

√
σ 2

1 /n + σ 2
2 /m

σ1, σ2 unknown but equal X − Y ± tα/2, n+m−2

√(
1
n

+ 1
m

)
(n − 1)S2

1 + (m − 1)S2
2

n + m − 2

Assumption Lower Confidence Interval

σ1, σ2 known (−∞, X − Y + zα
√

σ 2
1 /n + σ 2

2 /m)

σ1, σ2 unknown but equal



−∞, X − Y + tα, n+m−2

√(
1
n

+ 1
m

)
(n − 1)S2

1 + (m − 1)S2
2

n + m − 2





Note: Upper confidence intervals for µ1 − µ2 are obtained from lower confidence intervals for µ2 − µ1.

7.5 APPROXIMATE CONFIDENCE INTERVAL FOR THE
MEAN OF A BERNOULLI RANDOM VARIABLE

Consider a population of items, each of which independently meets certain standards with
some unknown probability p. If n of these items are tested to determine whether they meet
the standards, how can we use the resulting data to obtain a confidence interval for p?

If we let X denote the number of the n items that meet the standards, then X is a
binomial random variable with parameters n and p. Thus, when n is large, it follows by
the normal approximation to the binomial that X is approximately normally distributed
with mean np and variance np(1 − p). Hence,

X − np
√

np(1 − p)
·∼N (0, 1) (7.5.1)
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where
·∼ means “is approximately distributed as.” Therefore, for any α ∈ (0, 1),

P

{
−zα/2 <

X − np
√

np(1 − p)
< zα/2

}
≈ 1 − α

and so if X is observed to equal x, then an approximate 100(1 − α) percent confidence
region for p is {

p : −zα/2 <
x − np

√
np(1 − p)

< zα/2

}

The foregoing region, however, is not an interval. To obtain a confidence interval for
p, let p̂ = X /n be the fraction of the items that meet the standards. From Example 7.2a,
p̂ is the maximum likelihood estimator of p, and so should be approximately equal to p.
As a result,

√
np̂(1 − p̂) will be approximately equal to

√
np(1 − p) and so from Equa-

tion 7.5.1 we see that
X − np

√
np̂(1 − p̂)

·∼N (0, 1)

Hence, for any α ∈ (0, 1) we have that

P

{
−zα/2 <

X − np
√

np̂(1 − p̂)
< zα/2

}
≈ 1 − α

or, equivalently,

P{−zα/2

√
np̂(1 − p̂) < np − X < zα/2

√
np̂(1 − p̂)} ≈ 1 − α

Dividing all sides of the preceding inequality by n, and using that p̂ = X /n, the preceding
can be written as

P{ p̂ − zα/2

√
p̂(1 − p̂)/n < p < p̂ + zα/2

√
p̂(1 − p̂)/n} ≈ 1 − α

which yields an approximate 100(1 − α) percent confidence interval for p.

EXAMPLE 7.5a A sample of 100 transistors is randomly chosen from a large batch and
tested to determine if they meet the current standards. If 80 of them meet the standards,
then an approximate 95 percent confidence interval for p, the fraction of all the transistors
that meet the standards, is given by

(.8 − 1.96
√

.8(.2)/100, .8 + 1.96
√

.8(.2)/100) = (.7216, .8784)

That is, with “95 percent confidence,” between 72.16 and 87.84 percent of all transistors
meet the standards. !
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EXAMPLE 7.5b In August 2013, the New York Times reported that a recent poll indicated
that 52 percent of the population was in favor of the job performance of President Obama,
with a margin of error of ±4 percent. What does this mean? Can we infer how many
people were questioned?

SOLUTION It has become common practice for the news media to present 95 percent
confidence intervals. Since z.025 = 1.96, a 95 percent confidence interval for p, the
percentage of the population that is in favor of President Obama’s job performance, is
given by

p̂ ± 1.96
√

p̂(1 − p̂)/n = .52 ± 1.96
√

.52(.48)/n

where n is the size of the sample. Since the “margin of error” is ±4 percent, it follows that

1.96
√

.52(.48)/n = .04

or

n = (1.96)2(.52)(.48)

(.04)2 = 599.29

That is, approximately 599 people were sampled, and 52 percent of them reported favor-
ably on President Obama’s job performance. !

We often want to specify an approximate 100(1 − α) percent confidence interval for p
that is no greater than some given length, say b. The problem is to determine the appropri-
ate sample size n to obtain such an interval. To do so, note that the length of the approxi-
mate 100(1 − α) percent confidence interval for p from a sample of size n is

2zα/2

√
p̂(1 − p̂)/n

which is approximately equal to 2zα/2
√

p(1 − p)/n. Unfortunately, p is not known in
advance, and so we cannot just set 2zα/2

√
p(1 − p)/n equal to b to determine the necessary

sample size n. What we can do, however, is to first take a preliminary sample to obtain
a rough estimate of p, and then use this estimate to determine n. That is, we use p∗, the
proportion of the preliminary sample that meets the standards, as a preliminary estimate
of p; we then determine the total sample size n by solving the equation

2zα/2
√

p∗(1 − p∗)/n = b

Squaring both sides of the preceding yields that

(2zα/2)
2p∗(1 − p∗)/n = b2
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or

n = (2zα/2)
2p∗(1 − p∗)
b2

That is, if k items were initially sampled to obtain the preliminary estimate of p, then an
additional n − k (or 0 if n ≤ k) items should be sampled.

EXAMPLE 7.5c A certain manufacturer produces computer chips; each chip is indepen-
dently acceptable with some unknown probability p. To obtain an approximate 99 per-
cent confidence interval for p, whose length is approximately .05, an initial sample of
30 chips has been taken. If 26 of these chips are of acceptable quality, then the prelimi-
nary estimate of p is 26/30. Using this value, a 99 percent confidence interval of length
approximately .05 would require an approximate sample of size

n = 4(z.005)
2

(.05)2
26
30

(
1 − 26

30

)
= 4(2.58)2

(.05)2
26
30

4
30

= 1,231

Hence, we should now sample an additional 1,201 chips and if, for instance, 1,040 of
them are acceptable, then the final 99 percent confidence interval for p is

(
1, 066
1, 231

−
√

1, 066
(

1 − 1, 066
1, 231

)
z.005

1, 231
,

1, 066
1, 231

+
√

1, 066
(

1 − 1, 066
1, 231

)
z.005

1, 231

)

or
p ∈ (.84091, .89101) !

REMARK

As shown, a 100(1 − α) percent confidence interval for p will be of approximate length b
when the sample size is

n = (2zα/2)
2

b2 p(1 − p)

Now it is easily shown that the function g(p) = p(1 − p) attains its maximum value of 1
4 ,

in the interval 0 ≤ p ≤ 1, when p = 1
2 . Thus an upper bound on n is

n ≤ (zα/2)
2

b2

and so by choosing a sample whose size is at least as large as (zα/2)
2/b2, one can be

assured of obtaining a confidence interval of length no greater than b without need of
any additional sampling. !

One-sided approximate confidence intervals for p are also easily obtained; Table 7.3
gives the results.
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TABLE 7.3 Approximate 100(1 −α) Percent Confidence Intervals for p
X Is a Binomial (n, p) Random Variable

p̂ = X /n

Type of Interval Confidence Interval

Two-sided p̂ ± zα/2
√

p̂(1 − p̂)/n

One-sided lower
(
−∞, p̂ + zα

√
p̂(1 − p̂)/n

)

One-sided upper
(

p̂ − zα
√

p̂(1 − p̂)/n, ∞
)

*7.6 CONFIDENCE INTERVAL OF THE MEAN OF THE
EXPONENTIAL DISTRIBUTION

If X1, X2, . . . , Xn are independent exponential random variables each having mean θ ,
then it can be shown that the maximum likelihood estimator of θ is the sample
mean

∑n
i=1 Xi/n. To obtain a confidence interval estimator of θ , recall from Section

5.7 that
∑n

i=1 Xi has a gamma distribution with parameters n, 1/θ . This in turn
implies (from the relationship between the gamma and chi-square distribution shown in
Section 5.8.1.1) that

2
θ

n∑

i=1

Xi ∼ χ 2
2n

Hence, for any α ∈ (0, 1)

P

{
χ 2

1−α/2, 2n <
2
θ

n∑

i=1

Xi < χ 2
α/2, 2n

}
= 1 − α

or, equivalently,

P






2
n∑

i=1
Xi

χ2
α/2, 2n

< θ <

2
n∑

i=1
Xi

χ2
1−α/2, 2n





= 1 − α

Hence, a 100(1 − α) percent confidence interval for θ is

θ ∈





2
n∑

i=1
Xi

χ 2
α/2, 2n

,
2

n∑
i=1

Xi

χ 2
1−α/2, 2n





* Optional section.
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EXAMPLE 7.6a The successive items produced by a certain manufacturer are assumed to
have useful lives that (in hours) are independent with a common density function

f (x) = 1
θ

e−x/θ , 0 < x < ∞

If the sum of the lives of the first 10 items is equal to 1,740, what is a 95 percent confidence
interval for the population mean θ ?

SOLUTION From Program 5.8.1b (or Table A2), we see that

χ 2
.025,20 = 34.169, χ 2

.975,20 = 9.661

and so we can conclude, with 95 percent confidence, that

θ ∈
(

3480
34.169

,
3480
9.661

)

or, equivalently,
θ ∈ (101.847, 360.211) !

*7.7 EVALUATING A POINT ESTIMATOR
Let X = (X1, . . . , Xn) be a sample from a population whose distribution is specified
up to an unknown parameter θ , and let d = d(X) be an estimator of θ . How are we
to determine its worth as an estimator of θ ? One way is to consider the square of the
difference between d (X) and θ . However, since (d(X) − θ)2 is a random variable, let us
agree to consider r(d , θ), the mean square error of the estimator d , which is defined by

r(d , θ) = E[(d(X) − θ)2]

as an indication of the worth of d as an estimator of θ .
It would be nice if there were a single estimator d that minimized r(d , θ) for all possible

values of θ . However, except in trivial situations, this will never be the case. For example,
consider the estimator d∗ defined by

d∗(X1, . . . , Xn) = 4

That is, no matter what the outcome of the sample data, the estimator d∗ chooses 4 as its
estimate of θ . While this seems like a silly estimator (since it makes no use of the data), it
is, however, true that when θ actually equals 4, the mean square error of this estimator is 0.

* Optional section.
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Thus, the mean square error of any estimator different from d∗ must, in most situations,
be larger than the mean square error of d∗ when θ = 4.

Although minimum mean square estimators rarely exist, it is sometimes possible to
find an estimator having the smallest mean square error among all estimators that satisfy
a certain property. One such property is that of unbiasedness.

Definition
Let d = d(X) be an estimator of the parameter θ . Then

bθ (d) = E[d(X)] − θ

is called the bias of d as an estimator of θ . If bθ (d) = 0 for all θ , then we say that d is
an unbiased estimator of θ . In other words, an estimator is unbiased if its expected value
always equals the value of the parameter it is attempting to estimate.

EXAMPLE 7.7a Let X1, X2, . . . , Xn be a random sample from a distribution having
unknown mean θ . Then

d1(X1, X2, . . . , Xn) = X1

and

d2(X1, X2, . . . , Xn) = X1 + X2 + · · · + Xn

n

are both unbiased estimators of θ since

E[X1] = E
[

X1 + X2 + · · · + Xn

n

]
= θ

More generally, d3(X1, X2, . . . , Xn) = ∑n
i=1 λiXi is an unbiased estimator of θ whenever∑n

i=1 λi = 1. This follows since

E

[ n∑

i=1

λiXi

]
=

n∑

i=1

E[λiXi]

=
n∑

i=1

λiE(Xi)

= θ

n∑

i=1

λi

= θ !



7.7 Evaluating a Point Estimator 275

If d(X1, . . . , Xn) is an unbiased estimator, then its mean square error is given by

r(d , θ) = E[(d(X) − θ)2]
= E[(d(X) − E[d(X)])2] since d is unbiased

= Var(d(X))

Thus the mean square error of an unbiased estimator is equal to its variance.

EXAMPLE 7.7b (Combining Independent Unbiased Estimators) Let d1 and d2 denote inde-
pendent unbiased estimators of θ , having known variances σ 2

1 and σ 2
2 . That is, for

i = 1, 2,

E[di] = θ , Var(di) = σ 2
i

Any estimator of the form

d = λd1 + (1 − λ)d2

will also be unbiased. To determine the value of λ that results in d having the smallest
possible mean square error, note that

r(d , θ) = Var(d)

= λ2 Var(d1) + (1 − λ)2 Var(d2)

by the independence of d1and d2

= λ2σ 2
1 + (1 − λ)2σ 2

2

Differentiation yields that

d
dλ

r(d , θ) = 2λσ 2
1 − 2(1 − λ)σ 2

2

To determine the value of λ that minimizes r(d , θ) — call it λ̂ — set this equal to 0
and solve for λ to obtain

2 λ̂σ 2
1 = 2(1 − λ̂)σ 2

2

or

λ̂ = σ 2
2

σ 2
1 + σ 2

2
= 1/σ 2

1

1/σ 2
1 + 1/σ 2

2

In words, the optimal weight to give an estimator is inversely proportional to its variance
(when all the estimators are unbiased and independent).

For an application of the foregoing, suppose that a conservation organization wants to
determine the acidity content of a certain lake. To determine this quantity, they draw some
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water from the lake and then send samples of this water to n different laboratories. These
laboratories will then, independently, test for acidity content by using their respective
titration equipment, which is of differing precision. Specifically, suppose that di , the result
of a titration test at laboratory i, is a random variable having mean θ , the true acidity of the
sample water, and variance σ 2

i , i = 1, . . . , n. If the quantities σ 2
i , i = 1, . . . , n are known

to the conservation organization, then they should estimate the acidity of the sampled
water from the lake by

d =

n∑
i=1

di/σ 2
i

n∑
i=1

1/σ 2
i

The mean square error of d is as follows:

r(d , θ) = Var(d) since d is unbiased

=
( n∑

i=1

1/σ 2
i

)−2 n∑

i=1

(
1
σ 2

i

)2

σ 2
i

= 1
n∑

i=1
1/σ 2

i

!

A generalization of the result that the mean square error of an unbiased estimator is
equal to its variance is that the mean square error of any estimator is equal to its variance
plus the square of its bias. This follows since

r(d , θ) = E[(d(X) − θ)2]
= E[(d − E[d] + E[d] − θ)2]
= E[(d − E[d])2 + (E[d] − θ)2 + 2(E[d] − θ)(d − E[d])]
= E[(d − E[d])2] + E[(E[d] − θ)2]

+ 2E[(E[d] − θ)(d − E[d])]
= E[(d − E[d])2] + (E[d] − θ)2 + 2(E[d] − θ)E[d − E[d]]

since E[d] − θ is constant

= E[(d − E[d])2] + (E[d] − θ)2

The last equality follows since

E[d − E[d]] = 0
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Hence

r(d , θ) = Var(d) + b2
θ (d)

EXAMPLE 7.7c Let X1, . . . , Xn denote a sample from a uniform (0, θ) distribution, where
θ is assumed unknown. Since

E[Xi] = θ

2
a “natural” estimator to consider is the unbiased estimator

d1 = d1(X) =
2

n∑
i=1

Xi

n

Since E[d1] = θ , it follows that

r(d1, θ) = Var(d1)

= 4
n

Var(Xi)

= 4
n

θ2

12
since Var(Xi) = θ2

12

= θ2

3n

A second possible estimator of θ is the maximum likelihood estimator, which, as shown
in Example 7.2d, is given by

d2 = d2(X) = max
i

Xi

To compute the mean square error of d2 as an estimator of θ , we need to first compute
its mean (so as to determine its bias) and variance. To do so, note that the distribution
function of d2 is as follows:

F2(x) ≡ P{d2(X) ≤ x}
= P{max

i
Xi ≤ x}

= P{Xi ≤ x for all i = 1, . . . , n}

=
n∏

i=1

P{Xi ≤ x} by independence

=
( x
θ

)n
x ≤ θ
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Hence, upon differentiating, we obtain that the density function of d2 is

f2(x) = nxn−1

θn , x ≤ θ

Therefore,

E[d2] =
∫ ∞

0
x f2(x) dx = n

θn

∫ θ

0
xn dx = n

n + 1
θ (7.7.1)

Also

E[d2
2 ] = n

θn

∫ θ

0
xn+1 dx = n

n + 2
θ2

and so

Var(d2) = n
n + 2

θ2 −
(

n
n + 1

θ

)2

(7.7.2)

= n θ2
[

1
n + 2

− n
(n + 1)2

]
= n θ2

(n + 2)(n + 1)2

Hence

r(d2, θ) = (E(d2) − θ)2 + Var(d2) (7.7.3)

= θ2

(n + 1)2 + n θ2

(n + 2)(n + 1)2

= θ2

(n + 1)2

[
1 + n

n + 2

]

= 2θ2

(n + 1)(n + 2)

Since

2θ2

(n + 1)(n + 2)
≤ θ2

3n
n = 1, 2, . . .

it follows that d2 is a superior estimator of θ than is d1.
Equation 7.7.1 suggests the use of even another estimator — namely, the unbiased

estimator (1 + 1/n)d2(X) = (1 + 1/n) maxi Xi . However, rather than considering this
estimator directly, let us consider all estimators of the form

dc(X) = c max
i

Xi = c d2(X)
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where c is a given constant. The mean square error of this estimator is

r(dc(X), θ) = Var(dc(X)) + (E[dc(X)] − θ)2

= c2 Var(d2(X)) + (cE[d2(X)] − θ)2

= c2n θ2

(n + 2)(n + 1)2 + θ2
(

c n
n + 1

− 1
)2

by Equations 7.7.2 and 7.7.1 (7.7.4)

To determine the constant c resulting in minimal mean square error, we differentiate to
obtain

d
dc

r(dc(X), θ) = 2c nθ2

(n + 2)(n + 1)2 + 2θ2n
n + 1

(
c n

n + 1
− 1

)

Equating this to 0 shows that the best constant c — call it c∗ — is such that

c∗

n + 2
+ c∗n − (n + 1) = 0

or

c∗ = (n + 1)(n + 2)

n2 + 2n + 1
= n + 2

n + 1

Substituting this value of c into Equation 7.7.4 yields that

r
(

n + 2
n + 1

max
i

Xi, θ
)

= (n + 2)nθ2

(n + 1)4
+ θ2

(
n(n + 2)

(n + 1)2 − 1
)2

= (n + 2)nθ2

(n + 1)4
+ θ2

(n + 1)4

= θ2

(n + 1)2

A comparison with Equation 7.7.3 shows that the (biased) estimator
(n + 2)/(n + 1) maxi Xi has about half the mean square error of the maximum
likelihood estimator maxi Xi . !

*7.8 THE BAYES ESTIMATOR
In certain situations it seems reasonable to regard an unknown parameter θ as being the
value of a random variable from a given probability distribution. This usually arises when,
prior to the observance of the outcomes of the data X1, . . . , Xn, we have some information
about the value of θ and this information is expressible in terms of a probability distri-
bution (called appropriately the prior distribution of θ ). For instance, suppose that from

* Optional section.
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past experience we know that θ is equally likely to be near any value in the interval (0, 1).
Hence, we could reasonably assume that θ is chosen from a uniform distribution on (0, 1).

Suppose now that our prior feelings about θ are that it can be regarded as being the
value of a continuous random variable having probability density function p(θ); and
suppose that we are about to observe the value of a sample whose distribution depends
on θ . Specifically, suppose that f (x|θ) represents the likelihood — that is, it is the prob-
ability mass function in the discrete case or the probability density function in the con-
tinuous case — that a data value is equal to x when θ is the value of the parameter. If
the observed data values are Xi = xi, i = 1, . . . , n, then the updated, or conditional,
probability density function of θ is as follows:

f (θ |x1, . . . , xn) = f (θ , x1, . . . , xn)

f (x1, . . . , xn)

= p(θ)f (x1, . . . , xn|θ)∫
f (x1, . . . , xn|θ)p(θ) dθ

The conditional density function f (θ |x1, . . . , xn) is called the posterior density function.
(Thus, before observing the data, one’s feelings about θ are expressed in terms of the
prior distribution, whereas once the data are observed, this prior distribution is updated
to yield the posterior distribution.)

Now we have shown that whenever we are given the probability distribution of a ran-
dom variable, the best estimate of the value of that random variable, in the sense of mini-
mizing the expected squared error, is its mean. Therefore, it follows that the best estimate
of θ , given the data values Xi = xi, i = 1, . . . , n, is the mean of the posterior distribution
f (θ |x1, . . . , xn). This estimator, called the Bayes estimator, is written as E[θ |X1, . . . , Xn].
That is, if Xi = xi , i = 1, . . . , n, then the value of the Bayes estimator is

E[θ |X1 = x1, . . . , Xn = xn] =
∫

θ f (θ |x1, . . . , xn) dθ

EXAMPLE 7.8a Suppose that X1, . . . , Xn are independent Bernoulli random variables, each
having probability mass function given by

f (x|θ) = θ x(1 − θ)1−x, x = 0, 1

where θ is unknown. Further, suppose that θ is chosen from a uniform distribution on
(0, 1). Compute the Bayes estimator of θ .

SOLUTION We must compute E[θ |X1, . . . , Xn]. Since the prior density of θ is the uniform
density

p(θ) = 1, 0 < θ < 1
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we have that the conditional density of θ given X1, . . . , Xn is given by

f (θ |x1, . . . , xn) = f (x1, . . . , xn, θ)

f (x1, . . . , xn)

= f (x1, . . . , xn|θ)p(θ)
∫ 1

0 f (x1, . . . , xn|θ)p(θ) dθ

= θ"n
1 xi (1 − θ)n−"n

1 xi

∫ 1
0 θ"n

1 xi(1 − θ)n−"n
1xi dθ

Now it can be shown that for integral values m and r

∫ 1

0
θm(1 − θ)r dθ = m!r!

(m + r + 1)! (7.8.1)

Hence, upon letting x = ∑n
i=1 xi

f (θ |x1, . . . , xn) = (n + 1)! θ x(1 − θ)n−x

x! (n − x)! (7.8.2)

Therefore,

E[θ |x1, . . . , xn] = (n + 1)!
x!(n − x)!

∫ 1

0
θ1+x(1 − θ)n−x dθ

= (n + 1)!
x!(n − x)!

(1 + x)!(n − x)!
(n + 2)! from Equation 7.8.1

= x + 1
n + 2

Thus, the Bayes estimator is given by

E[θ |X1, . . . , Xn] =

n∑
i=1

Xi + 1

n + 2

As an illustration, if 10 independent trials, each of which results in a success with prob-
ability θ , result in 6 successes, then assuming a uniform (0, 1) prior distribution on θ ,
the Bayes estimator of θ is 7/12 (as opposed, for instance, to the maximum likelihood
estimator of 6/10). !
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REMARK

The conditional distribution of θ given that Xi = xi , i = 1, . . . , n, whose density function
is given by Equation 7.8.2, is called the beta distribution with parameters

∑n
i=1 xi + 1,

n −∑n
i=1 xi + 1. !

EXAMPLE 7.8b Suppose X1, . . . , Xn are independent normal random variables, each
having unknown mean θ and known variance σ 2

0 . If θ is itself selected from a normal pop-
ulation having known mean µ and known variance σ 2, what is the Bayes estimator of θ ?

SOLUTION In order to determine E[θ |X1, . . . , Xn], the Bayes estimator, we need first
determine the conditional density of θ given the values of X1, . . . , Xn. Now

f (θ |x1, . . . , xn) = f (x1, . . . , xn|θ)p(θ)

f (x1, . . . , xn)

where

f (x1, . . . , xn|θ) = 1
(2π)n/2σ n

0
exp

{

−
n∑

i=1

(xi − θ)2/2σ 2
0

}

p(θ) = 1√
2πσ

exp{−(θ − µ)2/2σ 2}

and

f (x1, . . . , xn) =
∫ ∞

−∞
f (x1, . . . , xn|θ)p(θ) dθ

With the help of a little algebra, it can now be shown that this conditional density is a
normal density with mean

E[θ |X1, . . . , Xn] = nσ 2

nσ 2 + σ 2
0

X + σ 2
0

nσ 2 + σ 2
0
µ (7.8.3)

=

n
σ 2

0
n
σ 2

0
+ 1

σ 2

X +
1
σ 2

n
σ 2

0
+ 1

σ 2

µ

and variance

Var(θ |X1, . . . , Xn) = σ 2
0 σ 2

nσ 2 + σ 2
0

Writing the Bayes estimator as we did in Equation 7.8.3 is informative, for it shows
that it is a weighted average of X , the sample mean, and µ, the a priori mean. In fact,
the weights given to these two quantities are in proportion to the inverses of σ 2

0 /n (the
conditional variance of the sample mean X given θ ) and σ 2 (the variance of the prior
distribution). !
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REMARK: ON CHOOSING A NORMAL PRIOR

As illustrated by Example 7.8b, it is computationally very convenient to choose a normal
prior for the unknown mean θ of a normal distribution — for then the Bayes estimator
is simply given by Equation 7.8.3. This raises the question of how one should go about
determining whether there is a normal prior that reasonably represents one’s prior feelings
about the unknown mean.

To begin, it seems reasonable to determine the value — call it µ — that you a priori
feel is most likely to be near θ . That is, we start with the mode (which equals the mean
when the distribution is normal) of the prior distribution. We should then try to ascertain
whether or not we believe that the prior distribution is symmetric about µ. That is, for
each a > 0 do we believe that it is just as likely that θ will lie between µ − a and µ as
it is that it will be between µ and µ + a? If the answer is positive, then we accept, as a
working hypothesis, that our prior feelings about θ can be expressed in terms of a prior
distribution that is normal with mean µ. To determine σ , the standard deviation of the
normal prior, think of an interval centered about µ that you a priori feel is 90 percent
certain to contain θ . For instance, suppose you feel 90 percent (no more and no less)
certain that θ will lie between µ − a and µ + a. Then, since a normal random variable θ

with mean µ and variance σ 2 is such that

P
{
−1.645 <

θ − µ

σ
< 1.645

}
= .90

or

P{µ − 1.645σ < θ < µ + 1.645σ } = .90

it seems reasonable to take

1.645σ = a or σ = a
1.645

Thus, if your prior feelings can indeed be reasonably described by a normal distribu-
tion, then that distribution would have mean µ and standard deviation σ = a/1.645. As
a test of whether this distribution indeed fits your prior feelings you might ask yourself
such questions as whether you are 95 percent certain that θ will fall between µ − 1.96σ

and µ + 1.96σ , or whether you are 99 percent certain that θ will fall between µ − 2.58σ

and µ + 2.58σ , where these intervals are determined by the equalities

P
{
−1.96 <

θ − µ

σ
< 1.96

}
= .95

P
{
−2.58 <

θ − µ

σ
< 2.58

}
= .99

which hold when θ is normal with mean µ and variance σ 2.
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EXAMPLE 7.8c Consider the likelihood function f (x1, . . . , xn|θ) and suppose that θ

is uniformly distributed over some interval (a, b). The posterior density of θ given
X1, . . . , Xn equals

f (θ |x1, . . . , xn) = f (x1, . . . , xn|θ)p(θ)
∫ b

a f (x1, . . . , xn|θ)p(θ) dθ

= f (x1, . . . , xn|θ)
∫ b

a f (x1, . . . , xn|θ) dθ
a < θ < b

Now the mode of a density f (θ) was defined to be that value of θ that maximizes f (θ).
By the foregoing, it follows that the mode of the density f (θ |x1, . . . , xn) is that value of θ

maximizing f (x1, . . . , xn|θ); that is, it is just the maximum likelihood estimate of θ [when
it is constrained to be in (a, b)]. In other words, the maximum likelihood estimate equals
the mode of the posterior distribution when a uniform prior distribution is assumed. !

If, rather than a point estimate, we desire an interval in which θ lies with a specified
probability — say 1 − α — we can accomplish this by choosing values a and b such that

∫ b

a
f (θ |x1, . . . , xn) dθ = 1 − α

EXAMPLE 7.8d Suppose that if a signal of value s is sent from location A, then the signal
value received at location B is normally distributed with mean s and variance 60. Suppose
also that the value of a signal sent at location A is, a priori, known to be normally dis-
tributed with mean 50 and variance 100. If the value received at location B is equal to 40,
determine an interval that will contain the actual value sent with probability .90.

SOLUTION It follows from Example 7.8b that the conditional distribution of S, the signal
value sent, given that 40 is the value received, is normal with mean and variance given by

E[S|data] = 1/60
1/60 + 1/100

40 + 1/100
1/60 + 1/100

50 = 43.75

Var(S|data) = 1
1/60 + 1/100

= 37.5

Hence, given that the value received is 40, (S − 43.75)/
√

37.5 has a standard normal
distribution and so

P
{
−1.645 <

S − 43.75√
37.5

< 1.645|data
}

= .90

or

P{43.75 − 1.645
√

37.5 < S < 43.75 + 1.645
√

37.5|data} = .95

That is, with probability .90, the true signal sent lies within the interval (33.68, 53.82). !
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Problems

1. Let X1, . . . , Xn be a sample from the distribution whose density function is

f (x) =
{

e−(x−θ) x ≥ θ

0 otherwise

Determine the maximum likelihood estimator of θ .

2. Determine the maximum likelihood estimator of θ when X1, . . . , Xn is a sample
with density function

f (x) = 1
2 e−|x−θ |, −∞ < x < ∞

3. Let X1, . . . , Xn be a sample from a normal µ, σ 2 population. Determine the max-
imum likelihood estimator of σ 2 when µ is known. What is the expected value
of this estimator?

4. Determine the maximum likelihood estimates of a and λ when X1, . . . , Xn is a
sample from the Pareto density function

f (x) =
{

λaλx−(λ+1), if x ≥ a
0, if x < a

5. Suppose that X1, . . . , Xn are normal with mean µ1; Y1, . . . , Yn are normal with
mean µ2; and W1, . . . , Wn are normal with mean µ1 + µ2. Assuming that all 3n
random variables are independent with a common variance, find the maximum
likelihood estimators of µ1 and µ2.

6. River floods are often measured by their discharges (in units of feet cubed per
second). The value v is said to be the value of a 100-year flood if

P{D ≥ v} = .01

where D is the discharge of the largest flood in a randomly chosen year. The
following table gives the flood discharges of the largest floods of the Blackstone
River in Woonsocket, Rhode Island, in each of the years from 1929 to 1965.
Assuming that these discharges follow a lognormal distribution, estimate the value
of a 100-year flood.
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Annual Floods of the Blackstone River (1929–1965)

Flood Discharge
Year (ft3/s)

1929 4,570
1930 1,970
1931 8,220
1932 4,530
1933 5,780
1934 6,560
1935 7,500
1936 15,000
1937 6,340
1938 15,100
1939 3,840
1940 5,860
1941 4,480
1942 5,330
1943 5,310
1944 3,830
1945 3,410
1946 3,830
1947 3,150
1948 5,810
1949 2,030
1950 3,620
1951 4,920
1952 4,090
1953 5,570
1954 9,400
1955 32,900
1956 8,710
1957 3,850
1958 4,970
1959 5,398
1960 4,780
1961 4,020
1962 5,790
1963 4,510
1964 5,520
1965 5,300

7. Recall that X is said to have a lognormal distribution with parameters µ and σ 2

if log(X ) is normal with mean µ and variance σ 2. Suppose X is such a lognormal
random variable.
(a) Find E[X ].
(b) Find Var(X ).
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Hint: Make use of the formula for the moment generating function of a normal
random variable.
(c) The following are, in minutes, travel times to work over a sequence of 10 days.

42, 28, 53, 57, 67, 39, 35, 50, 44, 39

Assuming an underlying lognormal distribution, use the data to estimate the mean
travel time.

8. An electric scale gives a reading equal to the true weight plus a random error that
is normally distributed with mean 0 and standard deviation σ = .1 mg. Suppose
that the results of five successive weighings of the same object are as follows: 3.142,
3.163, 3.155, 3.150, 3.141.

(a) Determine a 95 percent confidence interval estimate of the true weight.
(b) Determine a 99 percent confidence interval estimate of the true weight.

9. The PCB concentration of a fish caught in Lake Michigan was measured by a
technique that is known to result in an error of measurement that is normally
distributed with a standard deviation of .08 ppm (parts per million). Suppose the
results of 10 independent measurements of this fish are

11.2, 12.4, 10.8, 11.6, 12.5, 10.1, 11.0, 12.2, 12.4, 10.6

(a) Give a 95 percent confidence interval for the PCB level of this fish.
(b) Give a 95 percent lower confidence interval.
(c) Give a 95 percent upper confidence interval.

10. The standard deviation of test scores on a certain achievement test is 11.3. If a
random sample of 81 students had a sample mean score of 74.6, find a 90 percent
confidence interval estimate for the average score of all students.

11. Let X1, . . . , Xn, Xn+1 be a sample from a normal population having an unknown
mean µ and variance 1. Let X̄n = ∑n

i=1 Xi/n be the average of the first n of
them.

(a) What is the distribution of Xn+1 − X̄n?
(b) If X̄n = 4, give an interval that, with 90 percent confidence, will contain the

value of Xn+1.

12. If X1, . . . , Xn is a sample from a normal population whose mean µ is unknown
but whose variance σ 2 is known, show that (−∞, X + zασ /

√
n) is a 100(1 − α)

percent lower confidence interval for µ.

13. A sample of 20 cigarettes is tested to determine nicotine content and the average
value observed was 1.2 mg. Compute a 99 percent two-sided confidence inter-
val for the mean nicotine content of a cigarette if it is known that the standard
deviation of a cigarette’s nicotine content is σ = .2 mg.
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14. In Problem 13, suppose that the population variance is not known in advance
of the experiment. If the sample variance is .04, compute a 99 percent two-sided
confidence interval for the mean nicotine content.

15. In Problem 14, compute a value c for which we can assert “with 99 percent con-
fidence” that c is larger than the mean nicotine content of a cigarette.

16. Suppose that when sampling from a normal population having an unknown
mean µ and unknown variance σ 2, we wish to determine a sample size n so as to
guarantee that the resulting 100(1 − α) percent confidence interval for µ will be
of size no greater than A, for given values α and A. Explain how we can approxi-
mately do this by a double sampling scheme that first takes a subsample of size 30
and then chooses the total sample size by using the results of the first subsample.

17. The following data resulted from 24 independent measurements of the melting
point of lead.

330◦C 322◦C 345◦C
328.6◦C 331◦C 342◦C
342.4◦C 340.4◦C 329.7◦C
334◦C 326.5◦C 325.8◦C
337.5◦C 327.3◦C 322.6◦C
341◦C 340◦C 333◦C
343.3◦C 331◦C 341◦C
329.5◦C 332.3◦C 340◦C

Assuming that the measurements can be regarded as constituting a normal sample
whose mean is the true melting point of lead, determine a 95 percent two-sided
confidence interval for this value. Also determine a 99 percent two-sided
confidence interval.

18. The following are scores on IQ tests of a random sample of 18 students at a large
eastern university.

130, 122, 119, 142, 136, 127, 120, 152, 141,

132, 127, 118, 150, 141, 133, 137, 129, 142

(a) Construct a 95 percent confidence interval estimate of the average IQ score
of all students at the university.

(b) Construct a 95 percent lower confidence interval estimate.
(c) Construct a 95 percent upper confidence interval estimate.

19. Suppose that a random sample of nine recently sold houses in a certain city
resulted in a sample mean price of $222,000, with a sample standard deviation
of $22,000. Give a 95 percent upper confidence interval for the mean price of all
recently sold houses in this city.
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20. A company self-insures its large fleet of cars against collisions. To determine its
mean repair cost per collision, it has randomly chosen a sample of 16 accidents.
If the average repair cost in these accidents is $2,200 with a sample standard
deviation of $800, find a 90 percent confidence interval estimate of the mean
cost per collision.

21. A standardized test is given annually to all sixth-grade students in the state of
Washington. To determine the average score of students in her district, a school
supervisor selects a random sample of 100 students. If the sample mean of these
students’ scores is 320 and the sample standard deviation is 16, give a 95 percent
confidence interval estimate of the average score of students in that supervisor’s
district.

22. Each of 20 science students independently measured the melting point of lead.
The sample mean and sample standard deviation of these measurements were (in
degrees centigrade) 330.2 and 15.4, respectively. Construct (a) a 95 percent and
(b) a 99 percent confidence interval estimate of the true melting point of lead.

23. A random sample of 300 CitiBank VISA cardholder accounts indicated a sample
mean debt of $1,220 with a sample standard deviation of $840. Construct
a 95 percent confidence interval estimate of the average debt of all cardholders.

24. In Problem 23, find the smallest value v that “with 90 percent confidence,”
exceeds the average debt per cardholder.

25. Verify the formula given in Table 7.1 for the 100(1−α) percent lower confidence
interval for µ when σ is unknown.

26. The following are the daily number of steps taken by a certain individual in 20
weekdays.

2,100 1,984 2,072 1,898
1,950 1,992 2,096 2,103
2,043 2,218 2,244 2,206
2,210 2,152 1,962 2,007
2,018 2,106 1,938 1,956

Assuming that the daily number of steps is normally distributed, construct
(a) a 95 percent and (b) a 99 percent two-sided confidence interval for the
mean number of steps. (c) Determine the largest value v that, “with 95 percent
confidence,” will be less than the mean range.

27. Studies were conducted in Los Angeles to determine the carbon monoxide
concentration near freeways. The basic technique used was to capture air samples
in special bags and to then determine the carbon monoxide concentration by
using a spectrophotometer. The measurements in ppm (parts per million) over a
sampled period during the year were 102.2, 98.4, 104.1, 101, 102.2, 100.4, 98.6,
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88.2, 78.8, 83, 84.7, 94.8, 105.1, 106.2, 111.2, 108.3, 105.2, 103.2, 99, 98.8.
Compute a 95 percent two-sided confidence interval for the mean carbon
monoxide concentration.

28. A set of 10 determinations, by a method devised by the chemist Karl Fischer, of
the percentage of water in a methanol solution yielded the following data.

.50, .55, .53, .56, .54,

.57, .52, .60, .55, .58

Assuming normality, use these data to give a 95 percent confidence interval for
the actual percentage.

29. Suppose that U1, U2, . . . is a sequence of independent uniform (0,1) random
variables, and define N by

N = min{n : U1 + · · · + Un > 1}

That is, N is the number of uniform (0, 1) random variables that need to be
summed to exceed 1. Use random numbers to determine the value of 36 random
variables having the same distribution as N , and then use these data to obtain a
95 percent confidence interval estimate of E[N ]. Based on this interval, guess the
exact value of E[N ].

30. An important issue for a retailer is to decide when to reorder stock from a
supplier. A common policy used to make the decision is of a type called s, S: The
retailer orders at the end of a period if the on-hand stock is less than s, and orders
enough to bring the stock up to S. The appropriate values of s and S depend on
different cost parameters, such as inventory holding costs and the profit per item
sold, as well as the distribution of the demand during a period. Consequently,
it is important for the retailer to collect data relating to the parameters of the
demand distribution. Suppose that the following data give the numbers of a
certain type of item sold in each of 30 weeks.

14, 8, 12, 9, 5, 22, 15, 12, 16, 7, 10, 9, 15, 15, 12,

9, 11, 16, 8, 7, 15, 13, 9, 5, 18, 14, 10, 13, 7, 11

Assuming that the numbers sold each week are independent random variables
from a common distribution, use the data to obtain a 95 percent confidence
interval for the mean number sold in a week.

31. A random sample of 16 professors at a large private university yielded a sample
mean annual salary of $90,450 with a sample standard deviation of $9,400.
Determine a 95 percent confidence interval of the average salary of all professors
at that university.
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32. Let X1, . . . , Xn+1 be a sample from a population with mean µ and variance
σ 2. As noted in the text, the natural predictor of Xn+1 based on the data
values X1, . . . , Xn is X̄n = ∑n

i=1 Xi/n. Determine the mean square error of this
predictor. That is, find E[(Xn+1 − X̄n)

2].
33. National Safety Council data show that the number of accidental deaths due to

drowning in the United States in the years from 1990 to 1993 were (in units of
one thousand) 5.2, 4.6, 4.3, 4.8. Use these data to give an interval that will, with
95 percent confidence, contain the number of such deaths in 1994.

34. The daily dissolved oxygen concentration for a water stream has been recorded
over 30 days. If the sample average of the 30 values is 2.5 mg/liter and the sample
standard deviation is 2.12 mg/liter, determine a value which, with 90 percent
confidence, exceeds the mean daily concentration.

35. Verify the formulas given in Table 7.1 for the 100(1 − α) percent lower and
upper confidence intervals for σ 2.

36. The capacities (in ampere-hours) of 10 batteries were recorded as follows:

140, 136, 150, 144, 148, 152, 138, 141, 143, 151

(a) Estimate the population variance σ 2.
(b) Compute a 99 percent two-sided confidence interval for σ 2.
(c) Compute a value v that enables us to state, with 90 percent confidence, that

σ 2 is less than v.

37. Find a 95 percent two-sided confidence interval for the variance of the diameter
of a rivet based on the data given here.

6.68 6.66 6.62 6.72
6.76 6.67 6.70 6.72
6.78 6.66 6.76 6.72
6.76 6.70 6.76 6.76
6.74 6.74 6.81 6.66
6.64 6.79 6.72 6.82
6.81 6.77 6.60 6.72
6.74 6.70 6.64 6.78
6.70 6.70 6.75 6.79

Assume a normal population.

38. The following are independent samples from two normal populations, both of
which have the same standard deviation σ .

16, 17, 19, 20, 18 and 3, 4, 8

Use them to estimate σ .



292 Chapter 7: Parameter Estimation

39. The amount of beryllium in a substance is often determined by the use of a
photometric filtration method. If the weight of the beryllium is µ, then the
value given by the photometric filtration method is normally distributed with
mean µ and standard deviation σ . A total of eight independent measurements of
3.180 mg of beryllium gave the following results.

3.166, 3.192, 3.175, 3.180, 3.182, 3.171, 3.184, 3.177

Use the preceding data to
(a) estimate σ ;
(b) find a 90 percent confidence interval estimate of σ .

40. If X1, . . . , Xn is a sample from a normal population, explain how to obtain a
100(1 − α) percent confidence interval for the population variance σ 2 when the
population mean µ is known. Explain in what sense knowledge of µ improves
the interval estimator compared with when it is unknown.
Repeat Problem 38 if it is known that the mean burning time is 53.6 seconds.

41. A civil engineer wishes to measure the compressive strength of two different
types of concrete. A random sample of 10 specimens of the first type yielded the
following data (in psi)

Type 1: 3,250, 3,268, 4,302, 3,184, 3,266
3,297, 3,332, 3,502, 3,064, 3,116

whereas a sample of 10 specimens of the second yielded the data

Type 2: 3,094, 3,106, 3,004, 3,066, 2,984,
3,124, 3,316, 3,212, 3,380, 3,018

If we assume that the samples are normal with a common variance, determine

(a) a 95 percent two-sided confidence interval for µ1 − µ2, the difference in
means;

(b) a 95 percent one-sided upper confidence interval for µ1 − µ2;
(c) a 95 percent one-sided lower confidence interval for µ1 − µ2.

42. Independent random samples are taken from the output of two machines on
a production line. The weight of each item is of interest. From the first machine,
a sample of size 36 is taken, with sample mean weight of 120 grams and a sample
variance of 4. From the second machine, a sample of size 64 is taken, with
a sample mean weight of 130 grams and a sample variance of 5. It is assumed
that the weights of items from the first machine are normally distributed with
mean µ1 and variance σ 2 and that the weights of items from the second machine
are normally distributed with mean µ2 and variance σ 2 (that is, the variances
are assumed to be equal). Find a 99 percent confidence interval for µ1 − µ2, the
difference in population means.
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43. Do Problem 42 when it is known in advance that the population variances are
4 and 5.

44. The following are the daily numbers of company website visits resulting from
advertisements on two different types of media.

Type I Type II
481 572 526 537
506 561 511 582
527 501 556 605
661 487 542 558
501 524 491 578

Find a 99 percent confidence interval for the mean difference in daily visits
assuming normality with unknown but equal variances.

45. If X1, . . . , Xn is a sample from a normal population having known mean µ1 and
unknown variance σ 2

1 , and Y1, . . . , Ym is an independent sample from a normal
population having known mean µ2 and unknown variance σ 2

2 , determine a
100(1 − α) percent confidence interval for σ 2

1 /σ 2
2 .

46. Two analysts took repeated readings on the hardness of city water. Assuming
that the readings of analyst i constitute a sample from a normal population
having variance σ 2

i , i = 1, 2, compute a 95 percent two-sided confidence interval
for σ 2

1 /σ 2
2 when the data are as follows:

Coded Measures of Hardness

Analyst 1 Analyst 2

.46 .82

.62 .61

.37 .89

.40 .51

.44 .33

.58 .48

.48 .23

.53 .25
.67
.88

47. A problem of interest in baseball is whether a sacrifice bunt is a good strategy
when there is a man on first base and no outs. Assuming that the bunter will
be out but will be successful in advancing the man on base, we could compare
the probability of scoring a run with a player on first base and no outs with the
probability of scoring a run with a player on second base and one out.
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The following data resulted from a study of randomly chosen major league
baseball games played in 1959 and 1960.

(a) Give a 95 percent confidence interval estimate for the probability of scoring
at least one run when there is a man on first and no outs.

(b) Give a 95 percent confidence interval estimate for the probability of scoring
at least one run when there is a man on second and one out.

Number of Cases
Number in Which 0 Runs Total Number

Base Occupied of Outs Are Scored of Cases

First 0 1,044 1,728
Second 1 401 657

48. A random sample of 1,200 engineers included 48 Hispanic Americans, 80
African Americans, and 204 females. Determine 90 percent confidence intervals
for the proportion of all engineers who are

(a) female;
(b) Hispanic Americans or African Americans.

49. To estimate p, the proportion of all newborn babies that are male, the gender of
10,000 newborn babies was noted. If 5,106 of them were male, determine (a) a
90 percent and (b) a 99 percent confidence interval estimate of p.

50. An airline is interested in determining the proportion of its customers who are fly-
ing for reasons of business. If they want to be 90 percent certain that their estimate
will be correct to within 2 percent, how large a random sample should they select?

51. A recent newspaper poll indicated that Candidate A is favored over Candidate B
by a 53 to 47 percentage, with a margin of error of ±4 percent. The newspaper
then stated that since the 6-point gap is larger than the margin of error, its readers
can be certain that Candidate A is the current choice. Is this reasoning correct?

52. A market research firm is interested in determining the proportion of households
that are watching a particular sporting event. To accomplish this task, they plan
on using a telephone poll of randomly chosen households. How large a sample
is needed if they want to be 90 percent certain that their estimate is correct to
within ±.02?

53. In a recent study, 79 of 140 meteorites were observed to enter the atmosphere
with a velocity of less than 25 miles per second. If we take p̂ = 79/140 as an
estimate of the probability that an arbitrary meteorite that enters the atmosphere
will have a speed less than 25 miles per second, what can we say, with 99 percent
confidence, about the maximum error of our estimate?
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54. A random sample of 100 items from a production line revealed 17 of them to be
defective. Compute a 95 percent two-sided confidence interval for the probability
that an item produced is defective. Determine also a 99 percent upper confidence
interval for this value. What assumptions are you making?

55. Of 100 randomly detected cases of individuals having lung cancer, 67 died within
5 years of detection.

(a) Estimate the probability that a person contracting lung cancer will die
within 5 years.

(b) How large an additional sample would be required to be 95 percent confi-
dent that the error in estimating the probability in part (a) is less than .02?

56. Derive 100(1 − α) percent lower and upper confidence intervals for p, when
the data consist of the values of n independent Bernoulli random variables with
parameter p.

57. Suppose the lifetimes of batteries are exponentially distributed with mean θ .
If the average of a sample of 10 batteries is 36 hours, determine a 95 percent
two-sided confidence interval for θ .

58. Determine 100(1 − α) percent one-sided upper and lower confidence intervals
for θ in Problem 57.

59. Let X1, X2, . . . , Xn denote a sample from a population whose mean value θ is
unknown. Use the results of Example 7.7b to argue that among all unbiased
estimators of θ of the form

∑n
i=1 λiXi ,

∑n
i=1 λi = 1, the one with minimal

mean square error has λi ≡ 1/n, i = 1, . . . , n.

60. Consider two independent samples from normal populations having the same
variance σ 2, of respective sizes n and m. That is, X1, . . . , Xn and Y1, . . . , Ym are
independent samples from normal populations each having variance σ 2. Let S2

x
and S2

y denote the respective sample variances. Thus both S2
x and S2

y are unbiased
estimators of σ 2. Show by using the results of Example 7.7b along with the
fact that

Var(χ2
k ) = 2k

where χ2
k is chi-square with k degrees of freedom, that the minimum mean

square estimator of σ 2 of the form λS2
x + (1 − λ)S2

y is

S2
p =

(n − 1)S2
x + (m − 1)S2

y

n + m − 2

This is called the pooled estimator of σ 2.
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61. Consider two estimators d1 and d2 of a parameter θ . If E[d1] = θ ,
Var(d1) = 6 and E[d2] = θ + 2, Var(d2) = 2, which estimator should
be preferred?

62. Suppose that the number of accidents occurring daily in a certain plant has a
Poisson distribution with an unknown mean λ. Based on previous experience
in similar industrial plants, suppose that a statistician’s initial feelings about
the possible value of λ can be expressed by an exponential distribution with
parameter 1. That is, the prior density is

p(λ) = e−λ, 0 < λ < ∞

Determine the Bayes estimate of λ if there are a total of 83 accidents over the
next 10 days. What is the maximum likelihood estimate?

63. The functional lifetimes in hours of computer chips produced by a certain
semiconductor firm are exponentially distributed with mean 1/λ. Suppose that
the prior distribution on λ is the gamma distribution with density function

g(x) = e−xx2

2
, 0 < x < ∞

If the average life of the first 20 chips tested is 4.6 hours, compute the Bayes
estimate of λ.

64. Each item produced will, independently, be defective with probability p. If the
prior distribution on p is uniform on (0, 1), compute the posterior probability
that p is less than .2 given

(a) a total of 2 defectives out of a sample of size 10;
(b) a total of 1 defective out of a sample of size 10;
(c) a total of 10 defectives out of a sample of size 10.

65. The breaking strength of a certain type of cloth is to be measured for
10 specimens. The underlying distribution is normal with unknown mean θ but
with a standard deviation equal to 3 psi. Suppose also that based on previous
experience we feel that the unknown mean has a prior distribution that is
normally distributed with mean 200 and standard deviation 2. If the average
breaking strength of a sample of 20 specimens is 182 psi, determine a region that
contains θ with probability .95.



Chapter 8

HYPOTHESIS TESTING

8.1 INTRODUCTION
As in the previous chapter, let us suppose that a random sample from a population
distribution, specified except for a vector of unknown parameters, is to be observed.
However, rather than wishing to explicitly estimate the unknown parameters, let us now
suppose that we are primarily concerned with using the resulting sample to test some par-
ticular hypothesis concerning them. As an illustration, suppose that a construction firm
has just purchased a large supply of cables that have been guaranteed to have an average
breaking strength of at least 7,000 psi. To verify this claim, the firm has decided to take a
random sample of 10 of these cables to determine their breaking strengths. They will then
use the result of this experiment to ascertain whether or not they accept the cable manu-
facturer’s hypothesis that the population mean is at least 7,000 pounds per square inch.

A statistical hypothesis is usually a statement about a set of parameters of a population
distribution. It is called a hypothesis because it is not known whether or not it is true.
A primary problem is to develop a procedure for determining whether or not the values
of a random sample from this population are consistent with the hypothesis. For instance,
consider a particular normally distributed population having an unknown mean value θ

and known variance 1. The statement “θ is less than 1” is a statistical hypothesis that
we could try to test by observing a random sample from this population. If the random
sample is deemed to be consistent with the hypothesis under consideration, we say that
the hypothesis has been “accepted”; otherwise we say that it has been “rejected.”

Note that in accepting a given hypothesis we are not actually claiming that it is true but
rather we are saying that the resulting data appear to be consistent with it. For instance,
in the case of a normal (θ , 1) population, if a resulting sample of size 10 has an average
value of 1.25, then although such a result cannot be regarded as being evidence in favor of
the hypothesis “θ < 1,” it is not inconsistent with this hypothesis, which would thus be
accepted. On the other hand, if the sample of size 10 has an average value of 3, then even
though a sample value that large is possible when θ < 1, it is so unlikely that it seems
inconsistent with this hypothesis, which would thus be rejected.

297
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8.2 SIGNIFICANCE LEVELS
Consider a population having distribution Fθ , where θ is unknown, and suppose we want
to test a specific hypothesis about θ . We shall denote this hypothesis by H0 and call it
the null hypothesis. For example, if Fθ is a normal distribution function with mean θ and
variance equal to 1, then two possible null hypotheses about θ are

(a) H0 : θ = 1

(b) H0 : θ ≤ 1

Thus the first of these hypotheses states that the population is normal with mean 1 and
variance 1, whereas the second states that it is normal with variance 1 and a mean less
than or equal to 1. Note that the null hypothesis in (a), when true, completely specifies
the population distribution, whereas the null hypothesis in (b) does not. A hypothesis that,
when true, completely specifies the population distribution is called a simple hypothesis;
one that does not is called a composite hypothesis.

Suppose now that in order to test a specific null hypothesis H0, a population sample
of size n — say X1, . . . , Xn — is to be observed. Based on these n values, we must decide
whether or not to accept H0. A test for H0 can be specified by defining a region C in
n-dimensional space with the proviso that the hypothesis is to be rejected if the random
sample X1, . . . , Xn turns out to lie in C and accepted otherwise. The region C is called
the critical region. In other words, the statistical test determined by the critical region C
is the one that

accepts H0 if (X1, X2, . . . , Xn) "∈ C

and

rejects H0 if (X1, . . . , Xn) ∈ C

For instance, a common test of the hypothesis that θ , the mean of a normal population
with variance 1, is equal to 1 has a critical region given by

C = {(X1, . . . , Xn) : |X̄ − 1| > 1.96/
√

n} (8.2.1)

Thus, this test calls for rejection of the null hypothesis that θ = 1 when the sample
average differs from 1 by more than 1.96 divided by the square root of the sample size.

It is important to note when developing a procedure for testing a given null hypothesis
H0 that, in any test, two different types of errors can result. The first of these, called a type
I error, is said to result if the test incorrectly calls for rejecting H0 when it is indeed correct.
The second, called a type II error, results if the test calls for accepting H0 when it is false.
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Now, as was previously mentioned, the objective of a statistical test of H0 is not to explic-
itly determine whether or not H0 is true but rather to determine if its validity is consistent
with the resultant data. Hence, with this objective it seems reasonable that H0 should
only be rejected if the resultant data are very unlikely when H0 is true. The classical way
of accomplishing this is to specify a value α and then require the test to have the property
that whenever H0 is true its probability of being rejected is never greater than α. The
value α, called the level of significance of the test, is usually set in advance, with commonly
chosen values being α = .1, .05, .005. In other words, the classical approach to testing
H0 is to fix a significance level α and then require that the test have the property that the
probability of a type I error occurring can never be greater than α.

Suppose now that we are interested in testing a certain hypothesis concerning θ , an
unknown parameter of the population. Specifically, for a given set of parameter values w,
suppose we are interested in testing

H0 : θ ∈ w

A common approach to developing a test of H0, say at level of significance α, is to start by
determining a point estimator of θ — say d(X). The hypothesis is then rejected if d(X) is
“far away” from the region w. However, to determine how “far away” it need be to justify
rejection of H0, we need to determine the probability distribution of d(X) when H0 is
true since this will usually enable us to determine the appropriate critical region so as to
make the test have the required significance level α. For example, the test of the hypothesis
that the mean of a normal (θ , 1) population is equal to 1, given by Equation 8.2.1, calls
for rejection when the point estimate of θ — that is, the sample average — is farther than
1.96/

√
n away from 1. As we will see in the next section, the value 1.96/

√
n was chosen

to meet a level of significance of α = .05.

8.3 TESTS CONCERNING THE MEAN OF A
NORMAL POPULATION

8.3.1 Case of Known Variance
Suppose that X1, . . . , Xn is a sample of size n from a normal distribution having an
unknown mean µ and a known variance σ 2 and suppose we are interested in testing
the null hypothesis

H0 : µ = µ0

against the alternative hypothesis

H1 : µ "= µ0

where µ0 is some specified constant.
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Since X = ∑n
i=1 Xi/n is a natural point estimator of µ, it seems reasonable to accept

H0 if X is not too far from µ0. That is, the critical region of the test would be of the form

C = {X1, . . . , Xn : |X − µ0| > c} (8.3.1)

for some suitably chosen value c.
If we desire that the test has significance level α, then we must determine the critical

value c in Equation 8.3.1 that will make the type I error equal to α. That is, c must be
such that

Pµ0{|X − µ0| > c} = α (8.3.2)

where we write Pµ0 to mean that the preceding probability is to be computed under the
assumption that µ = µ0. However, when µ = µ0, X will be normally distributed with
mean µ0 and variance σ 2/n and so Z , defined by

Z ≡ X̄ − µ0

σ /
√

n
=

√
n(X̄ − µ0)

σ

will have a standard normal distribution. Now Equation 8.3.2 is equivalent to

P
{
|Z | >

c
√

n
σ

}
= α

or, equivalently,

2P
{

Z >
c
√

n
σ

}
= α

where Z is a standard normal random variable. However, we know that

P{Z > zα/2} = α/2

and so
c
√

n
σ

= zα/2

or
c = zα/2σ√

n

Thus, the significance level α test is to reject H0 if |X − µ0| > zα/2σ /
√

n and accept
otherwise; or, equivalently, to

reject H0 if
√

n
σ

|X − µ0| > zα/2

accept H0 if
√

n
σ

|X − µ0| ≤ zα/2

(8.3.3)
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FIGURE 8.1

This can be pictorially represented as shown in Figure 8.1, where we have superim-
posed the standard normal density function [which is the density of the test statistic√

n(X − µ0)/σ when H0 is true].

EXAMPLE 8.3a It is known that if a signal of value µ is sent from location A, then the
value received at location B is normally distributed with mean µ and standard deviation 2.
That is, the random noise added to the signal is an N (0, 4) random variable. There is
reason for the people at location B to suspect that the signal value µ = 8 will be sent
today. Test this hypothesis if the same signal value is independently sent five times and the
average value received at location B is X = 9.5.

SOLUTION Suppose we are testing at the 5 percent level of significance. To begin, we com-
pute the test statistic

√
n

σ
|X − µ0| =

√
5

2
(1.5) = 1.68

Since this value is less than z.025 = 1.96, the hypothesis is accepted. In other words, the
data are not inconsistent with the null hypothesis in the sense that a sample average as far
from the value 8 as observed would be expected, when the true mean is 8, over 5 percent
of the time. Note, however, that if a less stringent significance level were chosen — say
α = .1 — then the null hypothesis would have been rejected. This follows since z.05 =
1.645, which is less than 1.68. Hence, if we would have chosen a test that had a 10
percent chance of rejecting H0 when H0 was true, then the null hypothesis would have
been rejected.

The “correct” level of significance to use in a given situation depends on the individ-
ual circumstances involved in that situation. For instance, if rejecting a null hypothesis
H0 would result in large costs that would thus be lost if H0 were indeed true, then we
might elect to be quite conservative and so choose a significance level of .05 or .01. Also,
if we initially feel strongly that H0 was correct, then we would require very stringent data
evidence to the contrary for us to reject H0. (That is, we would set a very low significance
level in this situation.) !
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The test given by Equation 8.3.3 can be described as follows: For any observed value of
the test statistic

√
n|X − µ0|/σ , call it v, the test calls for rejection of the null hypothesis

if the probability that the test statistic would be as large as v when H0 is true is less than
or equal to the significance level α. From this, it follows that we can determine whether
or not to accept the null hypothesis by computing, first, the value of the test statistic
and, second, the probability that a standard normal would (in absolute value) exceed that
quantity. This probability — called the p-value of the test — gives the critical significance
level in the sense that H0 will be accepted if the significance level α is less than the p-value
and rejected if it is greater than or equal.

In practice, the significance level is often not set in advance but rather the data are
looked at to determine the resultant p-value. Sometimes, this critical significance level is
clearly much larger than any we would want to use, and so the null hypothesis can be
readily accepted. At other times the p-value is so small that it is clear that the hypothesis
should be rejected.

EXAMPLE 8.3b In Example 8.3a, suppose that the average of the 5 values received is
X = 8.5. In this case,

√
n

σ
|X − µ0| =

√
5

4
= .559

Since

P{|Z | > .559} = 2P{Z > .559}
= 2 × .288 = .576

it follows that the p-value is .576 and thus the null hypothesis H0 that the signal sent
has value 8 would be accepted at any significance level α < .576. Since we would clearly
never want to test a null hypothesis using a significance level as large as .576, H0 would
be accepted.

On the other hand, if the average of the data values were 11.5, then the p-value of the
test that the mean is equal to 8 would be

P{|Z | > 1.75
√

5} = P{|Z | > 3.913}
≈ .00005

For such a small p-value, the hypothesis that the value 8 was sent is rejected. !

We have not yet talked about the probability of a type II error — that is, the probability
of accepting the null hypothesis when the true mean µ is unequal to µ0. This probability
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will depend on the value of µ, and so let us define β(µ) by

β(µ) = Pµ{acceptance of H0}

= Pµ

{∣∣∣∣∣
X − µ0

σ /
√

n

∣∣∣∣∣ ≤ zα/2

}

= Pµ

{

−zα/2 ≤ X − µ0

σ /
√

n
≤ zα/2

}

The function β(µ) is called the operating characteristic (or OC) curve and represents the
probability that H0 will be accepted when the true mean is µ.

To compute this probability, we use the fact that X is normal with mean µ and variance
σ 2/n and so

Z ≡ X − µ

σ /
√

n
∼ (0, 1)

Hence,

β(µ) = Pµ

{
−zα/2 ≤ X − µ0

σ /
√

n
≤ zα/2

}

= Pµ

{

−zα/2 − µ

σ /
√

n
≤ X − µ0 − µ

σ /
√

n
≤ zα/2 − µ

σ /
√

n

}

= Pµ

{
−zα/2 − µ

σ /
√

n
≤ Z − µ0

σ /
√

n
≤ zα/2 − µ

σ /
√

n

}

= P
{

µ0 − µ

σ /
√

n
− zα/2 ≤ Z ≤ µ0 − µ

σ /
√

n
+ zα/2

}

= %

(
µ0 − µ

σ /
√

n
+ zα/2

)
− %

(
µ0 − µ

σ /
√

n
− zα/2

)
(8.3.4)

where % is the standard normal distribution function.
For a fixed significance level α, the OC curve given by Equation 8.3.4 is symmetric

about µ0 and indeed will depend on µ only through
√

n |µ−µ0|/σ . This curve with the
abscissa changed from µ to d = √

n |µ−µ0|/σ is presented in Figure 8.2 when α = .05.

EXAMPLE 8.3c For the problem presented in Example 8.3a, let us determine the probabil-
ity of accepting the null hypothesis that µ = 8 when the actual value sent is 10. To do so,
we compute

√
n

σ
(µ0 − µ) = −

√
5

2
× 2 = −

√
5
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FIGURE 8.2 The OC curve for the two-sided normal test for significance level α = .05.

As z.025 = 1.96, the desired probability is, from Equation 8.3.4,

%(−
√

5 + 1.96) − %(−
√

5 − 1.96)

= 1 − %(
√

5 − 1.96) − [1 − %(
√

5 + 1.96)]
= %(4.196) − %(.276)

= .392 !

REMARK

The function 1 − β(µ) is called the power-function of the test. Thus, for a given value µ,
the power of the test is equal to the probability of rejection when µ is the true value. !

The operating characteristic function is useful in determining how large the random
sample need be to meet certain specifications concerning type II errors. For instance,
suppose that we desire to determine the sample size n necessary to ensure that the prob-
ability of accepting H0 : µ = µ0 when the true mean is actually µ1 is approximately β.
That is, we want n to be such that

β(µ1) ≈ β

But from Equation 8.3.4, this is equivalent to

%

(√
n(µ0 − µ1)

σ
+ zα/2

)
− %

(√
n(µ0 − µ1)

σ
− zα/2

)
≈ β (8.3.5)

Although the foregoing cannot be analytically solved for n, a solution can be obtained by
using the standard normal distribution table. In addition, an approximation for n can be
derived from Equation 8.3.5 as follows. To start, suppose that µ1 > µ0. Then, because
this implies that

√
n(µ0 − µ1)

σ
− zα/2 ≤ −zα/2
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it follows, since % is an increasing function, that

%

(√
n(µ0 − µ1)

σ
− zα/2

)
≤ %(−zα/2) = P{Z ≤ −zα/2} = P{Z ≥ zα/2} = α/2

Hence, we can take

%

(√
n(µ0 − µ1)

σ
− zα/2

)
≈ 0

and so from Equation 8.3.5

β ≈ %

(√
n(µ0 − µ1)

σ
+ zα/2

)
(8.3.6)

or, since

β = P{Z > zβ} = P{Z < −zβ} = %(−zβ)

we obtain from Equation 8.3.6 that

−zβ ≈ (µ0 − µ1)

√
n

σ
+ zα/2

or

n ≈ (zα/2 + zβ)2σ 2

(µ1 − µ0)2 (8.3.7)

In fact, the same approximation would result when µ1 < µ0 (the details are left as an
exercise) and so Equation 8.3.7 is in all cases a reasonable approximation to the sample size
necessary to ensure that the type II error at the value µ = µ1 is approximately equal to β.

EXAMPLE 8.3d For the problem of Example 8.3a, how many signals need be sent so that
the .05 level test of H0 : µ = 8 has at least a 75 percent probability of rejection when
µ = 9.2?

SOLUTION Since z.025 = 1.96, z.25 = .67, the approximation 8.3.7 yields

n ≈ (1.96 + .67)2

(1.2)2 4 = 19.21

Hence a sample of size 20 is needed. From Equation 8.3.4, we see that with n = 20

β(9.2) = %

(

−1.2
√

20
2

+ 1.96

)

− %

(

−1.2
√

20
2

− 1.96

)

= %(−.723) − %(−4.643)
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≈ 1 − %(.723)

≈ .235

Therefore, if the message is sent 20 times, then there is a 76.5 percent chance that the
null hypothesis µ = 8 will be rejected when the true mean is 9.2. !

8.3.1.1 ONE-SIDED TESTS

In testing the null hypothesis that µ = µ0, we have chosen a test that calls for rejection
when X is far from µ0. That is, a very small value of X or a very large value appears to
make it unlikely that µ (which X is estimating) could equal µ0. However, what happens
when the only alternative to µ being equal to µ0 is for µ to be greater than µ0? That is,
what happens when the alternative hypothesis to H0 : µ = µ0 is H1 : µ > µ0? Clearly,
in this latter case we would not want to reject H0 when X is small (since a small X is more
likely when H0 is true than when H1 is true). Thus, in testing

H0 : µ = µ0 versus H1 : µ > µ0 (8.3.8)

we should reject H0 when X , the point estimate of µ0, is much greater than µ0. That is,
the critical region should be of the following form:

C = {(X1, . . . , Xn) : X − µ0 > c}

Since the probability of rejection should equal α when H0 is true (that is, when µ = µ0),
we require that c be such that

Pµ0{X − µ0 > c} = α (8.3.9)

But since

Z = X̄ − µ0

σ /
√

n
=

√
n(X̄ − µ0)

σ

has a standard normal distribution when H0 is true, Equation 8.3.9 is equivalent to

P
{

Z >
c
√

n
σ

}
= α

when Z is a standard normal. But since

P{Z > zα} = α

we see that
c = zασ√

n
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Hence, the test of the hypothesis 8.3.8 is to reject H0 if X − µ0 > zασ /
√

n, and accept
otherwise; or, equivalently, to

accept H0 if
√

n
σ

(X − µ0) ≤ zα

reject H0 if
√

n
σ

(X − µ0) > zα

(8.3.10)

This is called a one-sided critical region (since it calls for rejection only when X is large).
Correspondingly, the hypothesis testing problem

H0 : µ = µ0

H1 : µ > µ0

is called a one-sided testing problem (in contrast to the two-sided problem that results
when the alternative hypothesis is H1 : µ "= µ0).

To compute the p-value in the one-sided test, Equation 8.3.10, we first use the data
to determine the value of the statistic

√
n(X − µ0)/σ . The p-value is then equal to the

probability that a standard normal would be at least as large as this value.

EXAMPLE 8.3e Suppose in Example 8.3a that we know in advance that the signal value is
at least as large as 8. What can be concluded in this case?

SOLUTION To see if the data are consistent with the hypothesis that the mean is 8, we test

H0 : µ = 8

against the one-sided alternative

H1 : µ > 8

The value of the test statistic is
√

n(X −µ0)/σ = √
5(9.5−8)/2 = 1.68, and the p-value

is the probability that a standard normal would exceed 1.68, namely,

p-value = 1 − %(1.68) = .0465

the test would call for rejection at all significance levels greater than or equal to .0465, it
would, for instance, reject the null hypothesis at the α = .05 level of significance. !

The operating characteristic function of the one-sided test, Equation 8.3.10,

β(µ) = Pµ{accepting H0}
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can be obtained as follows:

β(µ) = Pµ

{
X ≤ µ0 + zα

σ√
n

}

= P
{√

n(X̄ − µ0)

σ
≤

√
n(µ0 − µ)

σ
+ zα

}

= P
{

Z ≤
√

n(µ0 − µ)

σ
+ zα

}
, Z ∼ (0, 1)

where the last equation follows since
√

n(X − µ)/σ has a standard normal distribution.
Hence we can write

β(µ) = %

(√
n(µ0 − µ)

σ
+ zα

)

Since %, being a distribution function, is increasing in its argument, it follows that β(µ)

decreases in µ, which is intuitively pleasing since it certainly seems reasonable that the
larger the true mean µ, the less likely it should be to conclude that µ ≤ µ0. Also since
%(zα) = 1 − α, it follows that

β(µ0) = 1 − α

The test given by Equation 8.3.10, which was designed to test H0 : µ = µ0 versus
H1 : µ > µ0, can also be used to test, at level of significance α, the one-sided hypothesis

H0 : µ ≤ µ0

versus
H1 : µ > µ0

To verify that it remains a level α test, we need to show that the probability of rejection is
never greater than α when H0 is true. That is, we must verify that

1 − β(µ) ≤ α for all µ ≤ µ0

or

β(µ) ≥ 1 − α for all µ ≤ µ0

But it has previously been shown that for the test given by Equation 8.3.10, β(µ)

decreases in µ and β(µ0) = 1 − α. This gives that

β(µ) ≥ β(µ0) = 1 − α for all µ ≤ µ0

which shows that the test given by Equation 8.3.10 remains a level α test for H0 : µ ≤ µ0
against the alternative hypothesis H1 : µ > µ0.
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REMARK

We can also test the one-sided hypothesis

H0 : µ = µ0 (or µ ≥ µ0) versus H1 : µ < µ0

at significance level α by

accepting H0 if
√

n
σ

(X − µ0) ≥ −zα

rejecting H0 otherwise

This test can alternatively be performed by first computing the value of the test statistic√
n(X − µ0)/σ . The p-value would then equal the probability that a standard normal

would be less than this value, and the hypothesis would be rejected at any significance
level greater than or equal to this p-value.

EXAMPLE 8.3f All cigarettes presently on the market have an average nicotine content of
at least 1.6 mg per cigarette. A firm that produces cigarettes claims that it has discovered
a new way to cure tobacco leaves that will result in the average nicotine content of a
cigarette being less than 1.6 mg. To test this claim, a sample of 20 of the firm’s cigarettes
were analyzed. If it is known that the standard deviation of a cigarette’s nicotine content is
.8 mg, what conclusions can be drawn, at the 5 percent level of significance, if the average
nicotine content of the 20 cigarettes is 1.54?

Note : The above raises the question of how we would know in advance that the stan-
dard deviation is .8. One possibility is that the variation in a cigarette’s nicotine content
is due to variability in the amount of tobacco in each cigarette and not on the method of
curing that is used. Hence, the standard deviation can be known from previous experience.

SOLUTION We must first decide on the appropriate null hypothesis. As was previously
noted, our approach to testing is not symmetric with respect to the null and the alter-
native hypotheses since we consider only tests having the property that their probability
of rejecting the null hypothesis when it is true will never exceed the significance level
α. Thus, whereas rejection of the null hypothesis is a strong statement about the data
not being consistent with this hypothesis, an analogous statement cannot be made when
the null hypothesis is accepted. Hence, since in the preceding example we would like to
endorse the producer’s claims only when there is substantial evidence for it, we should
take this claim as the alternative hypothesis. That is, we should test

H0 : µ ≥ 1.6 versus H1 : µ < 1.6

Now, the value of the test statistic is

√
n(X − µ0)/σ =

√
20(1.54 − 1.6)/.8 = −.336
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and so the p-value is given by

p-value = P{Z < −.336}, Z ∼ N (0, 1)

= .368

Since this value is greater than .05, the foregoing data do not enable us to reject, at the
.05 percent level of significance, the hypothesis that the mean nicotine content exceeds
1.6 mg. In other words, the evidence, although supporting the cigarette producer’s claim,
is not strong enough to prove that claim. !

REMARKS

(a) There is a direct analogy between confidence interval estimation and hypothesis test-
ing. For instance, for a normal population having mean µ and known variance σ 2, we
have shown in Section 7.3 that a 100(1 −α) percent confidence interval for µ is given by

µ ∈
(

x − zα/2
σ√

n
, x + zα/2

σ√
n

)

where x is the observed sample mean. More formally, the preceding confidence interval
statement is equivalent to

P
{
µ ∈

(
X − zα/2

σ√
n

, X + zα/2
σ√

n

)}
= 1 − α

Hence, if µ = µ0, then the probability that µ0 will fall in the interval

(
X − zα/2

σ√
n

, X + zα/2
σ√

n

)

is 1 − α, implying that a significance level α test of H0 : µ = µ0 versus H1 : µ "= µ0 is
to reject H0 when

µ0 "∈
(

X − zα/2
σ√

n
, X + zα/2

σ√
n

)

Similarly, since a 100(1 − α) percent one-sided confidence interval for µ is given by

µ ∈
(

X − zα
σ√

n
, ∞

)

it follows that an α-level significance test of H0 : µ ≤ µ0 versus H1 : µ > µ0 is to reject
H0 when µ0 "∈ (X − zασ /

√
n, ∞) — that is, when µ0 < X − zασ /

√
n.
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TABLE 8.1 X1, . . . , Xn Is a Sample from a (µ, σ 2) Population

σ 2 Is Known, X =
n∑

i=1
Xi/n

Significance
H0 H1 Test Statistic TS Level α Test p-Value if TS = t

µ = µ0 µ "= µ0
√

n(X − µ0)/σ Reject if |TS| > zα/2 2P{Z ≥ |t|}
µ ≤ µ0 µ > µ0

√
n(X − µ0)/σ Reject if TS > zα P{Z ≥ t}

µ ≥ µ0 µ < µ0
√

n(X − µ0)/σ Reject if TS < −zα P{Z ≤ t}
Z is a standard normal random variable.

(b) A Remark on Robustness A test that performs well even when the underlying
assumptions on which it is based are violated is said to be robust. For instance, the tests of
Sections 8.3.1 and 8.3.1.1 were derived under the assumption that the underlying pop-
ulation distribution is normal with known variance σ 2. However, in deriving these tests,
this assumption was used only to conclude that X also has a normal distribution. But, by
the central limit theorem, it follows that for a reasonably large sample size, X will approx-
imately have a normal distribution no matter what the underlying distribution. Thus we
can conclude that these tests will be relatively robust for any population distribution with
variance σ 2.

Table 8.1 summarizes the tests of this subsection.

8.3.2 Case of Unknown Variance: The t-Test
Up to now we have supposed that the only unknown parameter of the normal population
distribution is its mean. However, the more common situation is one where the mean µ

and variance σ 2 are both unknown. Let us suppose this to be the case and again consider a
test of the hypothesis that the mean is equal to some specified value µ0. That is, consider
a test of

H0 : µ = µ0

versus the alternative
H1 : µ "= µ0

It should be noted that the null hypothesis is not a simple hypothesis since it does not
specify the value of σ 2.

As before, it seems reasonable to reject H0 when the sample mean X is far from µ0.
However, how far away it need be to justify rejection will depend on the variance σ 2.
Recall that when the value of σ 2 was known, the test called for rejecting H0 when |X −µ0|
exceeded zα/2σ /

√
n or, equivalently, when

∣∣∣∣

√
n(X̄ − µ0)

σ

∣∣∣∣ > zα/2
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Now when σ 2 is no longer known, it seems reasonable to estimate it by

S2 =

n∑
i=1

(Xi − X )2

n − 1

and then to reject H0 when ∣∣∣∣∣
X − µ0

S/
√

n

∣∣∣∣∣

is large.
To determine how large a value of the statistic

∣∣∣∣∣

√
n(X − µ0)

S

∣∣∣∣∣

to require for rejection, in order that the resulting test have significance level α, we must
determine the probability distribution of this statistic when H0 is true. However, as shown
in Section 6.5, the statistic T , defined by

T =
√

n(X − µ0)

S

has, when µ = µ0, a t-distribution with n − 1 degrees of freedom. Hence,

Pµ0

{

−tα/2, n−1 ≤
√

n(X − µ0)

S
≤ tα/2, n−1

}

= 1 − α (8.3.11)

where tα/2,n−1 is the 100 α/2 upper percentile value of the t-distribution with n − 1
degrees of freedom. (That is, P{Tn−1 ≥ tα/2, n−1} = P{Tn−1 ≤ −tα/2, n−1} = α/2 when
Tn−1 has a t-distribution with n − 1 degrees of freedom.) From Equation 8.3.11 we see
that the appropriate significance level α test of

H0 : µ = µ0 versus H1 : µ "= µ0

is, when σ 2 is unknown, to

accept H0 if

∣∣∣∣∣

√
n(X − µ0)

S

∣∣∣∣∣ ≤ tα/2, n−1

reject H0 if

∣∣∣∣∣

√
n(X − µ0)

S

∣∣∣∣∣ > tα/2, n−1

(8.3.12)
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Accept

!t# /2, n !1 0
n (X ! !0)/S

t# /2, n !1

FIGURE 8.3 The two-sided t-test.

The test defined by Equation 8.3.12 is called a two-sided t-test. It is pictorially illustrated
in Figure 8.3.

If we let t denote the observed value of the test statistic T = √
n(X − µ0)/S, then the

p-value of the test is the probability that |T | would exceed |t| when H0 is true. That is,
the p-value is the probability that the absolute value of a t-random variable with n − 1
degrees of freedom would exceed |t|. The test then calls for rejection at all significance
levels higher than the p-value and acceptance at all lower significance levels.

Program 8.3.2 computes the value of the test statistic and the corresponding p-value.
It can be applied both for one- and two-sided tests. (The one-sided material will be pre-
sented shortly.)

EXAMPLE 8.3g Among a clinic’s patients having blood cholesterol levels ranging in the
medium to high range (at least 220 milliliters per deciliter of serum), volunteers were
recruited to test a new drug designed to reduce blood cholesterol. A group of 50 volunteers
was given the drug for 1 month and the changes in their blood cholesterol levels were
noted. If the average change was a reduction of 14.8 with a sample standard deviation of
6.4, what conclusions can be drawn?

SOLUTION Let us start by testing the hypothesis that the change could be due solely to
chance — that is, that the 50 changes constitute a normal sample with mean 0. Because
the value of the t-statistic used to test the hypothesis that a normal mean is equal to 0 is

T = √
n X /S =

√
50 14.8/6.4 = 16.352

is clear that we should reject the hypothesis that the changes were solely due to chance.
Unfortunately, however, we are not justified at this point in concluding that the changes
were due to the specific drug used and not to some other possibility. For instance, it is
well known that any medication received by a patient (whether or not this medication is
directly relevant to the patient’s suffering) often leads to an improvement in the patient’s
condition — the so-called placebo effect. Also, another possibility that may need to be
taken into account would be the weather conditions during the month of testing, for it is
certainly conceivable that this affects blood cholesterol level. Indeed, it must be concluded
that the foregoing was a very poorly designed experiment, for in order to test whether a
specific treatment has an effect on a disease that may be affected by many things, we
should try to design the experiment so as to neutralize all other possible causes. The
accepted approach for accomplishing this is to divide the volunteers at random into two
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groups — one group to receive the drug and the other to receive a placebo (that is, a tablet
that looks and tastes like the actual drug but has no physiological effect). The volunteers
should not be told whether they are in the actual or control group, and indeed it is best
if even the clinicians do not have this information (the so-called double-blind test) so as
not to allow their own biases to play a role. Since the two groups are chosen at random
from among the volunteers, we can now hope that on average all factors affecting the
two groups will be the same except that one received the actual drug and the other a
placebo. Hence, any difference in performance between the groups can be attributed to
the drug. !

EXAMPLE 8.3h A public health official claims that the mean home water use is 350 gallons
a day. To verify this claim, a study of 20 randomly selected homes was instigated with the
result that the average daily water uses of these 20 homes were as follows:

340 344 362 375
356 386 354 364
332 402 340 355
362 322 372 324
318 360 338 370

Do the data contradict the official’s claim?

SOLUTION To determine if the data contradict the official’s claim, we need to test

H0 : µ = 350 versus H1 : µ "= 350

This can be accomplished by running Program 8.3.2 or, if it is incovenient to utilize, by
noting first that the sample mean and sample standard deviation of the preceding data set
are

X = 353.8, S = 21.8478

Thus, the value of the test statistic is

T =
√

20(3.8)

21.8478
= .7778

Because this is less than t.05,19 = 1.730, the null hypothesis is accepted at the 10 percent
level of significance. Indeed, the p-value of the test data is

p-value = P{|T19| > .7778} = 2P{T19 > .7778} = .4462

indicating that the null hypothesis would be accepted at any reasonable significance level,
and thus that the data are not inconsistent with the claim of the health official. !

We can use a one-sided t-test to test the hypothesis

H0 : µ = µ0 (or H0 : µ ≤ µ0)
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against the one-sided alternative

H1 : µ > µ0

The significance level α test is to

accept H0 if
√

n(X − µ0)

S
≤ tα, n−1

reject H0 if
√

n(X − µ0)

S
> tα, n−1

(8.3.13)

If
√

n(X − µ0)/S = v, then the p-value of the test is the probability that a t-random
variable with n − 1 degrees of freedom would be at least as large as v.

The significance level α test of

H0 : µ = µ0 (or H0 : µ ≥ µ0)

versus the alternative

H1 : µ < µ0

is to

accept H0 if
√

n(X − µ0)

S
≥ −tα, n−1

reject H0 if
√

n(X − µ0)

S
< −tα, n−1

The p-value of this test is the probability that a t-random variable with n − 1 degrees of
freedom would be less than or equal to the observed value of

√
n(X − µ0)/S.

EXAMPLE 8.3i The manufacturer of a new fiberglass tire claims that its average life will be
at least 40,000 miles. To verify this claim a sample of 12 tires is tested, with their lifetimes
(in 1,000s of miles) being as follows:

Tire 1 2 3 4 5 6 7 8 9 10 11 12
Life 36.1 40.2 33.8 38.5 42 35.8 37 41 36.8 37.2 33 36

Test the manufacturer’s claim at the 5 percent level of significance.

SOLUTION To determine whether the foregoing data are consistent with the hypothesis
that the mean life is at least 40,000 miles, we will test

H0 : µ ≥ 40,000 versus H1 : µ < 40,000
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A computation gives that

X = 37.2833, S = 2.7319

and so the value of the test statistic is

T =
√

12(37.2833 − 40)

2.7319
= −3.4448

Since this is less than −t.05,11 = −1.796, the null hypothesis is rejected at the 5 percent
level of significance. Indeed, the p-value of the test data is

p-value = P{T11 < −3.4448} = P{T11 > 3.4448} = .0028

indicating that the manufacturer’s claim would be rejected at any significance level greater
than .003. !

The preceding could also have been obtained by using Program 8.3.2, as illustrated in
Figure 8.4.

The value of the t-statistic is 23.4448
The p-value is 0.0028

The p-value of the One-sample t-Test

Start

Quit

One-Sided

Two-Sided

Is greater than "0 

Is less than "0 

Enter the value of "0 : 40

Data value  = 36

Sample size = 12

Add This Point To List

Remove Selected Point From List

Data Values

Clear List

This program computes the p-value when testing that a normal
population whose variance is  unknown has mean equal to "0. 

35.8
37
41
36.8
37.2
33
36

Is the alternative hypothesis Is the alternative that the mean

? ?

FIGURE 8.4
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EXAMPLE 8.3j In a single-server queueing system in which customers arrive according to a
Poisson process, the long-run average queueing delay per customer depends on the service
distribution through its mean and variance. Indeed, if µ is the mean service time, and σ 2

is the variance of a service time, then the average amount of time that a customer spends
waiting in queue is given by

λ(µ2 + σ 2)

2(1 − λµ)

provided that λµ < 1, where λ is the arrival rate. (The average delay is infinite if
λµ ≥ 1.) As can be seen by this formula, the average delay is quite large when µ is only
slightly smaller than 1/λ, where, since λ is the arrival rate, 1/λ is the average time between
arrivals.

Suppose that the owner of a service station will hire a second server if it can be shown
that the average service time exceeds 8 minutes. The following data give the service times
(in minutes) of 28 customers of this queueing system. Do they indicate that the mean
service time is greater than 8 minutes?

8.6, 9.4, 5.0, 4.4, 3.7, 11.4, 10.0, 7.6, 14.4, 12.2, 11.0, 14.4, 9.3, 10.5,

10.3, 7.7, 8.3, 6.4, 9.2, 5.7, 7.9, 9.4, 9.0, 13.3, 11.6, 10.0, 9.5, 6.6

SOLUTION Let us use the preceding data to test the null hypothesis that the mean ser-
vice time is less than or equal to 8 minutes. A small p-value will then be strong evi-
dence that the mean service time is greater than 8 minutes. Running Program 8.3.2 on
these data shows that the value of the test statistic is 2.257, with a resulting p-value of
.016. Such a small p-value is certainly strong evidence that the mean service time exceeds
8 minutes. !

Table 8.2 summarizes the tests of this subsection.

TABLE 8.2 X1, . . . , Xn Is a Sample from a (µ, σ 2) Population

σ 2 Is Unknown, X=
n∑

i=1
Xi/nS2 =

n∑

i=1
(Xi − X )2/(n − 1)

Test Significance p-Value if
H0 H1 Statistic T S Level α Test T S = t

µ = µ0 µ "= µ0
√

n(X − µ0)/S Reject if |TS| > tα/2, n−1 2P{Tn−1 ≥ |t|}
µ ≤ µ0 µ > µ0

√
n(X − µ0)/S Reject if TS > tα, n−1 P{Tn−1 ≥ t}

µ ≥ µ0 µ < µ0
√

n(X − µ0)/S Reject if TS < −tα, n−1 P{Tn−1 ≤ t}
Tn−1 is a t-random variable with n − 1 degrees of freedom: P{Tn−1 > tα, n−1} = α.
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8.4 TESTING THE EQUALITY OF MEANS OF TWO
NORMAL POPULATIONS

A common situation faced by a practicing engineer is one in which she must decide
whether two different approaches lead to the same solution. Often such a situation can be
modeled as a test of the hypothesis that two normal populations have the same mean value.

8.4.1 Case of Known Variances
Suppose that X1, . . . , Xn and Y1, . . . , Ym are independent samples from normal popula-
tions having unknown means µx and µy but known variances σ 2

x and σ 2
y . Let us consider

the problem of testing the hypothesis

H0 : µx = µy

versus the alternative
H1 : µx "= µy

Since X is an estimate of µx and Y of µy, it follows that X − Y can be used to estimate
µx −µy. Hence, because the null hypothesis can be written as H0 : µx −µy = 0, it seems
reasonable to reject it when X − Y is far from zero. That is, the form of the test should
be to

reject H0 if |X − Y | > c

accept H0 if |X − Y | ≤ c
(8.4.1)

for some suitably chosen value c.
To determine that value of c that would result in the test in Equations 8.4.1 having

a significance level α, we need determine the distribution of X − Y when H0 is true.
However, as was shown in Section 7.3.2,

X − Y ∼
(

µx − µy,
σ 2

x

n
+

σ 2
y

m

)

which implies that

X − Y − (µx − µy)√
σ 2

x

n
+

σ 2
y

m

∼ (0, 1) (8.4.2)

Hence, when H0 is true (and so µx − µy = 0), it follows that

(X − Y )

/√
σ 2

x

n
+

σ 2
y

m
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has a standard normal distribution, and thus

PH0






−zα/2 ≤ X − Y
√

σ 2
x

n
+

σ 2
y

m

≤ zα/2






= 1 − α (8.4.3)

From Equation 8.4.3, we obtain that the significance level α test of H0 : µx = µy versus
H1 : µx "= µy is

accept H0 if
|X − Y |

√
σ 2

x /n + σ 2
y /m

≤ zα/2

reject H0 if
|X − Y |

√
σ 2

x /n + σ 2
y /m

≥ zα/2

Program 8.4.1 will compute the value of the test statistic (X − Y )
/√

σ 2
x /n + σ 2

y /m.

EXAMPLE 8.4a Two new methods for producing a tire have been proposed. To ascertain
which is superior, a tire manufacturer produces a sample of 10 tires using the first method
and a sample of 8 using the second. The first set is to be road tested at location A and the
second at location B. It is known from past experience that the lifetime of a tire that is road
tested at one of these locations is normally distributed with a mean life due to the tire but
with a variance due (for the most part) to the location. Specifically, it is known that the
lifetimes of tires tested at location A are normal with standard deviation equal to 4,000
kilometers, whereas those tested at location B are normal with σ = 6,000 kilometers.
If the manufacturer is interested in testing the hypothesis that there is no appreciable
difference in the mean life of tires produced by either method, what conclusion should be
drawn at the 5 percent level of significance if the resulting data are as given in Table 8.3?

TABLE 8.3 Tire Lives in Units of 100 Kilometers

Tires Tested at A Tires Tested at B

61.1 62.2
58.2 56.6
62.3 66.4
64 56.2
59.7 57.4
66.2 58.4
57.8 57.6
61.4 65.4
62.2
63.6
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SOLUTION A simple computation (or the use of Program 8.4.1) shows that the value of
the test statistic is .066. For such a small value of the test statistic (which has a standard
normal distribution when H0 is true), it is clear that the null hypothesis is accepted. !

It follows from Equation 8.4.1 that a test of the hypothesis H0 : µx = µy (or H0 :
µx ≤ µy) against the one-sided alternative H1 : µx > µy would be to

accept H0 if X − Y ≤ zα

√
σ 2

x

n
+

σ 2
y

m

reject H0 if X − Y > zα

√
σ 2

x

n
+

σ 2
y

m

8.4.2 Case of Unknown Variances
Suppose again that X1, . . . , Xn and Y1, . . . , Ym are independent samples from normal
populations having respective parameters (µx, σ 2

x ) and (µy, σ 2
y ), but now suppose that all

four parameters are unknown. We will once again consider a test of

H0 : µx = µy versus H1 : µx "= µy

To determine a significance level α test of H0 we will need to make the additional
assumption that the unknown variances σ 2

x and σ 2
y are equal. Let σ 2 denote their

value — that is,

σ 2 = σ 2
x = σ 2

y

As before, we would like to reject H0 when X − Y is “far” from zero. To determine
how far from zero it needs to be, let

S2
x =

n∑
i=1

(Xi − X )2

n − 1

S2
y =

m∑
i=1

(Yi − Y )2

m − 1

denote the sample variances of the two samples. Then, as was shown in Section 7.3.2,

X − Y − (µx − µy)√
S2

p (1/n + 1/m)
∼ tn+m−2
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FIGURE 8.5 Density of a t-random variable with k degrees of freedom.

where S2
p , the pooled estimator of the common variance σ 2, is given by

S2
p =

(n − 1)S2
x + (m − 1)S2

y

n + m − 2

Hence, when H0 is true, and so µx − µy = 0, the statistic

T ≡ X − Y
√

S2
p (1/n + 1/m)

has a t-distribution with n + m − 2 degrees of freedom. From this, it follows that we can
test the hypothesis that µx = µy as follows:

accept H0 if |T | ≤ tα/2, n+m−2

reject H0 if |T | > tα/2, n+m−2

where tα/2, n+m−2 is the 100 α/2 percentile point of a t-random variable with n + m − 2
degrees of freedom (see Figure 8.5).

Alternatively, the test can be run by determining the p-value. If T is observed to equal
v, then the resulting p-value of the test of H0 against H1 is given by

p-value = P{|Tn+m−2| ≥ |v|}
= 2P{Tn+m−2 ≥ |v|}

where Tn+m−2 is a t-random variable having n + m − 2 degrees of freedom.
If we are interested in testing the one-sided hypothesis

H0 : µx ≤ µy versus H1 : µx > µy

then H0 will be rejected at large values of T . Thus the significance level α test is to

reject H0 if T ≥ tα, n+m−2

not reject H0 otherwise
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If the value of the test statistic T is v, then the p-value is given by

p-value = P{Tn+m−2 ≥ v}

Program 8.4.2 computes both the value of the test statistic and the corresponding p-value.

EXAMPLE 8.4b Twenty-two volunteers at a cold research institute caught a cold after
having been exposed to various cold viruses. A random selection of 10 of these volunteers
was given tablets containing 1 gram of vitamin C. These tablets were taken four times a
day. The control group consisting of the other 12 volunteers was given placebo tablets that
looked and tasted exactly the same as the vitamin C tablets. This was continued for each
volunteer until a doctor, who did not know if the volunteer was receiving the vitamin C
or the placebo tablets, decided that the volunteer was no longer suffering from the cold.
The length of time the cold lasted was then recorded.

At the end of this experiment, the following data resulted.

Treated with Vitamin C Treated with Placebo

5.5 6.5
6.0 6.0
7.0 8.5
6.0 7.0
7.5 6.5
6.0 8.0
7.5 7.5
5.5 6.5
7.0 7.5
6.5 6.0

8.5
7.0

Do the data listed prove that taking 4 grams daily of vitamin C reduces the mean length
of time a cold lasts? At what level of significance?

SOLUTION To prove the above hypothesis, we would need to reject the null hypothesis in
a test of

H0 : µp ≤ µc versus H1 : µp > µc

where µc is the mean time a cold lasts when the vitamin C tablets are taken and µp is
the mean time when the placebo is taken. Assuming that the variance of the length of the
cold is the same for the vitamin C patients and the placebo patients, we test the above by
running Program 8.4.2. This yields the information shown in Figure 8.6. Thus H0 would
be rejected at the 5 percent level of significance.
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The value of the t-statistic is 21.898695
The p-value is 0.03607
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FIGURE 8.6

Of course, if it were not convenient to run Program 8.4.2 then we could have per-
formed the test by first computing the values of the statistics X , Y , S2

x , S2
y , and S2

p , where
the X sample corresponds to those receiving vitamin C and the Y sample to those receiv-
ing a placebo. These computations would give the values

X = 6.450, Y = 7.125

S2
x = .581, S2

y = .778

Therefore,

S2
p = 9

20
S2

x + 11
20

S2
y = .689
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and the value of the test statistic is

TS = −.675√
.689(1/10 + 1/12)

= −1.90

Since t.05,20 = 1.725, the null hypothesis is rejected at the 5 percent level of significance.
That is, at the 5 percent level of significance the evidence is significant in establishing that
vitamin C reduces the mean time that a cold persists. !

EXAMPLE 8.4c Reconsider Example 8.4a, but now suppose that the population variances
are unknown but equal.

SOLUTION Using Program 8.4.2 yields that the value of the test statistic is 1.028, and the
resulting p-value is

p-value = P{T16 > 1.028} = .3192

Thus, the null hypothesis is accepted at any significance level less than .3192. !

8.4.3 Case of Unknown and Unequal Variances
Let us now suppose that the population variances σ 2

x and σ 2
y are not only unknown but

also cannot be considered to be equal. In this situation, since S2
x is the natural estimator

of σ 2
x and S2

y of σ 2
y , it would seem reasonable to base our test of

H0 : µx = µy versus H1 : µx "= µy

on the test statistic
X − Y

√
S2

x
n

+
S2

y

m

(8.4.4)

However, the foregoing has a complicated distribution, which, even when H0 is true,
depends on the unknown parameters, and thus cannot be generally employed. The one
situation in which we can utilize the statistic of Equation 8.4.4 is when n and m are
both large. In such a case, it can be shown that when H0 is true Equation 8.4.4 will
have approximately a standard normal distribution. Hence, when n and m are large an
approximate level α test of H0 : µx = µy versus H1 : µx "= µy is to

accept H0 if − zα/2 ≤ X − Y
√

S2
x

n
+

S2
y

m

≤ zα/2

reject otherwise



8.4 Testing the Equality of Means of Two Normal Populations 325

The problem of determining an exact level α test of the hypothesis that the means of
two normal populations, having unknown and not necessarily equal variances, are equal
is known as the Behrens-Fisher problem. There is no completely satisfactory solution
known.

Table 8.4 presents the two-sided tests of this section.

TABLE 8.4 X1, . . . , Xn Is a Sample from a (µ1, σ 2
1 ) Population; Y1, . . . , Ym Is a Sample from a (µ2, σ 2

2 )

Population
The Two Population Samples Are Independent

to Test
H0 : µ1 = µ2 versus H0 : µ1 "= µ2

Assumption Test Statistic TS Significance Level α Test p-Value if TS = t

σ1, σ2 known X−Y√
σ 2

1 /n +σ 2
2 /m

Reject if |TS| > zα/2 2P{Z ≥ |t|}

σ1 = σ2
X−Y√

(n−1)S2
1 + (m−1)S2

2
n + m−2

√
1/n +1/m

Reject if |TS| > tα/2, n +m − 2 2P{Tn + m − 2 ≥ |t|}

n, m large X − Y√
S2

1 /n + S2
2 /m

Reject if |TS| > zα/2 2P{Z ≥ |t|}

8.4.4 The Paired t-Test
Suppose we are interested in determining whether the installation of a certain antipollu-
tion device will affect a car’s mileage. To test this, a collection of n cars that do not have
this device are gathered. Each car’s mileage per gallon is then determined both before and
after the device is installed. How can we test the hypothesis that the antipollution control
has no effect on gas consumption?

The data can be described by the n pairs (Xi, Yi), i = 1, . . . , n, where Xi is the gas
consumption of the ith car before installation of the pollution control device, and Yi of
the same car after installation. Because each of the n cars will be inherently different, we
cannot treat X1, . . . , Xn and Y1, . . . , Yn as being independent samples. For example, if
we know that X1 is large (say, 40 miles per gallon), we would certainly expect that Y1
would also probably be large. Thus, we cannot employ the earlier methods presented in
this section.

One way in which we can test the hypothesis that the antipollution device does not
affect gas mileage is to let the data consist of each car’s difference in gas mileage. That is,
let Wi = Xi −Yi , i = 1, . . . , n. Now, if there is no effect from the device, it should follow
that the Wi would have mean 0. Hence, we can test the hypothesis of no effect by testing

H0 : µw = 0 versus H1 : µw "= 0

where W1, . . . , Wn are assumed to be a sample from a normal population having
unknown mean µw and unknown variance σ 2

w. But the t-test described in Section 8.3.2
shows that this can be tested by
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accepting H0 if − tα/2, n−1 <
√

n
W
Sw

< tα/2,n−1

rejecting H0 otherwise

EXAMPLE 8.4d An industrial safety program was recently instituted in the computer chip
industry. The average weekly loss (averaged over 1 month) in labor-hours due to accidents
in 10 similar plants both before and after the program are as follows:

Plant Before After A − B

1 30.5 23 −7.5
2 18.5 21 2.5
3 24.5 22 −2.5
4 32 28.5 −3.5
5 16 14.5 −1.5
6 15 15.5 .5
7 23.5 24.5 1
8 25.5 21 −4.5
9 28 23.5 −4.5

10 18 16.5 −1.5

Determine, at the 5 percent level of significance, whether the safety program has been
proven to be effective.

SOLUTION To determine this, we will test

H0 : µA − µB ≥ 0 versus H1 : µA − µB < 0

because this will enable us to see whether the null hypothesis that the safety program has
not had a beneficial effect is a reasonable possibility. To test this, we run Program 8.3.2,
which gives the value of the test statistic as −2.266, with

p-value = P{Tq ≤ −2.266} = .025

Since the p-value is less than .05, the hypothesis that the safety program has not been
effective is rejected and so we can conclude that its effectiveness has been established
(at least for any significance level greater than .025). !

Note that the paired-sample t-test can be used even though the samples are not inde-
pendent and the population variances are unequal.
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8.5 HYPOTHESIS TESTS CONCERNING THE VARIANCE
OF A NORMAL POPULATION

Let X1, . . . , Xn denote a sample from a normal population having unknown mean µ and
unknown variance σ 2, and suppose we desire to test the hypothesis

H0 : σ 2 = σ 2
0

versus the alternative
H1 : σ 2 "= σ 2

0

for some specified value σ 2
0 .

To obtain a test, recall (as was shown in Section 6.5) that (n−1)S2/σ 2 has a chi-square
distribution with n − 1 degrees of freedom. Hence, when H0 is true

(n − 1)S2

σ 2
0

∼ χ2
n−1

Because P{χ2
n−1 < χ2

α/2,n−1} = 1 − α/2 and P{χ2
n−1 < χ2

1−α/2,n−1} = α/2, it follows
that

PH0

{
χ2

1−α/2,n−1 ≤ (n − 1)S2

σ 2
0

≤ χ2
α/2,n−1

}
= 1 − α

Therefore, a significance level α test is to

accept H0 if χ2
1−α/2,n−1 ≤ (n − 1)S2

σ 2
0

≤ χ2
α/2,n−1

reject H0 otherwise

The preceding test can be implemented by first computing the value of the test statistic
(n−1)S2/σ 2

0 — call it c. Then compute the probability that a chi-square random variable
with n − 1 degrees of freedom would be (a) less than and (b) greater than c. If either of
these probabilities is less than α/2, then the hypothesis is rejected. In other words, the
p-value of the test data is

p-value = 2 min(P{χ2
n−1 < c}, 1 − P{χ2

n−1 < c})

The quantity P{χ2
n−1 < c} can be obtained from Program 5.8.1.A. The p-value for

a one-sided test is similarly obtained.

EXAMPLE 8.5a A machine that automatically controls the amount of ribbon on a tape
has recently been installed. This machine will be judged to be effective if the standard
deviation σ of the amount of ribbon on a tape is less than .15 cm. If a sample of 20 tapes
yields a sample variance of S2 = .025 cm2, are we justified in concluding that the machine
is ineffective?
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SOLUTION We will test the hypothesis that the machine is effective, since a rejection of
this hypothesis will then enable us to conclude that it is ineffective. Since we are thus
interested in testing

H0 : σ 2 ≤ .0225 versus H1 : σ 2 > .0225

it follows that we would want to reject H0 when S2 is large. Hence, the p-value of the
preceding test data is the probability that a chi-square random variable with 19 degrees of
freedom would exceed the observed value of 19S2/.0225 = 19 × .025/.0225 = 21.111.
That is,

p-value = P{χ2
19 > 21.111}

= 1 − .6693 = .3307 from Program 5.8.1.A

Therefore, we must conclude that the observed value of S2 = .025 is not large enough
to reasonably preclude the possibility that σ 2 ≤ .0225, and so the null hypothesis is
accepted. !

8.5.1 Testing for the Equality of Variances of Two
Normal Populations

Let X1, . . . , Xn and Y1, . . . , Ym denote independent samples from two normal populations
having respective (unknown) parameters µx , σ 2

x and µy, σ 2
y and consider a test of

H0 : σ 2
x = σ 2

y versus H1 : σ 2
x "= σ 2

y

If we let

S2
x =

n∑
i=1

(Xi − X )2

n − 1

S2
y =

m∑
i=1

(Yi − Y )2

m − 1

denote the sample variances, then as shown in Section 6.5, (n−1)S2
x /σ 2

x and (m−1)S2
y /σ 2

y
are independent chi-square random variables with n − 1 and m − 1 degrees of freedom,
respectively. Therefore, (S2

x /σ 2
x )/(S2

y /σ 2
y ) has an F -distribution with parameters n−1 and

m − 1. Hence, when H0 is true

S2
x /S2

y ∼ Fn−1,m−1

and so
PH0{F1−α/2,n−1,m−1 ≤ S2

x /S2
y ≤ Fα/2,n−1,m−1} = 1 − α
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Thus, a significance level α test of H0 against H1 is to

accept H0 if F1−α/2,n−1,m−1 < S2
x /S2

y < Fα/2,n−1,m−1

reject H0 otherwise

The preceding test can be effected by first determining the value of the test statistic
S2

x /S2
y , say its value is v, and then computing P{Fn−1,m−1 ≤ v} where Fn−1,m−1 is an

F -random variable with parameters n − 1, m − 1. If this probability is either less than
α/2 (which occurs when S2

x is significantly less than S2
y ) or greater than 1 − α/2 (which

occurs when S2
x is significantly greater than S2

y ), then the hypothesis is rejected. In other
words, the p-value of the test data is

p-value = 2 min(P{Fn−1,m−1 < v}, 1 − P{Fn−1,m−1 < v})

The test now calls for rejection whenever the significance level α is at least as large as the
p-value.

EXAMPLE 8.5b There are two different choices of a catalyst to stimulate a certain chemical
process. To test whether the variance of the yield is the same no matter which catalyst is
used, a sample of 10 batches is produced using the first catalyst, and 12 using the second.
If the resulting data are S2

1 = .14 and S2
2 = .28, can we reject, at the 5 percent level, the

hypothesis of equal variance?

SOLUTION Program 5.8.3, which computes the F cumulative distribution function, yields
that

P{F9,11 ≤ .5} = .1539

Hence,

p-value = 2 min{.1539, .8461}
= .3074

and so the hypothesis of equal variance cannot be rejected. !

8.6 HYPOTHESIS TESTS IN BERNOULLI POPULATIONS
The binomial distribution is frequently encountered in engineering problems. For a typi-
cal example, consider a production process that manufactures items that can be classified
in one of two ways — either as acceptable or as defective. An assumption often made
is that each item produced will, independently, be defective with probability p, and so
the number of defects in a sample of n items will thus have a binomial distribution with
parameters (n, p). We will now consider a test of

H0 : p ≤ p0 versus H1 : p > p0

where p0 is some specified value.
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If we let X denote the number of defects in the sample of size n, then it is clear that
we wish to reject H0 when X is large. To see how large it needs to be to justify rejection at
the α level of significance, note that

P{X ≥ k} =
n∑

i=k

P{X = i} =
n∑

i=k

(
n
i

)
pi(1 − p)n−i

Now it is certainly intuitive (and can be proven) that P{X ≥ k} is an increasing function
of p — that is, the probability that the sample will contain at least k errors increases in the
defect probability p. Using this, we see that when H0 is true (and so p ≤ p0),

P{X ≥ k} ≤
n∑

i=k

(
n
i

)
pi

0(1 − p0)
n−i

Hence, a significance level α test of H0 : p ≤ p0 versus H1 : p > p0 is to reject H0 when

X ≥ k∗

where k∗ is the smallest value of k for which
∑n

i=k
(n

i

)
pi

0(1 − p0)
n−i ≤ α. That is,

k∗ = min

{

k :
n∑

i=k

(
n
i

)
pi

0(1 − p0)
n−i ≤ α

}

This test can best be performed by first determining the value of the test statistic —
say, X = x — and then computing the p-value given by

p-value = P{B(n, p0) ≥ x}

=
n∑

i=x

(
n
i

)
pi

0(1 − p0)
n−i

EXAMPLE 8.6a A computer chip manufacturer claims that no more than 2 percent of the
chips it sends out are defective. An electronics company, impressed with this claim, has
purchased a large quantity of such chips. To determine if the manufacturer’s claim can be
taken literally, the company has decided to test a sample of 300 of these chips. If 10 of
these 300 chips are found to be defective, should the manufacturer’s claim be rejected?

SOLUTION Let us test the claim at the 5 percent level of significance. To see if rejec-
tion is called for, we need to compute the probability that the sample of size 300 would
have resulted in 10 or more defectives when p is equal to .02. (That is, we compute the
p-value.) If this probability is less than or equal to .05, then the manufacturer’s claim
should be rejected. Now
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P.02{X ≥ 10} = 1 − P.02{X < 10}

= 1 −
9∑

i=0

(
300

i

)
(.02)i(.98)300−i

= .0818 from Program 3.1

and so the manufacturer’s claim cannot be rejected at the 5 percent level of
significance. !

EXAMPLE 8.6b In an attempt to show that proofreader A is superior to proofreader B,
both proofreaders were given the same manuscript to read. If proofreader A found 28
errors, and proofreader B found 18, with 10 of these errors being found by both, can we
conclude that A is the superior proofreader?

SOLUTION To begin note that A found 18 errors that B missed, and that B found 8 that
A missed. Hence, a total of 26 errors were found by just a single proofreader. Now, if A
and B were equally competent then they would be equally likely to be the sole finder of
an error found by just one of them. Consequently, if A and B were equally competent
then each of the 26 singly found errors would have been found by A with probability 1/2.
Hence, to establish that A is the superior proofreader the result of 18 successes in 26 trials
must be strong enough to reject the null hypothesis when testing

H0 : p ≤ 1/2 versus H1 : p > 1/2

where p is a Bernoulli probability that a trial is a success. Because the resultant p-value for
the data cited is

p-value = P{Bin(26, .5) ≥ 18} = .0378

the null hypothesis would be rejected at the 5 percent level of significance, thus enabling
one to conclude (at that level of significance) that A is the superior proofreader. !

When the sample size n is large, we can derive an approximate significance level α test
of H0 : p ≤ p0 versus H1 : p > p0 by using the normal approximation to the binomial. It
works as follows: Because when n is large X will have approximately a normal distribution
with mean and variance

E[X ] = np, Var(X ) = np(1 − p)

it follows that

X − np
√

np(1 − p)
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will have approximately a standard normal distribution. Therefore, an approximate sig-
nificance level α test would be to reject H0 if

X − np0√
np0(1 − p0)

≥ zα

Equivalently, one can use the normal approximation to approximate the p-value.

EXAMPLE 8.6c In Example 8.6a, np0 = 300(.02) = 6, and
√

np0(1 − p0) = √
5.88.

Consequently, the p-value that results from the data X = 10 is

p-value = P.02{X ≥ 10}
= P.02{X ≥ 9.5}

= P.02

{
X − 6√

5.88
≥ 9.5 − 6√

5.88

}

≈ P{Z ≥ 1.443}
= .0745

Thus, whereas the exact p-value is .0818, the normal approximation gives the value
.0745. !

Suppose now that we want to test the null hypothesis that p is equal to some specified
value; that is, we want to test

H0 : p = p0 versus H1 : p "= p0

If X , a binomial random variable with parameters n and p, is observed to equal x, then
a significance level α test would reject H0 if the value x was either significantly larger or
significantly smaller than what would be expected when p is equal to p0. More precisely,
the test would reject H0 if either

P{Bin(n, p0) ≥ x} ≤ α/2 or P{Bin(n, p0) ≤ x} ≤ α/2

In other words, the p-value when X = x is

p-value = 2 min(P{Bin(n, p0) ≥ x}, P{Bin(n, p0) ≤ x})

EXAMPLE 8.6d Historical data indicate that 4 percent of the components produced at
a certain manufacturing facility are defective. A particularly acrimonious labor dispute
has recently been concluded, and management is curious about whether it will result in
any change in this figure of 4 percent. If a random sample of 500 items indicated 16



8.6 Hypothesis Tests in Bernoulli Populations 333

defectives (3.2 percent), is this significant evidence, at the 5 percent level of significance,
to conclude that a change has occurred?

SOLUTION To be able to conclude that a change has occurred, the data need to be strong
enough to reject the null hypothesis when we are testing

H0 : p = .04 versus H1 : p "= .04

where p is the probability that an item is defective. The p-value of the observed data of 16
defectives in 500 items is

p-value = 2 min{P{X ≤ 16}, P{X ≥ 16}}

where X is a binomial (500, .04) random variable. Since 500 × .04 = 20, we see that

p-value = 2P{X ≤ 16}

Since X has mean 20 and standard deviation
√

20(.96) = 4.38, it is clear that twice
the probability that X will be less than or equal to 16 — a value less than one standard
deviation lower than the mean — is not going to be small enough to justify rejection.
Indeed, it can be shown that

p-value = 2P{X ≤ 16} = .432

and so there is not sufficient evidence to reject the hypothesis that the probability of
a defective item has remained unchanged. !

8.6.1 Testing the Equality of Parameters in Two
Bernoulli Populations

Suppose there are two distinct methods for producing a certain type of chip; and suppose
that chips produced by the first method will, independently, be defective with probability
p1, with the corresponding probability being p2 for those produced by the second method.
To test the hypothesis that p1 = p2, a sample of n1 chips is produced using method 1 and
n2 using method 2.

Let X1 denote the number of defective chips obtained from the first sample and X2
for the second. Thus, X1 and X2 are independent binomial random variables with respec-
tive parameters (n1, p1) and (n2, p2). Suppose that X1 + X2 = k and so there have been a
total of k defectives. Now, if H0 is true, then each of the n1 + n2 chips produced will
have the same probability of being defective, and so the determination of the k defectives
will have the same distribution as a random selection of a sample of size k from a popula-
tion of n1 + n2 items of which n1 are white and n2 are black. In other words, given a
total of k defectives, the conditional distribution of the number of defective chips
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obtained from method 1 will, when H0 is true, have the following hypergeometric
distribution*:

PH0{X1 = i|X1 + X2 = k} =

(
n1

i

)(
n2

k − i

)

(
n1 + n2

k

) , i = 0, 1, . . . , k (8.6.1)

Now, in testing

H0 : p1 = p2 versus H1 : p1 "= p2

it seems reasonable to reject the null hypothesis when the proportion of defective chips
produced by method 1 is much different from the proportion of defectives obtained
under method 2. Therefore, if there is a total of k defectives, then we would expect,
when H0 is true, that X1/n1 (the proportion of defective chips produced by method 1)
would be close to (k − X1)/n2 (the proportion of defective chips produced by method 2).
Because X1/n1 and (k − X1)/n2 will be farthest apart when X1 is either very small or
very large, it thus seems that a reasonable significance level α test of Equation 8.6.1 is as
follows. If X1 + X2 = k, then one should

reject H0 if either P{X ≤ x1} ≤ α/2 or P{X ≥ x1} ≤ α/2
accept H0 otherwise

where X is a hypergeometric random variable with probability mass function

P{X = i} =

(
n1

i

)(
n2

k − i

)

(
n1 + n2

k

) i = 0, 1, . . . , k (8.6.2)

In other words, this test will call for rejection if the significance level is at least as large as
the p-value given by

p-value = 2 min(P{X ≤ x1}, P{X ≥ x1}) (8.6.3)

This is called the Fisher-Irwin test.

* See Example 5.3b for a formal verification of Equation 8.6.1.
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COMPUTATIONS FOR THE FISHER-IRWIN TEST

To utilize the Fisher-Irwin test, we need to be able to compute the hypergeometric distri-
bution function. To do so, note that with X having mass function Equation 8.6.2,

P{X = i + 1}
P{X = i} =

(
n1

i + 1

)(
n2

k − i − 1

)

(
n1

i

)(
n2

k − i

) (8.6.4)

= (n1 − i)(k − i)
(i + 1)(n2 − k + i + 1)

(8.6.5)

where the verification of the final equality is left as an exercise.
Program 8.6.1 uses the preceding identity to compute the p-value of the data for the

Fisher-Irwin test of the equality of two Bernoulli probabilities. The program will work
best if the Bernoulli outcome that is called unsuccessful (or defective) is the one whose
probability is less than .5. For instance, if over half the items produced are defective, then
rather than testing that the defect probability is the same in both samples, one should test
that the probability of producing an acceptable item is the same in both samples.

EXAMPLE 8.6e Suppose that method 1 resulted in 20 unacceptable transistors out of 100
produced, whereas method 2 resulted in 12 unacceptable transistors out of 100 produced.
Can we conclude from this, at the 10 percent level of significance, that the two methods
are equivalent?

SOLUTION Upon running Program 8.6.1, we obtain that

p-value = .1763

Hence, the hypothesis that the two methods are equivalent cannot be rejected. !

The ideal way to test the hypothesis that the results of two different treatments are
identical is to randomly divide a group of people into a set that will receive the first
treatment and one that will receive the second. However, such randomization is not always
possible. For instance, if we want to study whether drinking alcohol increases the risk
of prostate cancer, we cannot instruct a randomly chosen sample to drink alcohol. An
alternative way to study the hypothesis is to use an observational study that begins by
randomly choosing a set of drinkers and one of nondrinkers. These sets are followed for
a period of time and the resulting data are then used to test the hypothesis that members
of the two groups have the same risk for prostate cancer.

Our next sample illustrates another way of performing an observational study.

EXAMPLE 8.6f In 1970, the researchers Herbst, Ulfelder, and Poskanzer (H-U-P) sus-
pected that vaginal cancer in young women, a rather rare disease, might be caused by
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one’s mother having taken the drug diethylstilbestrol (usually referred to as DES) while
pregnant. To study this possibility, the researchers could have performed an observational
study by searching for a (treatment) group of women whose mothers took DES when
pregnant and a (control) group of women whose mothers did not. They could then
observe these groups for a period of time and use the resulting data to test the hypoth-
esis that the probabilities of contracting vaginal cancer are the same for both groups.
However, because vaginal cancer is so rare (in both groups) such a study would require
a large number of individuals in both groups and would probably have to continue for
many years to obtain significant results. Consequently, H-U-P decided on a different type
of observational study. They uncovered 8 women between the ages of 15 and 22 who
had vaginal cancer. Each of these women (called cases) was then matched with 4 oth-
ers, called referents or controls. Each of the referents of a case was free of the cancer and
was born within 5 days in the same hospital and in the same type of room (either pri-
vate or public) as the case. Arguing that if DES had no effect on vaginal cancer then the
probability, call it pc , that the mother of a case took DES would be the same as the prob-
ability, call it pr , that the mother of a referent took DES, the researchers H-U-P decided
to test

H0 : pc = pr against H1 : pc "= pr

Discovering that 7 of the 8 cases had mothers who took DES while pregnant, while
none of the 32 referents had mothers who took the drug, the researchers (see Herbst, A.,
Ulfelder, H., and Poskanzer, D., “Adenocarcinoma of the Vagina: Association of Maternal
Stilbestrol Therapy with Tumor Appearance in Young Women,” New England Journal of
Medicine, 284, 878–881, 1971) concluded that there was a strong association between
DES and vaginal cancer. (The p-value for these data is approximately 0.) !

When n1 and n2 are large, an approximate level α test of H0 : p1 = p2, based on the
normal approximation to the binomial, is outlined in Problem 63.

8.7 TESTS CONCERNING THE MEAN OF A
POISSON DISTRIBUTION

Let X denote a Poisson random variable having mean λ and consider a test of

H0 : λ = λ0 versus H1 : λ "= λ0

If the observed value of X is X = x, then a level α test would reject H0 if either

Pλ0{X ≥ x} ≤ α/2 or Pλ0{X ≤ x} ≤ α/2 (8.7.1)
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where Pλ0 means that the probability is computed under the assumption that the Poisson
mean is λ0. It follows from Equation 8.7.1 that the p-value is given by

p-value = 2 min(Pλ0{X ≥ x}, Pλ0{X ≤ x})

The calculation of the preceding probabilities that a Poisson random variable with mean
λ0 is greater (less) than or equal to x can be obtained by using Program 5.2.

EXAMPLE 8.7a Management’s claim that the mean number of defective computer chips
produced daily is not greater than 25 is in dispute. Test this hypothesis, at the 5 percent
level of significance, if a sample of 5 days revealed 28, 34, 32, 38, and 22 defective chips.

SOLUTION Because each individual computer chip has a very small chance of being
defective, it is probably reasonable to suppose that the daily number of defective chips
is approximately a Poisson random variable, with mean, say, λ. To see whether or not the
manufacturer’s claim is credible, we shall test the hypothesis

H0 : λ ≤ 25 versus H1 : λ > 25

Now, under H0, the total number of defective chips produced over a 5-day period is
Poisson distributed (since the sum of independent Poisson random variables is Poisson)
with a mean no greater than 125. Since this number is equal to 154, it follows that the
p-value of the data is given by

p-value = P125{X ≥ 154}
= 1 − P125{X ≤ 153}
= .0066 from Program 5.2

Therefore, the manufacturer’s claim is rejected at the 5 percent (as it would be even at the
1 percent) level of significance. !

REMARK

If Program 5.2 is not available, one can use the fact that a Poisson random variable
with mean λ is, for large λ, approximately normally distributed with a mean and
variance equal to λ.

8.7.1 Testing the Relationship Between Two Poisson Parameters
Let X1 and X2 be independent Poisson random variables with respective means λ1 and λ2,
and consider a test of

H0 : λ2 = cλ1 versus H1 : λ2 "= cλ1
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for a given constant c. Our test of this is a conditional test (similar in spirit to the Fisher-
Irwin test of Section 8.6.1), which is based on the fact that the conditional distribution
of X1 given the sum of X1 and X2 is binomial. More specifically, we have the following
proposition.

PROPOSITION 8.7.1

P{X1 = k|X1 + X2 = n} =
(

n
k

)
[λ1/(λ1 + λ2)]k[λ2/(λ1 + λ2)]n−k

Proof

P{X1 = k|X1 + X2 = n}

= P{X1 = k, X1 + X2 = n}
P{X1 + X2 = n}

= P{X1 = k, X2 = n − k}
P{X1 + X2 = n}

= P{X1 = k}P{X2 = n − k}
P{X1 + X2 = n} by independence

= exp{−λ1}λk
1/k! exp{−λ2}λn−k

2 /(n − k)!
exp{−(λ1 + λ2)}(λ1 + λ2)n/n!

= n!
(n − k)!k! [λ1/(λ1 + λ2)]k[λ2/(λ1 + λ2)]n−k

where the next to last equality follows because the sum of independent Poisson random
variables is also Poisson. !

It follows from Proposition 8.7.1 that, if H0 is true, then the conditional distribution
of X1 given that X1 + X2 = n is the binomial distribution with parameters n and p =
1/(1 + c). From this we can conclude that if X1 + X2 = n, then H0 should be rejected if
the observed value of X1, call it x1, is such that either

P{Bin(n, 1/(1 + c)) ≥ x1} ≤ α/2

or

P{Bin(n, 1/(1 + c)) ≤ x1} ≤ α/2

EXAMPLE 8.7b An industrial concern runs two large plants. If the number of accidents
during the past 8 weeks at plant 1 were 16, 18, 9, 22, 17, 19, 24, 8 while the number of
accidents during the last 6 weeks at plant 2 were 22, 18, 26, 30, 25, 28, can we conclude,
at the 5 percent level of significance, that the safety conditions differ from plant to plant?
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SOLUTION Since there is a small probability of an industrial accident in any given minute,
it would seem that the weekly number of such accidents should have approximately a
Poisson distribution. If we let X1 denote the total number of accidents during an 8-week
period at plant 1, and let X2 be the number during a 6-week period at plant 2, then if the
safety conditions did not differ at the two plants we would have that

λ2 = 3
4λ1

where λi ≡ E[Xi], i = 1, 2. Hence, as X1 = 133, X2 = 149 it follows that the p-value of
the test of

H0 : λ2 = 3
4λ1 versus H1 : λ2 "= 3

4λ1

is given by

p-value = 2 min
(
P
{
Bin
(
282, 4

7

)
≥ 133

}
, P
{
Bin
(
282, 4

7

)
≤ 133

})

= 9.408 × 10−4

Thus, the hypothesis that the safety conditions at the two plants are equivalent is
rejected. !

Problems

1. Consider a trial in which a jury must decide between the hypothesis that the
defendant is guilty and the hypothesis that he or she is innocent.

(a) In the framework of hypothesis testing and the U.S. legal system, which of
the hypotheses should be the null hypothesis?

(b) What do you think would be an appropriate significance level in this situa-
tion?

2. A colony of laboratory mice consists of several thousand mice. The average
weight of all the mice is 32 grams with a standard deviation of 4 grams. A
laboratory assistant was asked by a scientist to select 25 mice for an experi-
ment. However, before performing the experiment the scientist decided to weigh
the mice as an indicator of whether the assistant’s selection constituted a ran-
dom sample or whether it was made with some unconscious bias (perhaps the
mice selected were the ones that were slowest in avoiding the assistant, which
might indicate some inferiority about this group). If the sample mean of the
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25 mice was 30.4, would this be significant evidence, at the 5 percent level
of significance, against the hypothesis that the selection constituted a random
sample?

3. A population distribution is known to have standard deviation 20. Determine the
p-value of a test of the hypothesis that the population mean is equal to 50, if the
average of a sample of 64 observations is
(a) 52.5; (b) 55.0; (c) 57.5.

4. In a certain chemical process, it is very important that a particular solution that
is to be used as a reactant have a pH of exactly 8.20. A method for determining
pH that is available for solutions of this type is known to give measurements that
are normally distributed with a mean equal to the actual pH and with a standard
deviation of .02. Suppose 10 independent measurements yielded the following
pH values:

8.18 8.17
8.16 8.15
8.17 8.21
8.22 8.16
8.19 8.18

(a) What conclusion can be drawn at the α = .10 level of significance?
(b) What about at the α = .05 level of significance?

5. The mean breaking strength of a certain type of fiber is required to be at least
200 psi. Past experience indicates that the standard deviation of breaking strength
is 5 psi. If a sample of 8 pieces of fiber yielded breakage at the following pressures,

210 198
195 202
197.4 196
199 195.5

would you conclude, at the 5 percent level of significance, that the fiber is unac-
ceptable? What about at the 10 percent level of significance?

6. It is known that the average height of a man residing in the United States is 5 feet
10 inches and the standard deviation is 3 inches. To test the hypothesis that men
in your city are “average,” a sample of 20 men have been chosen. The heights of
the men in the sample follow:
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Man Height in Inches Man

1 72 70.4 11
2 68.1 76 12
3 69.2 72.5 13
4 72.8 74 14
5 71.2 71.8 15
6 72.2 69.6 16
7 70.8 75.6 17
8 74 70.6 18
9 66 76.2 19

10 70.3 77 20

What do you conclude? Explain what assumptions you are making.

7. Suppose in Problem 4 that we wished to design a test so that if the pH were really
equal to 8.20, then this conclusion will be reached with probability equal to .95.
On the other hand, if the pH differs from 8.20 by .03 (in either direction), we
want the probability of picking up such a difference to exceed .95.

(a) What test procedure should be used?
(b) What is the required sample size?
(c) If x = 8.31, what is your conclusion?
(d) If the actual pH is 8.32, what is the probability of concluding that the pH is

not 8.20, using the foregoing procedure?

8. Verify that the approximation in Equation 8.3.7 remains valid even when
µ1 < µ0.

9. A British pharmaceutical company, Glaxo Holdings, has recently developed a new
drug for migraine headaches. Among the claims Glaxo made for its drug, called
somatriptan, was that the mean time it takes for it to enter the bloodstream is
less than 10 minutes. To convince the Food and Drug Administration of the
validity of this claim, Glaxo conducted an experiment on a randomly chosen set
of migraine sufferers. To prove its claim, what should they have taken as the null
and what as the alternative hypothesis?

10. The weights of salmon grown at a commercial hatchery are normally distributed
with a standard deviation of 1.2 pounds. The hatchery claims that the mean
weight of this year’s crop is at least 7.6 pounds. Suppose a random sample of
16 fish yielded an average weight of 7.2 pounds. Is this strong enough evidence
to reject the hatchery’s claims at the

(a) 5 percent level of significance;
(b) 1 percent level of significance?
(c) What is the p-value?
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11. Consider a test of H0 : µ ≤ 100 versus H1 : µ > 100. Suppose that a sample of
size 20 has a sample mean of X = 105. Determine the p-value of this outcome if
the population standard deviation is known to equal
(a) 5; (b) 10; (c) 15.

12. An advertisement for a new toothpaste claims that it reduces cavities of children in
their cavity-prone years. Cavities per year for this age group are normal with mean
3 and standard deviation 1. A study of 2,500 children who used this toothpaste
found an average of 2.95 cavities per child. Assume that the standard deviation of
the number of cavities of a child using this new toothpaste remains equal to 1.

(a) Are these data strong enough, at the 5 percent level of significance, to estab-
lish the claim of the toothpaste advertisement?

(b) Do the data convince you to switch to this new toothpaste?

13. There is some variability in the amount of phenobarbital in each capsule sold by
a manufacturer. However, the manufacturer claims that the mean value is 20.0
mg. To test this, a sample of 25 pills yielded a sample mean of 19.7 with a sam-
ple standard deviation of 1.3. What inference would you draw from these data?
In particular, are the data strong enough evidence to discredit the claim of the
manufacturer? Use the 5 percent level of significance.

14. Twenty years ago, entering male high school students of Central High could do
an average of 24 pushups in 60 seconds. To see whether this remains true today,
a random sample of 36 freshmen was chosen. If their average was 22.5 with a sam-
ple standard deviation of 3.1, can we conclude that the mean is no longer equal
to 24? Use the 5 percent level of significance.

15. The mean response time of a species of pigs to a stimulus is .8 seconds. Twenty-
eight pigs were given 2 oz of alcohol and then tested. If their average response
time was 1.0 seconds with a standard deviation of .3 seconds, can we conclude
that alcohol affects the mean response time? Use the 5 percent level of significance.

16. Suppose that team A and team B are to play a National Football League game and
that team A is favored by f points. Let S(A) and S(B) denote the scores of teams
A and B, and let X = S(A) − S(B) − f . That is, X is the amount by which team
A beats the point spread. It has been claimed that the distribution of X is normal
with mean 0 and standard deviation 14. Use data from randomly chosen football
games to test this hypothesis.

17. A medical scientist believes that the average basal temperature of (outwardly)
healthy individuals has increased over time and is now greater than 98.6 degrees
Fahrenheit (37 degrees Celsius). To prove this, she has randomly selected 100
healthy individuals. If their mean temperature is 98.74 with a sample standard
deviation of 1.1 degrees, does this prove her claim at the 5 percent level? What
about at the 1 percent level?
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18. Use the results of a Sunday’s worth of NFL professional football games to test the
hypothesis that the average number of points scored by winning teams is less than
or equal to 28. Use the 5 percent level of significance.

19. Use the results of a Sunday’s worth of major league baseball scores to test the
hypothesis that the average number of runs scored by winning teams is at least
5.6. Use the 5 percent level of significance.

20. A car is advertised as having a gas mileage rating of at least 30 miles/gallon in
highway driving. If the miles per gallon obtained in 10 independent experiments
are 26, 24, 20, 25, 27, 25, 28, 30, 26, 33, should you believe the advertisement?
What assumptions are you making?

21. A producer specifies that the mean lifetime of a certain type of battery is at least
240 hours. A sample of 18 such batteries yielded the following data.

237 242 232
242 248 230
244 243 254
262 234 220
225 236 232
218 228 240

Assuming that the life of the batteries is approximately normally distributed, do
the data indicate that the specifications are not being met?

22. Use the data of Example 2.3i of Chapter 2 to test the null hypothesis that the
average noise level directly outside of Grand Central Station is less than or equal
to 80 decibels.

23. An oil company claims that the sulfur content of its diesel fuel is at most .15
percent. To check this claim, the sulfur contents of 40 randomly chosen samples
were determined; the resulting sample mean and sample standard deviation were
.162 and .040. Using the 5 percent level of significance, can we conclude that the
company’s claims are invalid?

24. A company supplies plastic sheets for industrial use. A new type of plastic has been
produced and the company would like to claim that the average stress resistance
of this new product is at least 30.0, where stress resistance is measured in pounds
per square inch (psi) necessary to crack the sheet. The following random sample
was drawn off the production line. Based on this sample, would the claim clearly
be unjustified?

30.1 32.7 22.5 27.5
27.7 29.8 28.9 31.4
31.2 24.3 26.4 22.8
29.1 33.4 32.5 21.7

Assume normality and use the 5 percent level of significance.
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25. It is claimed that a certain type of bipolar transistor has a mean value of current
gain that is at least 210. A sample of these transistors is tested. If the sample mean
value of current gain is 200 with a sample standard deviation of 35, would the
claim be rejected at the 5 percent level of significance if

(a) the sample size is 25;
(b) the sample size is 64?

26. A manufacturer of capacitors claims that the breakdown voltage of these capaci-
tors has a mean value of at least 100 V. A test of 12 of these capacitors yielded the
following breakdown voltages:

96, 98, 105, 92, 111, 114, 99, 103, 95, 101, 106, 97

Do these results prove the manufacturer’s claim? Do they disprove them?

27. A sample of 10 fish were caught at lake A and their PCB concentrations were
measured using a certain technique. The resulting data in parts per million were

Lake A: 11.5, 10.8, 11.6, 9.4, 12.4, 11.4, 12.2, 11, 10.6, 10.8

In addition, a sample of 8 fish were caught at lake B and their levels of PCB were
measured by a different technique than that used at lake A. The resultant data
were

Lake B: 11.8, 12.6, 12.2, 12.5, 11.7, 12.1, 10.4, 12.6

If it is known that the measuring technique used at lake A has a variance of .09
whereas the one used at lake B has a variance of .16, could you reject (at the
5 percent level of significance) a claim that the two lakes are equally contaminated?

28. A method for measuring the pH level of a solution yields a measurement value
that is normally distributed with a mean equal to the actual pH of the solution
and with a standard deviation equal to .05. An environmental pollution scientist
claims that two different solutions come from the same source. If this were so,
then the pH level of the solutions would be equal. To test the plausibility of
this claim, 10 independent measurements were made of the pH level for both
solutions, with the following data resulting.
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Measurements of Measurements of
Solution A Solution B

6.24 6.27
6.31 6.25
6.28 6.33
6.30 6.27
6.25 6.24
6.26 6.31
6.24 6.28
6.29 6.29
6.22 6.34
6.28 6.27

(a) Do the data disprove the scientist’s claim? Use the 5 percent level of
significance.

(b) What is the p-value?

29. The following are the values of independent samples from two different
populations.

Sample 1 122, 114, 130, 165, 144, 133, 139, 142, 150

Sample 2 108, 125, 122, 140, 132, 120, 137, 128, 138

Let µ1 and µ2 be the respective means of the two populations. Find the p-value
of the test of the null hypothesis

H0 : µ1 ≤ µ2

versus the alternative
H1 : µ1 > µ2

when the population standard deviations are σ1 = 10 and
(a) σ2 = 5; (b) σ2 = 10; (c) σ2 = 20.

30. The data below give the lifetimes in hundreds of hours of samples of two types of
electronic tubes. Past lifetime data of such tubes have shown that they can often be
modeled as arising from a lognormal distribution. That is, the logarithms of the
data are normally distributed. Assuming that variance of the logarithms is equal
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for the two populations, test, at the 5 percent level of significance, the hypothesis
that the two population distributions are identical.

Type 1 32, 84, 37, 42, 78, 62, 59, 74

Type 2 39, 111, 55, 106, 90, 87, 85

31. The viscosity of two different brands of car oil is measured and the following data
resulted:

Brand 1 10.62, 10.58, 10.33, 10.72, 10.44, 10.74

Brand 2 10.50, 10.52, 10.58, 10.62, 10.55, 10.51, 10.53

Test the hypothesis that the mean viscosity of the two brands is equal, assuming
that the populations have normal distributions with equal variances.

32. It is argued that the resistance of wire A is greater than the resistance of wire B.
You make tests on each wire with the following results.

Wire A Wire B

.140 ohm .135 ohm

.138 .140

.143 .136

.142 .142

.144 .138

.137 .140

What conclusion can you draw at the 10 percent significance level? Explain what
assumptions you are making.

In Problems 33 through 40, assume that the population distributions are nor-
mal and have equal variances.

33. Twenty-five men between the ages of 25 and 30, who were participating in a well-
known heart study carried out in Framingham, Massachusetts, were randomly
selected. Of these, 11 were smokers and 14 were not. The following data refer to
readings of their systolic blood pressure.
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Smokers Nonsmokers

124 130
134 122
136 128
125 129
133 118
127 122
135 116
131 127
133 135
125 120
118 122

120
115
123

Use these data to test the hypothesis that the mean blood pressures of smokers
and nonsmokers are the same.

34. In a 1943 experiment (Whitlock and Bliss, “A Bioassay Technique for Anti-
helminthics,” Journal of Parasitology, 29, pp. 48–58) 10 albino rats were used to
study the effectiveness of carbon tetrachloride as a treatment for worms. Each rat
received an injection of worm larvae. After 8 days, the rats were randomly divided
into two groups of 5 each; each rat in the first group received a dose of .032 cc
of carbon tetrachloride, whereas the dosage for each rat in the second group was
.063 cc. Two days later the rats were killed, and the number of adult worms in
each rat was determined. The numbers detected in the group receiving the .032
dosage were

421, 462, 400, 378, 413

whereas they were

207, 17, 412, 74, 116

for those receiving the .063 dosage. Do the data prove that the larger dosage is
more effective than the smaller?

35. A professor claims that the average starting salary of industrial engineering grad-
uating seniors is greater than that of civil engineering graduates. To study this
claim, samples of 16 industrial engineers and 16 civil engineers, all of whom grad-
uated in 2006, were chosen and sample members were queried about their start-
ing salaries. If the industrial engineers had a sample mean salary of $72,700 and a
sample standard deviation of $2,400, and the civil engineers had a sample mean
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salary of $71,400 and a sample standard deviation of $2,200, has the professor’s
claim been verified? Find the appropriate p-value.

36. In a certain experimental laboratory, a method A for producing gasoline from
crude oil is being investigated. Before completing experimentation, a new method
B is proposed. All other things being equal, it was decided to abandon A in favor
of B only if the average yield of the latter was clearly greater. The yield of both pro-
cesses is assumed to be normally distributed. However, there has been insufficient
time to ascertain their true standard deviations, although there appears to be no
reason why they cannot be assumed equal. Cost considerations impose size limits
on the size of samples that can be obtained. If a 1 percent significance level is
all that is allowed, what would be your recommendation based on the following
random samples? The numbers represent percent yield of crude oil.

A 23.2, 26.6, 24.4, 23.5, 22.6, 25.7, 25.5

B 25.7, 27.7, 26.2, 27.9, 25.0, 21.4, 26.1

37. A study was instituted to learn how the diets of women changed during the winter
and the summer. A random group of 12 women were observed during the month
of July and the percentage of each woman’s calories that came from fat was deter-
mined. Similar observations were made on a different randomly selected group of
size 12 during the month of January. The results were as follows:

July 32.2, 27.4, 28.6, 32.4, 40.5, 26.2, 29.4, 25.8, 36.6, 30.3, 28.5, 32.0

January 30.5, 28.4, 40.2, 37.6, 36.5, 38.8, 34.7, 29.5, 29.7, 37.2, 41.5, 37.0

Test the hypothesis that the mean fat percentage intake is the same for both
months. Use the (a) 5 percent level of significance and (b) 1 percent level of
significance.

38. To learn about the feeding habits of bats, 22 bats were tagged and tracked by
radio. Of these 22 bats, 12 were female and 10 were male. The distances flown
(in meters) between feedings were noted for each of the 22 bats, and the following
summary statistics were obtained.

Female Bats Male Bats

n = 12 m = 10
X = 180 Y = 136
Sx = 92 Sy = 86

Test the hypothesis that the mean distance flown between feedings is the same
for the populations of both male and of female bats. Use the 5 percent level of
significance.
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39. The following data summary was obtained from a comparison of the lead con-
tent of human hair removed from adult individuals that had died between 1880
and 1920 with the lead content of present-day adults. The data are in units of
micrograms, equal to one-millionth of a gram.

1880–1920 Today

Sample size: 30 100
Sample mean: 48.5 26.6
Sample standard deviation: 14.5 12.3

(a) Do the above data establish, at the 1 percent level of significance, that the
mean lead content of human hair is less today than it was in the years between
1880 and 1920? Clearly state what the null and alternative hypotheses are.

(b) What is the p-value for the hypothesis test in part (a)?

40. Sample weights (in pounds) of newborn babies born in two adjacent counties in
western Pennsylvania yielded the following data.

n = 53, m = 44

X = 6.8, Y = 7.2

S2 = 5.2, S2 = 4.9

Consider a test of the hypothesis that the mean weight of newborns is the same
in both counties. What is the resulting p-value?

41. To verify the hypothesis that blood lead levels tend to be higher for children whose
parents work in a factory that uses lead in the manufacturing process, researchers
examined lead levels in the blood of 33 children whose parents worked in a battery
manufacturing factory (Morton, D., Saah, A., Silberg, S., Owens, W., Roberts,
M., and Saah, M., “Lead Absorption in Children of Employees in a Lead-Related
Industry,” American Journal of Epidemiology, 115, 549–555, 1982). Each of these
children was then matched by another child who was of similar age, lived in a
similar neighborhood, had a similar exposure to traffic, but whose parent did not
work with lead. The blood levels of the 33 cases (sample 1) as well as those of
the 33 controls (sample 2) were then used to test the hypothesis that the average
blood levels of these groups are the same. If the resulting sample means and sample
standard deviations were

x̄1 = .015, s1 = .004, x̄2 = .006, s2 = .006

find the resulting p-value. Assume a common variance.
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42. Ten pregnant women were given an injection of pitocin to induce labor. Their
systolic blood pressures immediately before and after the injection were:

Patient Before After Patient Before After

1 134 140 6 140 138
2 122 130 7 118 124
3 132 135 8 127 126
4 130 126 9 125 132
5 128 134 10 142 144

Do the data indicate that injection of this drug changes blood pressure?

43. A question of medical importance is whether jogging leads to a reduction in
one’s pulse rate. To test this hypothesis, 8 nonjogging volunteers agreed to begin
a 1-month jogging program. After the month their pulse rates were determined
and compared with their earlier values. If the data are as follows, can we conclude
that jogging has had an effect on the pulse rates?

Subject 1 2 3 4 5 6 7 8

Pulse Rate Before 74 86 98 102 78 84 79 70

Pulse Rate After 70 85 90 110 71 80 69 74

44. If X1, . . . , Xn is a sample from a normal population having unknown parameters
µ and σ 2, devise a significance level α test of

H0 = σ 2 ≤ σ 2
0

versus the alternative
H1 = σ 2 > σ 2

0

for a given positive value σ 2
0 .

45. In Problem 44, explain how the test would be modified if the population mean µ

were known in advance.

46. A gun-like apparatus has recently been designed to replace needles in admin-
istering vaccines. The apparatus can be set to inject different amounts of the
serum, but because of random fluctuations the actual amount injected is nor-
mally distributed with a mean equal to the setting and with an unknown vari-
ance σ 2. It has been decided that the apparatus would be too dangerous to use
if σ exceeds .10. If a random sample of 50 injections resulted in a sample stan-
dard deviation of .08, should use of the new apparatus be discontinued? Suppose
the level of significance is α = .10. Comment on the appropriate choice of a
significance level for this problem, as well as the appropriate choice of the null
hypothesis.
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47. A pharmaceutical house produces a certain drug item whose weight has a stan-
dard deviation of .5 milligrams. The company’s research team has proposed
a new method of producing the drug. However, this entails some costs and
will be adopted only if there is strong evidence that the standard deviation of
the weight of the items will drop to below .4 milligrams. If a sample of 10
items is produced and has the following weights, should the new method be
adopted?

5.728 5.731
5.722 5.719
5.727 5.724
5.718 5.726
5.723 5.722

48. The production of large electrical transformers and capacitators requires the use of
polychlorinated biphenyls (PCBs), which are extremely hazardous when released
into the environment. Two methods have been suggested to monitor the levels
of PCB in fish near a large plant. It is believed that each method will result in
a normal random variable that depends on the method. Test the hypothesis at
the α = .10 level of significance that both methods have the same variance, if a
given fish is checked 8 times by each method with the following data (in parts per
million) recorded.

Method 1 6.2, 5.8, 5.7, 6.3, 5.9, 6.1, 6.2, 5.7

Method 2 6.3, 5.7, 5.9, 6.4, 5.8, 6.2, 6.3, 5.5

49. In Problem 31, test the hypothesis that the populations have the same variances.

50. If X1, . . . , Xn is a sample from a normal population with variance σ 2
x , and

Y1, . . . , Yn is an independent sample from normal population with variance σ 2
y ,

develop a significance level α test of

H0 : σ 2
x < σ 2

y versus H1 : σ 2
x > σ 2

y

51. The amount of surface wax on each side of waxed paper bags is believed to be
normally distributed. However, there is reason to believe that there is greater
variation in the amount on the inner side of the paper than on the outside. A sam-
ple of 75 observations of the amount of wax on each side of these bags is obtained
and the following data recorded.

Wax in Pounds per Unit Area of Sample

Outside Surface Inside Surface

x = .948 y = .652∑
x2
i = 91

∑
y2
i = 82
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Conduct a test to determine whether or not the variability of the amount of wax
on the inner surface is greater than the variability of the amount on the outer
surface (α = .05).

52. In a famous experiment to determine the efficacy of aspirin in preventing heart
attacks, 22,000 healthy middle-aged men were randomly divided into two equal
groups, one of which was given a daily dose of aspirin and the other a placebo that
looked and tasted identical to the aspirin. The experiment was halted at a time
when 104 men in the aspirin group and 189 in the control group had had heart
attacks. Use these data to test the hypothesis that the taking of aspirin does not
change the probability of having a heart attack.

53. In the study of Problem 52, it also resulted that 119 from the aspirin group and
98 from the control group suffered strokes. Are these numbers significant to show
that taking aspirin changes the probability of having a stroke?

54. A standard drug is known to be effective in 72 percent of the cases in which it
is used to treat a certain infection. A new drug has been developed and testing
has found it to be effective in 42 cases out of 50. Is this strong enough evidence
to prove that the new drug is more effective than the old one? Find the relevant
p-value.

55. Three independent news services are running a poll to determine if over half the
population supports an initiative concerning limitations on driving automobiles
in the downtown area. Each wants to see if the evidence indicates that over half
the population is in favor. As a result, all three services will be testing

H0 : p ≤ .5 versus H1 : p > .5

where p is the proportion of the population in favor of the initiative.

(a) Suppose the first news organization samples 100 people, of which 56 are in
favor of the initiative. Is this strong enough evidence, at the 5 percent level of
significance, to reject the null hypothesis and so establish that over half the
population favors the initiative?

(b) Suppose the second news organization samples 120 people, of which 68 are
in favor of the initiative. Is this strong enough evidence, at the 5 percent level
of significance, to reject the null hypothesis?

(c) Suppose the third news organization samples 110 people, of which 62 are in
favor of the initiative. Is this strong enough evidence, at the 5 percent level
of significance, to reject the null hypothesis?

(d) Suppose the news organizations combine their samples, to come up with
a sample of 330 people, of which 186 support the initiative. Is this strong
enough evidence, at the 5 percent level of significance, to reject the null
hypothesis?
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56. It has been a long held belief that the proportion of California births of African
America mothers that result in twins is about 1.32 percent. (The twinning rate
appears to be influenced by the ethnicity of the mother; claims are that it is 1.05
for Caucasian Americans, and 0.72 percent for Asian Americans.) A public health
scientist believes that this number is no longer correct and has decided to test the
null hypothesis that the proportion is 1.32 percent by gathering data on the next
1, 000 recorded birthing events, where twin birds are regarded as a single birthing
event, in California.

(a) What is the minimal number of twin births that would have to be observed
in order to reject the null hypothesis at the 5 percent level of significance?

(b) What is the probability the null hypothesis will be rejected if the actual twin-
ning rate is 1.80?

57. An ambulance service claims that at least 45 percent of its calls involve life-
threatening emergencies. To check this claim, a random sample of 200 calls was
selected from the service’s files. If 70 of these calls involved life-threatening emer-
gencies, is the service’s claim believable at the

(a) 5 percent level of significance;
(b) 1 percent level of significance?

58. A standard drug is known to be effective in 75 percent of the cases in which it
is used to treat a certain infection. A new drug has been developed and has been
found to be effective in 42 cases out of 50. Based on this, would you accept, at
the 5 percent level of significance, the hypothesis that the two drugs are of equal
effectiveness? What is the p-value?

59. Do Problem 58 by using a test based on the normal approximation to the
binomial.

60. In a study of the effect of two chemotherapy treatments on the survival of patients
with multiple myeloma, each of 156 patients was equally likely to be given either
one of the two treatments. As reported by Lipsitz, Dear, Laird, and Molenberghs
in a 1998 paper in Biometrics, the result of this was that 39 of the 72 patients
given the first treatment and 44 of the 84 patients given the second treatment
survived for over 5 years.

(a) Use these data to test the null hypothesis that the two treatments are equally
effective.

(b) Is the fact that 72 of the patients received one of the treatments while 84
received the other consistent with the claim that the determination of the
treatment to be given to each patient was made in a totally random fashion?
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61. Let X1 denote a binomial random variable with parameters (n1, p1) and X2 an
independent binomial random variable with parameters (n2, p2). Develop a test,
using the same approach as in the Fisher-Irwin test, of

H0 : p1 ≤ p2

versus the alternative
H1 : p1 > p2

62. Verify that Equation 8.6.5 follows from Equation 8.6.4.

63. Let X1 and X2 be binomial random variables with respective parameters n1, p1
and n2, p2. Show that when n1 and n2 are large, an approximate level α test of
H0 : p1 = p2 versus H1 : p1 "= p2 is as follows:

reject H0 if
|X1/n1 − X2/n2|√

X1 + X2

n1 + n2

(
1 − X1 + X2

n1 + n2

)(
1
n1

+ 1
n2

) > zα/2

Hint: (a) Argue first that when n1 and n2 are large

X1

n1
− X2

n2
− ( p1 − p2)

√
p1(1 − p1)

n1
+ p2(1 − p2)

n2

∼̇N (0, 1)

where ∼̇ means “approximately has the distribution.”

(b) Now argue that when H0 is true and so p1 = p2, their common value
can be best estimated by (X1 + X2)/(n1 + n2).

64. Use the approximate test given in Problem 63 on the data of Problem 60.

65. Patients suffering from cancer must often decide whether to have their tumors
treated with surgery or with radiation. A factor in their decision is the 5-year
survival rates for these treatments. Surprisingly, it has been found that patients’
decisions often seem to be affected by whether they are told the 5-year survival
rates or the 5-year death rates (even though the information content is identical).
For instance, in an experiment a group of 200 male prostate cancer patients were
randomly divided into two groups of size 100 each. Each member of the first
group was told that the 5-year survival rate for those electing surgery was 77 per-
cent, whereas each member of the second group was told that the 5-year death
rate for those electing surgery was 23 percent. Both groups were given the same
information about radiation therapy. If it resulted that 24 members of the first
group and 12 of the second group elected to have surgery, what conclusions would
you draw?
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66. The following data refer to Larry Bird’s results when shooting a pair of free throws
in basketball. During two consecutive seasons in the National Basketball Associa-
tion, Bird shot a pair of free throws on 338 occasions. On 251 occasions he made
both shots; on 34 occasions he made the first shot but missed the second one; on
48 occasions he missed the first shot but made the second one; on 5 occasions he
missed both shots.

(a) Use these data to test the hypothesis that Bird’s probability of making the
first shot is equal to his probability of making the second shot.

(b) Use these data to test the hypothesis that Bird’s probability of making the
second shot is the same regardless of whether he made or missed the first one.

67. In the 1970s, the U.S. Veterans Administration (Murphy, 1977) conducted an
experiment comparing coronary artery bypass surgery with medical drug therapy
as treatments for coronary artery disease. The experiment involved 596 patients,
of whom 286 were randomly assigned to receive surgery, with the remaining 310
assigned to drug therapy. A total of 252 of those receiving surgery, and a total of
270 of those receiving drug therapy were still alive 3 years after treatment. Use
these data to test the hypothesis that the survival probabilities are equal.

68. Test the hypothesis, at the 5 percent level of significance, that the yearly number of
earthquakes felt on a certain island has mean 52 if the readings for the past 8 years
are 46, 62, 60, 58, 47, 50, 59, 49. Assume an underlying Poisson distribution and
give an explanation to justify this assumption.

69. In 1995, the Fermi Laboratory announced the discovery of the top quark, the last
of six quarks predicted by the “standard model of physics.” The evidence for its
existence was statistical in nature and involved signals created when antiprotons
and protons were forced to collide. In a Physical Review Letters paper documenting
the evidence, Abe, Akimoto, and Akopian (known in physics circle as the three
A’s) based their conclusion on a theoretical analysis that indicated that the number
of decay events in a certain time interval would have a Poisson distribution with
a mean equal to 6.7 if a top quark did not exist and with a larger mean if it did
exist. In a careful analysis of the data the three A’s showed that the actual count
was 27. Is this strong enough evidence to prove the hypothesis that the mean of
the Poisson distribution was greater than 6.7?

70. For the following data, sample 1 is from a Poisson distribution with mean λ1 and
sample 2 is from a Poisson distribution with mean λ2. Test the hypothesis that
λ1 = λ2.

Sample 1 24, 32, 29, 33, 40, 28, 34, 36

Sample 2 42, 36, 41
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71. A scientist looking into the effect of smoking on heart disease has chosen a large
random sample of smokers and of nonsmokers. She plans to study these two
groups for 5 years to see if the number of heart attacks among the members of
the smokers’ group is significantly greater than the number among the nonsmok-
ers. Such a result, the scientist feels, should be strong evidence of an association
between smoking and heart attacks. Given that

(a) older people are at greater risk of heart disease than are younger people; and
(b) as a group, smokers tend to be somewhat older than nonsmokers,

would the scientist be justified in her conclusion? Explain how the experi-
mental design can be improved so that meaningful conclusions can be drawn.

72. A researcher wants to analyze the average yearly increase in a stock over a
20-year period. To do so, she plans to randomly choose 100 stocks from the
listing of current stocks, discarding any that were not in existence 20 years ago.
She will then compare the current price of each stock with its price 20 years ago
to determine its percentage increase. Do you think this is a valid method to study
the average increase in the price of a stock?



Chapter 9

REGRESSION

9.1 INTRODUCTION
Many engineering and scientific problems are concerned with determining a relationship
between a set of variables. For instance, in a chemical process, we might be interested in
the relationship between the output of the process, the temperature at which it occurs,
and the amount of catalyst employed. Knowledge of such a relationship would enable us
to predict the output for various values of temperature and amount of catalyst.

In many situations, there is a single response variable Y , also called the dependent vari-
able, which depends on the value of a set of input, also called independent, variables
x1, . . . , xr. The simplest type of relationship between the dependent variable Y and the
input variables x1, . . . , xr is a linear relationship. That is, for some constants β0, β1, . . . , βr
the equation

Y = β0 + β1x1 + · · · + βrxr (9.1.1)

would hold. If this was the relationship between Y and the xi, i = 1, . . . , r, then it would
be possible (once the βi were learned) to exactly predict the response for any set of input
values. However, in practice, such precision is almost never attainable, and the most that
one can expect is that Equation 9.1.1 would be valid subject to random error. By this we
mean that the explicit relationship is

Y = β0 + β1x1 + · · · + βrxr + e (9.1.2)

where e, representing the random error, is assumed to be a random variable having mean
0. Indeed, another way of expressing Equation 9.1.2 is as follows:

E[Y |x] = β0 + β1x1 + · · · + βrxr

where x = (x1, . . . , xr) is the set of independent variables, and E[Y |x] is the expected
response given the inputs x.

Equation 9.1.2 is called a linear regression equation. We say that it describes the regres-
sion of Y on the set of independent variables x1, . . . , xr. The quantities β0, β1, . . . , βr are

357
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called the regression coefficients, and must usually be estimated from a set of data. A regres-
sion equation containing a single independent variable — that is, one in which r = 1 —
is called a simple regression equation, whereas one containing many independent variables
is called a multiple regression equation.

Thus, a simple linear regression model supposes a linear relationship between the mean
response and the value of a single independent variable. It can be expressed as

Y = α + βx + e

where x is the value of the independent variable, also called the input level, Y is the
response, and e, representing the random error, is a random variable having mean 0.

EXAMPLE 9.1a Consider the following 10 data pairs (xi, yi), i = 1, . . . , 10, relating y, the
percent yield of a laboratory experiment, to x, the temperature at which the experiment
was run.

i xi yi i xi yi
1 100 45 6 150 68
2 110 52 7 160 75
3 120 54 8 170 76
4 130 63 9 180 92
5 140 62 10 190 88

A plot of yi versus xi — called a scatter diagram — is given in Figure 9.1. As this scatter
diagram appears to reflect, subject to random error, a linear relation between y and x, it
seems that a simple linear regression model would be appropriate. !
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FIGURE 9.1 Scatter plot.
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9.2 LEAST SQUARES ESTIMATORS OF THE
REGRESSION PARAMETERS

Suppose that the responses Yi corresponding to the input values xi, i = 1, . . . , n are to be
observed and used to estimate α and β in a simple linear regression model. To determine
estimators of α and β we reason as follows: If A is the estimator of α and B of β, then the
estimator of the response corresponding to the input variable xi would be A + Bxi. Since
the actual response is Yi , the squared difference is (Yi − A − Bxi)

2, and so if A and B are
the estimators of α and β, then the sum of the squared differences between the estimated
responses and the actual response values — call it SS — is given by

SS =
n∑

i=1

(Yi − A − Bxi)
2

The method of least squares chooses as estimators of α and β the values of A and B that
minimize SS. To determine these estimators, we differentiate SS first with respect to A and
then to B as follows:

∂SS
∂A

= −2
n∑

i=1

(Yi − A − Bxi)

∂SS
∂B

= −2
n∑

i=1

xi(Yi − A − Bxi)

Setting these partial derivatives equal to zero yields the following equations for the mini-
mizing values A and B:

n∑

i=1

Yi = nA + B
n∑

i=1

xi (9.2.1)

n∑

i=1

xiYi = A
n∑

i=1

xi + B
n∑

i=1

x2
i

The Equations 9.2.1 are known as the normal equations. If we let

Y =
∑

i

Yi/n, x =
∑

i

xi/n

then we can write the first normal equation as

A = Y − B x (9.2.2)
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Substituting this value of A into the second normal equation yields
∑

i

xiYi = (Y − B x)nx + B
∑

i

x2
i

or

B

(
∑

i

x2
i − nx2

)

=
∑

i

xiYi − nxY

or

B =

∑

i

xiYi − nxY

∑

i

x2
i − nx2

Hence, using Equation 9.2.2 and the fact that nY = ∑n
i=1 Yi, we have proven the fol-

lowing proposition.

PROPOSITION 9.2.1 The least squares estimators of β and α corresponding to the data set
xi , Yi, i = 1, . . . , n are, respectively,

B =

n∑
i=1

xiYi − x
n∑

i=1
Yi

n∑
i=1

x2
i − nx2

A = Y − B x

The straight line A + Bx is called the estimated regression line.

Program 9.2 computes the least squares estimators A and B. It also gives the user the
option of computing some other statistics whose values will be needed in the following
sections.

EXAMPLE 9.2a The raw material used in the production of a certain synthetic fiber is
stored in a location without a humidity control. Measurements of the relative humidity in
the storage location and the moisture content of a sample of the raw material were taken
over 15 days with the following data (in percentages) resulting.

Relative
humidity 46 53 29 61 36 39 47 49 52 38 55 32 57 54 44
Moisture
content 12 15 7 17 10 11 11 12 14 9 16 8 18 14 12
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FIGURE 9.2 Example 9.2a.

These data are plotted in Figure 9.2. To compute the least squares estimator and the
estimated regression line, we run Program 9.2; results are shown in Figure 9.3. !

9.3 DISTRIBUTION OF THE ESTIMATORS
To specify the distribution of the estimators A and B, it is necessary to make additional
assumptions about the random errors aside from just assuming that their mean is 0. The
usual approach is to assume that the random errors are independent normal random vari-
ables having mean 0 and variance σ 2. That is, we suppose that if Yi is the response corre-
sponding to the input value xi, then Y1, . . . , Yn are independent and

Yi ∼ (α + βxi, σ 2)

Note that the foregoing supposes that the variance of the random error does not depend
on the input value but rather is a constant. This value σ 2 is not assumed to be known but
rather must be estimated from the data.

Since the least squares estimator B of β can be expressed as

B =

∑
i
(xi − x)Yi

∑
i

x2
i − nx2 (9.3.1)
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Simple Linear Regression
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FIGURE 9.3

we see that it is a linear combination of the independent normal random variables Yi,
i = 1, . . . , n and so is itself normally distributed. Using Equation 9.3.1, the mean and
variance of B are computed as follows:

E[B] =

∑
i
(xi − x)E[Yi]
∑

i
x2

i − nx2

=

∑
i
(xi − x)(α + βxi)

∑
i

x2
i − nx2
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=
α
∑

i
(xi − x) + β

∑
i

xi(xi − x)
∑

i
x2

i − nx2

= β

[∑
i

x2
i − x

∑
i

xi
]

∑
i

x2
i − nx2 since

∑

i

(xi − x) = 0

= β

Thus E[B] = β and so B is an unbiased estimator of β. We will now compute the variance
of B.

Var(B) =
Var

( n∑
i=1

(xi − x)Yi

)

( n∑
i=1

x2
i − nx2

)2

=

n∑
i=1

(xi − x)2 Var(Yi)

( n∑
i=1

x2
i − nx2

)2 by independence

=
σ 2

n∑

i=1

(xi − x)2

( n∑
i=1

x2
i − nx2

)2

= σ 2

n∑
i=1

x2
i − nx2

(9.3.2)

where the final equality results from the use of the identity

n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2
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Using Equation 9.3.1 along with the relationship

A =
n∑

i=1

Yi

n
− B x

shows that A can also be expressed as a linear combination of the independent nor-
mal random variables Yi , i = 1, . . . , n and is thus also normally distributed. Its mean
is obtained from

E[A] =
n∑

i=1

E[Yi]
n

− xE[B]

=
n∑

i=1

(α + βxi)

n
− xβ

= α + βx − xβ

= α

Thus A is also an unbiased estimator. The variance of A is computed by first expressing
A as a linear combination of the Yi . The result (whose details are left as an exercise) is that

Var(A) =
σ 2

n∑
i=1

x2
i

n
( n∑

i=1
x2

i − nx2
) (9.3.3)

The quantities Yi − A − Bxi, i = 1, . . . , n, which represent the differences between the
actual responses (that is, the Yi) and their least squares estimators (that is, A + Bxi) are
called the residuals. The sum of squares of the residuals

SSR =
n∑

i=1

(Yi − A − Bxi)
2

can be utilized to estimate the unknown error variance σ 2. Indeed, it can be shown that

SSR

σ 2 ∼ χ2
n−2

That is, SSR/σ 2 has a chi-square distribution with n−2 degrees of freedom, which implies
that

E
[

SSR

σ 2

]
= n − 2
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or

E
[

SSR

n − 2

]
= σ 2

Thus SSR/(n − 2) is an unbiased estimator of σ 2. In addition, it can be shown that SSR
is independent of the pair A and B.

REMARKS

A plausibility argument as to why SSR/σ 2 might have a chi-square distribution with n−2
degrees of freedom and be independent of A and B runs as follows. Because the Yi are
independent normal random variables, it follows that (Yi−E[Yi])/

√
Var(Yi), i = 1, . . . , n

are independent standard normals and so

n∑

i=1

(Yi − E[Yi])2

Var(Yi)
=

n∑

i=1

(Yi − α − βxi)
2

σ 2 ∼ χ2
n

Now if we substitute the estimators A and B for α and β, then 2 degrees of freedom are
lost, and so it is not an altogether surprising result that SSR/σ 2 has a chi-square distribu-
tion with n − 2 degrees of freedom.

The fact that SSR is independent of A and B is quite similar to the fundamental result
that in normal sampling X and S2 are independent. Indeed this latter result states that if
Y1, . . . , Yn is a normal sample with population mean µ and variance σ2, then if in the
sum of squares

∑n
i=1(Yi − µ)2/σ 2, which has a chi-square distribution with n degrees

of freedom, one substitutes the estimator Y for µ to obtain the new sum of squares∑
i(Yi − Y )2/σ 2, then this quantity [equal to (n − 1)S2/σ 2] will be independent of

Y and will have a chi-square distribution with n − 1 degrees of freedom. Since SSR/σ 2

is obtained by substituting the estimators A and B for α and β in the sum of squares∑n
i=1(Yi − α − βxi)

2/σ 2, it is not unreasonable to expect that this quantity might be
independent of A and B.

When the Yi are normal random variables, the least squares estimators are also the
maximum likelihood estimators. To verify this remark, note that the joint density of
Y1, . . . , Yn is given by

f Y1,...,Yn( y1, . . . , yn) =
n∏

i=1

f Yi ( yi)

=
n∏

i=1

1√
2πσ

e−( yi−α−βxi)
2/2σ 2

= 1
(2π)n/2σ n e−

∑n
i=1( yi−α−βxi)

2/2σ 2
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Consequently, the maximum likelihood estimators of α and β are precisely the values of α

and β that minimize
∑n

i=1( yi − α − βxi)
2. That is, they are the least squares estimators.

Notation

If we let

SxY =
n∑

i=1

(xi − x)(Yi − Y ) =
n∑

i=1

xiYi − nxY

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2

SYY =
n∑

i=1

(Yi − Y )2 =
n∑

i=1

Y 2
i − nY

2

then the least squares estimators can be expressed as

B = SxY

Sxx

A = Y − B x

The following computational identity for SSR , the sum of squares of the residuals, can
be established.

Computational Identity for SSR

SSR = SxxSYY − S2
xY

Sxx
(9.3.4)

The following proposition sums up the results of this section.

PROPOSITION 9.3.1 Suppose that the responses Yi , i = 1, . . . , n are independent normal
random variables with means α + βxi and common variance σ 2. The least squares esti-
mators of β and α

B = SxY

Sxx
, A = Y − B x

are distributed as follows:

A ∼



α,
σ 2∑

i
x2

i

nSxx





B ∼ (β, σ 2/Sxx)
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In addition, if we let

SSR =
∑

i

(Yi − A − Bxi)
2

denote the sum of squares of the residuals, then

SSR

σ 2 ∼ χ2
n−2

and SSR is independent of the least squares estimators A and B. Also, SSR can be computed
from

SSR = SxxSYY − (SxY )2

Sxx

Program 9.2 will compute the least squares estimators A and B as well as x,
∑

i x2
i ,

Sxx , SxY , SYY , and SSR.

EXAMPLE 9.3a The following data relate x, the moisture of a wet mix of a certain product,
to Y, the density of the finished product.

xi yi
5 7.4
6 9.3
7 10.6

10 15.4
12 18.1
15 22.2
18 24.1
20 24.8

Fit a linear curve to these data. Also determine SSR.

SOLUTION A plot of the data and the estimated regression line is shown in Figure 9.4.
To solve the foregoing, run Program 9.2; results are shown in Figure 9.5. !

9.4 STATISTICAL INFERENCES ABOUT THE
REGRESSION PARAMETERS

Using Proposition 9.3.1, it is a simple matter to devise hypothesis tests and confidence
intervals for the regression parameters.
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FIGURE 9.4 Example 9.3a.

9.4.1 Inferences Concerning β
An important hypothesis to consider regarding the simple linear regression model

Y = α + βx + e

is the hypothesis that β = 0. Its importance derives from the fact that it is equivalent to
stating that the mean response does not depend on the input, or, equivalently, that there
is no regression on the input variable. To test

H0 : β = 0 versus H1 : β $= 0

note that, from Proposition 9.3.1,

B − β
√

σ 2/Sxx
=
√

Sxx
(B − β)

σ
∼ (0, 1) (9.4.1)

and is independent of
SSR

σ 2 ∼ χ2
n−2

Hence, from the definition of a t-random variable it follows that

√
Sxx(B − β)/σ
√

SSR
σ 2(n−2)

=
√

(n − 2)Sxx

SSR
(B − β) ∼ tn−2 (9.4.2)
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Simple Linear Regression
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x  5 

y  5 24.8

a 5 2.46 

b 5 1.21

The least squares estimators are as follows:
Average x value 5 11.63

Sum of squares of the x values 5 1303.0

The estimated regression line is Y 5 2.46 1 1.21x

S (x, Y) 5 267.66
S (x, x)  5 221.88
S (Y, Y) 5 332.37
SSR       5     9.47
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FIGURE 9.5

That is,
√

(n − 2)Sxx/SSR(B − β) has a t-distribution with n − 2 degrees of freedom.
Therefore, if H0 is true (and so β = 0), then

√
(n − 2)Sxx

SSR
B ∼ tn−2

which gives rise to the following test of H0.
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Hypothesis Test of H0: β = 0

A significance level γ test of H0 is to

reject H0 if
√

(n − 2)Sxx

SSR
|B| > tγ /2,n−2

accept H0 otherwise

This test can be performed by first computing the value of the test statistic√
(n − 2)Sxx/SSR|B| — call its value v — and then rejecting H0 if the desired signifi-

cance level is at least as large as

p-value = P{|Tn−2| > v}
= 2P{Tn−2 > v}

where Tn−2 is a t-random variable with n − 2 degrees of freedom. This latter probability
can be obtained by using Program 5.8.2a.

EXAMPLE 9.4a An individual claims that the fuel consumption of his automobile does
not depend on how fast the car is driven. To test the plausibility of this hypothesis, the
car was tested at various speeds between 45 and 70 miles per hour. The miles per gallon
attained at each of these speeds was determined, with the following data resulting:

Speed Miles per Gallon

45 24.2
50 25.0
55 23.3
60 22.0
65 21.5
70 20.6
75 19.8

Do these data refute the claim that the mileage per gallon of gas is unaffected by the speed
at which the car is being driven?

SOLUTION Suppose that a simple linear regression model

Y = α + βx + e

relates Y, the miles per gallon of the car, to x, the speed at which it is being driven. Now,
the claim being made is that the regression coefficient β is equal to 0. To see if the data
are strong enough to refute this claim, we need to see if it leads to a rejection of the null
hypothesis when testing

H0 : β = 0 versus H1 : β $= 0
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To compute the value of the test statistic, we first compute the values of Sxx , SYY , and SxY .
A hand calculation yields that

Sxx = 700, SYY = 21.757, SxY = −119

Using Equation 9.3.4 gives

SSR = [SxxSYY − S2
xY ]/Sxx

= [700(21.757) − (119)2]/700 = 1.527

Because
B = SxY /Sxx = −119/700 = −.17

the value of the test statistic is

TS =
√

5(700)/1.527(.17) = 8.139

Since, from Table A2 of the Appendix, t.005,5 = 4.032, it follows that the hypothesis
β = 0 is rejected at the 1 percent level of significance. Thus, the claim that the mileage
does not depend on the speed at which the car is driven is rejected; there is strong evidence
that increased speeds lead to decreased mileages. !

A confidence interval estimator for β is easily obtained from Equation 9.4.2. Indeed,
it follows from Equation 9.4.2 that for any a, 0 < a < 1,

P

{

−ta/2,n−2 <

√
(n − 2)Sxx

SSR
(B − β) < ta/2,n−2

}

= 1 − a

or, equivalently,

P

{
B −

√
SSR

(n − 2)Sxx
ta/2,n−2 < β < B +

√
SSR

(n − 2)Sxx
ta/2,n−2

}
= 1 − a

which yields the following.

Confidence Interval for β

A 100(1 − a) percent confidence interval estimator of β is

(

B −
√

SSR

(n − 2)Sxx
ta/2,n−2, B +

√
SSR

(n − 2)Sxx
ta/2,n−2

)
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REMARK

The result that
B − β
√

σ 2/Sxx
∼ (0, 1)

cannot be immediately applied to make inferences about β since it involves the unknown
parameter σ 2. Instead, what we do is use the preceding statistic with σ 2 replaced by its
estimator SSR/(n − 2), which has the effect of changing the distribution of the statistic
from the standard normal to the t-distribution with n − 2 degrees of freedom.

EXAMPLE 9.4b Derive a 95 percent confidence interval estimate of β in Example 9.4a.

SOLUTION Since t.025,5 = 2.571, it follows from the computations of this example that
the 95 percent confidence interval is

−.170 ± 2.571

√
1.527
3,500

= −.170 ± .054

That is, we can be 95 percent confident that β lies between −.224 and −.116. !

9.4.1.1 REGRESSION TO THE MEAN

The term regression was originally employed by Francis Galton while describing the laws
of inheritance. Galton believed that these laws caused population extremes to “regress
toward the mean.” By this he meant that children of individuals having extreme values
of a certain characteristic would tend to have less extreme values of this characteristic
than their parent.

If we assume a linear regression relationship between the characteristic of the offspring
(Y ) and that of the parent (x), then a regression to the mean will occur when the regres-
sion parameter β is between 0 and 1. That is, if

E[Y ] = α + βx

and 0 < β < 1, then E[Y ] will be smaller than x when x is large and greater than x
when x is small. That this statement is true can be easily checked either algebraically or
by plotting the two straight lines

y = α + βx

and
y = x

A plot indicates that, when 0 < β < 1, the line y = α + βx is above the line y = x for
small values of x and is below it for large values of x.
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FIGURE 9.6 Scatter diagram of son’s height versus father’s height.

EXAMPLE 9.4c To illustrate Galton’s thesis of regression to the mean, the British statistician
Karl Pearson plotted the heights of 10 randomly chosen sons versus that of their fathers.
The resulting data (in inches) were as follows.

Fathers’ height 60 62 64 65 66 67 68 70 72 74
Sons’ height 63.6 65.2 66 65.5 66.9 67.1 67.4 68.3 70.1 70

A scatter diagram representing these data is presented in Figure 9.6.
Note that whereas the data appear to indicate that taller fathers tend to have taller

sons, it also appears to indicate that the sons of fathers who are either extremely short or
extremely tall tend to be more “average” than their fathers — that is, there is a “regression
toward the mean.”

We will determine whether the preceding data are strong enough to prove that there is
a regression toward the mean by taking this statement as the alternative hypothesis. That
is, we will use the above data to test

H0 : β ≥ 1 versus H1 : β < 1

which is equivalent to a test of

H0 : β = 1 versus H1 : β < 1
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It now follows from Equation 9.4.2 that when β = 1, the test statistic

TS =
√

8Sxx/SSR(B − 1)

has a t-distribution with 8 degrees of freedom. The significance level α test will reject H0
when the value of TS is sufficiently small (since this will occur when B, the estimator of
β, is sufficiently smaller than 1). Specifically, the test is to

reject H0 if
√

8Sxx/SSR(B − 1) < −tα,8

Program 9.2 gives that
√

8Sxx/SSR(B − 1) = 30.2794(.4646 − 1) = −16.21

Since t.01,8 = 2.896, we see that
TS < −t.01,8

and so the null hypothesis that β ≥ 1 is rejected at the 1 percent level of significance. In
fact, the p-value is

p-value = P{T8 ≤ −16.213} ≈ 0

and so the null hypothesis that β ≥ 1 is rejected at almost any significance level, thus
establishing a regression toward the mean (see Figure 9.7).

A modern biological explanation for the regression to the mean phenomenon would
roughly go along the lines of noting that as an offspring obtains a random selection of
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FIGURE 9.7 Example 9.4c for x small, y > x. For x large, y < x.
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one-half of its parents’ genes, it follows that the offspring of, say, a very tall parent would,
by chance, tend to have fewer “tall” genes than its parent.

While the most important applications of the regression to the mean phenomenon
concern the relationship between the biological characteristics of an offspring and that
of its parents, this phenomenon also arises in situations where we have two sets of data
referring to the same variables. !

EXAMPLE 9.4d The data of Table 9.1 relate the number of motor vehicle deaths occurring
in 12 counties in the northwestern United States in the years 1988 and 1989.

A glance at Figure 9.8 indicates that in 1989 there was, for the most part, a reduction
in the number of deaths in those counties that had a large number of motor deaths in
1988. Similarly, there appears to have been an increase in those counties that had a low
value in 1988. Thus, we would expect that a regression to the mean is in effect. In fact,
running Program 9.2 yields that the estimated regression equation is

y = 74.589 + .276x

showing that the estimated value of β indeed appears to be less than 1.
One must be careful when considering the reason behind the regression to the mean

phenomenon in the preceding data. For instance, it might be natural to suppose that
those counties that had a large number of deaths caused by motor vehicles in 1988 would
have made a large effort — perhaps by improving the safety of their roads or by making
people more aware of the potential dangers of unsafe driving — to reduce this number.
In addition, we might suppose that those counties that had the fewest number of deaths
in 1988 might have “rested on their laurels” and not made much of an effort to further
improve their numbers — and as a result had an increase in the number of casualties the
following year.

TABLE 9.1 Motor Vehicle Deaths, Northwestern United States, 1988 and 1989

County Deaths in 1988 Deaths in 1989

1 121 104
2 96 91
3 85 101
4 113 110
5 102 117
6 118 108
7 90 96
8 84 102
9 107 114

10 112 96
11 95 88
12 101 106
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FIGURE 9.8 Scatter diagram of 1989 deaths versus 1988 deaths.

While this supposition might be correct, it is important to realize that a regression to
the mean would probably have occurred even if none of the counties had done anything
out of the ordinary. Indeed, it could very well be the case that those counties having large
numbers of casualties in 1988 were just very unlucky in that year and thus a decrease
in the next year was just a return to a more normal result for them. (For an analogy, if
9 heads result when 10 fair coins are flipped then it is quite likely that another flip of these
10 coins will result in fewer than 9 heads.) Similarly, those counties having few deaths in
1988 might have been “lucky” that year and a more normal result in 1989 would thus
lead to an increase.

The mistaken belief that regression to the mean is due to some outside influence when
it is in reality just due to “chance” occurs frequently enough that it is often referred to as
the regression fallacy. !

9.4.2 Inferences Concerning α
The determination of confidence intervals and hypothesis tests for α is accomplished in
exactly the same manner as was done for β. Specifically, Proposition 9.3.1 can be used to
show that √

n(n − 2)Sxx

SSR
∑

i x2
i

(A − α) (9.4.3)

which leads to the following confidence interval estimator of α.
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Confidence Interval Estimator of α

The 100(1 − a) percent confidence interval for α is the interval

A ± tα/2,n−2

√
SSR

∑
i x2

i
n(n − 2)Sxx

Hypothesis tests concerning α are easily obtained from Equation 9.4.3, and their devel-
opment is left as an exercise.

9.4.3 Inferences Concerning the Mean Response α+βx0
It is often of interest to use the data pairs (xi, Yi), i = 1, . . . , n, to estimate α + β x0, the
mean response for a given input level x0. If it is a point estimator that is desired, then the
natural estimator is A + B x0, which is an unbiased estimator since

E[A + B x0] = E[A] + x0E[B] = α + β x0

However, if we desire a confidence interval, or are interested in testing some hypothesis
about this mean response, then it is necessary to first determine the probability distribu-
tion of the estimator A + B x0. We now do so.

Using the expression for B given by Equation 9.3.1 yields that

B = c
n∑

i=1

(xi − x)Yi

where
c = 1

n∑
i=1

x2
i − nx2

= 1
Sxx

Since
A = Y − B x

we see that

A + B x0 =

n∑
i=1

Yi

n
− B(x − x0)

=
n∑

i=1

Yi

[
1
n

− c(xi − x)(x − x0)

]

Since the Yi are independent normal random variables, the foregoing equation shows
that A + B x0 can be expressed as a linear combination of independent normal random
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variables and is thus itself normally distributed. Because we already know its mean, we
need only compute its variance, which is accomplished as follows:

Var(A + B x0) =
n∑

i=1

[
1
n

− c(xi − x)(x − x0)

]2

Var(Yi)

= σ 2
n∑

i=1

[
1
n2 + c2(x − x0)

2(xi − x)2 − 2c(xi − x)
(x − x0)

n

]

= σ 2

[
1
n

+ c2(x − x0)
2

n∑

i=1

(xi − x)2 − 2c(x − x0)

n∑

i=1

(xi − x)
n

]

= σ 2
[

1
n

+ (x − x0)
2

Sxx

]

where the last equality followed from

n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 = 1/c = Sxx,

n∑

i=1

(xi − x) = 0

Hence, we have shown that

A + B x0 ∼
(

α + β x0, σ 2
[

1
n

+ (x0 − x)2

Sxx

])
(9.4.4)

In addition, because A + B x0 is independent of

SSR/σ 2 ∼ χ2
n−2

it follows that
A + B x0 − (α + β x0)√
1
n

+ (x0 − x)2

Sxx

√
SSR

n − 2

∼ tn−2 (9.4.5)

Equation 9.4.5 can now be used to obtain the following confidence interval estimator of
α + β x0.

Confidence Interval Estimator of α + βx0

With 100(1 − a) percent confidence, α + β x0 will lie within

A + B x0 ±
√

1
n

+ (x0 − x)2

Sxx

√
SSR

n − 2
ta/2, n−2
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EXAMPLE 9.4e Using the data of Example 9.4c, determine a 95 percent confidence interval
for the average height of all males whose fathers are 68 inches tall.

SOLUTION Since the observed values are

n = 10, x0 = 68, x = 66.8, Sxx = 171.6, SSR = 1.49721

we see that √
1
n

+ (x0 − x)2

Sxx

√
SSR

n − 2
= .1424276

Also, because

t.025,8 = 2.306, A + B x0 = 67.56751

we obtain the following 95 percent confidence interval:

α + β x0 ∈ (67.239, 67.896) !

9.4.4 Prediction Interval of a Future Response
It is often the case that it is more important to estimate the actual value of a future
response rather than its mean value. For instance, if an experiment is to be performed
at temperature level x0, then we would probably be more interested in predicting Y (x0),
the yield from this experiment, than we would be in estimating the expected yield —
E[Y (x0)] = α+β x0. (On the other hand, if a series of experiments were to be performed
at input level x0, then we would probably want to estimate α + β x0, the mean yield.)

Suppose first that we are interested in a single value (as opposed to an interval) to use
as a predictor of Y (x0), the response at level x0. Now, it is clear that the best predictor
of Y (x0) is its mean value α + β x0. [Actually, this is not so immediately obvious since
one could argue that the best predictor of a random variable is (1) its mean — which
minimizes the expected square of the difference between the predictor and the actual
value; or (2) its median — which minimizes the expected absolute difference between
the predictor and the actual value; or (3) its mode — which is the most likely value to
occur. However, as the mean, median, and mode of a normal random variable are all equal
— and the response is, by assumption, normally distributed — there is no doubt in this
situation.] Since α and β are not known, it seems reasonable to use their estimators A and
B and thus use A + B x0 as the predictor of a new response at input level x0.

Let us now suppose that rather than being concerned with determining a single value
to predict a response, we are interested in finding a prediction interval that, with a given
degree of confidence, will contain the response. To obtain such an interval, let Y denote
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the future response whose input level is x0 and consider the probability distribution of the
response minus its predicted value — that is, the distribution of Y − A − B x0. Now,

Y ∼ (α + β x0, σ 2)

and, as was shown in Section 9.4.3,

A + B x0 ∼
(

α + β x0, σ 2
[

1
n

+ (x0 − x)2

Sxx

])

Hence, because Y is independent of the earlier data values Y1, Y2, . . . , Yn that were used
to determine A and B, it follows that Y is independent of A + B x0 and so

Y − A − B x0 ∼
(

0, σ 2
[

1 + 1
n

+ (x0 − x)2

Sxx

])

or, equivalently,
Y − A − B x0

σ

√
n + 1

n
+ (x0 − x)2

Sxx

∼ (0, 1) (9.4.6)

Now, using once again the result that SSR is independent of A and B (and also of Y ) and

SSR

σ 2 ∼ χ2
n−2

we obtain, by the usual argument, upon replacing σ 2 in Equation 9.4.6 by its estimator
SSR/(n − 2) that

Y − A − B x0√
n + 1

n
+ (x0 − x)2

Sxx

√
SSR

n − 2

∼ tn−2

and so, for any value a, 0 < a < 1,

p






−ta/2,n−2 <
Y − A − B x0√

n + 1
n

+ (x0 − x)2

Sxx

√
SSR

n − 2

< ta/2,n−2






= 1 − a

That is, we have just established the following.
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Prediction Interval for a Response at the Input Level x0

Based on the response values Yi corresponding to the input values xi , i = 1, 2, . . . , n:
With 100(1−a) percent confidence, the response Y at the input level x0 will be contained
in the interval

A + B x0 ± ta/2,n−2

√[
n + 1

n
+ (x0 − x)2

Sxx

]
SSR

n − 2

EXAMPLE 9.4f In Example 9.4c, suppose we want an interval that we can “be 95 percent
certain” will contain the height of a given male whose father is 68 inches tall. A simple
computation now yields the prediction interval

Y (68) ∈ 67.568 ± 1.050

or, with 95 percent confidence, the person’s height will be between 66.518 and
68.618. !

REMARKS

(a) There is often some confusion about the difference between a confidence and a pre-
diction interval. A confidence interval is an interval that does contain, with a given degree
of confidence, a fixed parameter of interest. A prediction interval, on the other hand, is
an interval that will contain, again with a given degree of confidence, a random variable
of interest.
(b) One should not make predictions about responses at input levels that are far from
those used to obtain the estimated regression line. For instance, the data of Example 9.4c
should not be used to predict the height of a male whose father is 42 inches tall.

9.4.5 Summary of Distributional Results
We now summarize the distributional results of this section.

Model: Y = α + βx + e, e ∼ (0, σ 2)

Data: (xi, Yi), i = 1, 2, . . . , n

Inferences About Use the Distributional Result

β

√
(n − 2)Sxx

SSr
(B − β) ∼ tn−2

α

√√√√√
n(n − 2)Sxx∑

i
x2
i SSR

(A − α) ∼ tn−2
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Inferences About Use the Distributional Result

α + β x0
A + B x0 − α − β x0√√√√

(
1
n

+ (x0 − x)2

Sxx

)(
SSR

n − 2

) ∼ tn−2

Y (x0)
Y (x0) − A − B x0√√√√

(

1 + 1
n + (x0 − x)2

Sxx

)(
SSR

n − 2

) ∼ tn−2

9.5 THE COEFFICIENT OF DETERMINATION AND THE
SAMPLE CORRELATION COEFFICIENT

Suppose we wanted to measure the amount of variation in the set of response val-
ues Y1, . . . , Yn corresponding to the set of input values x1, . . . , xn. A standard measure
in statistics of the amount of variation in a set of values Y1, . . . , Yn is given by the
quantity

SYY =
n∑

i=1

(Yi − Y )2

For instance, if all the Yi are equal — and thus are all equal to Y — then SYY would
equal 0.

The variation in the values of the Yi arises from two factors. First, because the input
values xi are different, the response variables Yi all have different mean values, which will
result in some variation in their values. Second, the variation also arises from the fact that
even when the differences in the input values are taken into account, each of the response
variables Yi has variance σ 2 and thus will not exactly equal the predicted value at its
input xi.

Let us consider now the question as to how much of the variation in the values of
the response variables is due to the different input values, and how much is due to the
inherent variance of the responses even when the input values are taken into account. To
answer this question, note that the quantity

SSR =
n∑

i=1

(Yi − A − Bxi)
2

measures the remaining amount of variation in the response values after the different input
values have been taken into account.
Thus,

SYY − SSR
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represents the amount of variation in the response variables that is explained by the differ-
ent input values, and so the quantity R2 defined by

R2 = SYY − SSR

SYY

= 1 − SSR

SYY

represents the proportion of the variation in the response variables that is explained by the
different input values. R2 is called the coefficient of determination.

The coefficient of determination R2 will have a value between 0 and 1. A value of R2

near 1 indicates that most of the variation of the response data is explained by the different
input values, whereas a value of R2 near 0 indicates that little of the variation is explained
by the different input values.

EXAMPLE 9.5a In Example 9.4c, which relates the height of a son to that of his father, the
output from Program 9.2 yielded that

SYY = 38.521, SSR = 1.497

Thus,

R2 = 1 − 1.497
38.531

= .961

In other words, 96 percent of the variation of the heights of the 10 individuals is explained
by the heights of their fathers. The remaining (unexplained) 4 percent of the variation is
due to the variance of a son’s height even when the father’s height is taken into account.
(That is, it is due to σ 2, the variance of the error random variable.) !

The value of R2 is often used as an indicator of how well the regression model fits the
data, with a value near 1 indicating a good fit, and one near 0 indicating a poor fit. In
other words, if the regression model is able to explain most of the variation in the response
data, then it is considered to fit the data well.

Recall that in Section 2.6 we defined the sample correlation coefficient r of the set of
data pairs (xi, Yi), i = 1, . . . , n, by

r =

n∑
i=1

(xi − x)(Yi − Y )

√
n∑

i=1
(xi − x)2

n∑
i=1

(Yi − Y )2

It was noted that r provided a measure of the degree to which high values of x are
paired with high values of Y and low values of x with low values of Y . A value of r



384 Chapter 9: Regression

near +1 indicated that large x values were strongly associated with large Y values and
small x values were strongly associated with small Y values, whereas a value near −1 indi-
cated that large x values were strongly associated with small Y values and small x values
with large Y values.

In the notation of this chapter,

r = SxY√
SxxSYY

Upon using identity (9.3.4):

SSR = SxxSYY − S2
xY

Sxx

we see that

r2 = S2
xY

SxxSYY

= SxxSYY − SSRSxx

SxxSYY

= 1 − SSR

SYY

= R2

That is,

|r| =
√

R2

and so, except for its sign indicating whether it is positive or negative, the sample correla-
tion coefficient is equal to the square root of the coefficient of determination. The sign of
r is the same as that of B.

The above gives additional meaning to the sample correlation coefficient. For instance,
if a data set has its sample correlation coefficient r equal to .9, then this implies that a
simple linear regression model for these data explains 81 percent (since R2 = .92 = .81)
of the variation in the response values. That is, 81 percent of the variation in the response
values is explained by the different input values.

9.6 ANALYSIS OF RESIDUALS: ASSESSING THE MODEL
The initial step for ascertaining whether or not the simple linear regression model

Y = α + βx + e, e ∼ (0, σ 2)
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is appropriate in a given situation is to investigate the scatter diagram. Indeed, this is
often sufficient to convince one that the regression model is or is not correct. When the
scatter diagram does not by itself rule out the preceding model, then the least squares
estimators A and B should be computed and the residual Yi − (A + Bxi), i = 1, . . . , n
analyzed. The analysis begins by normalizing, or standardizing, the residuals by dividing
them by

√
SSR/(n − 2), the estimate of the standard deviation of the Yi. The resulting

quantities

Yi − (A + Bxi)√
SSR/(n − 2)

, i = 1, . . . , n

are called the standardized residuals.
When the simple linear regression model is correct, the standardized residuals are

approximately independent standard normal random variables, and thus should be ran-
domly distributed about 0 with about 95 percent of their values being between −2 and
+2 (since P{−1.96 < Z < 1.96} = .95). In addition, a plot of the standardized resid-
uals should not indicate any distinct pattern. Indeed, any indication of a distinct pattern
should make one suspicious about the validity of the assumed simple linear regression
model.

Figure 9.9 presents three different scatter diagrams and their associated standardized
residuals. The first of these, as indicated both by its scatter diagram and the random
nature of its standardized residuals, appears to fit the straight-line model quite well. The
second residual plot shows a discernible pattern, in that the residuals appear to be first
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decreasing and then increasing as the input level increases. This often means that higher-
order (than just linear) terms are needed to describe the relationship between the input
and response. Indeed, this is also indicated by the scatter diagram in this case. The third
standardized residual plot also shows a pattern, in that the absolute value of the residuals,
and thus their squares, appear to be increasing, as the input level increases. This often
indicates that the variance of the response is not constant but, rather, increases with the
input level.
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9.7 TRANSFORMING TO LINEARITY
In many situations, it is clear that the mean response is not a linear function of the input
level. In such cases, if the form of the relationship can be determined it is sometimes
possible, by a change of variables, to transform it into a linear form. For instance, in
certain applications it is known that W (t), the amplitude of a signal a time t after its
origination, is approximately related to t by the functional form

W (t) ≈ ce−dt

On taking logarithms, this can be expressed as

log W (t) ≈ log c − dt

If we now let

Y = log W (t)

α = log c

β = −d

then the foregoing can be modeled as a regression of the form

Y = α + βt + e

The regression parameters α and β would then be estimated by the usual least squares
approach and the original functional relationships can be predicted from

W (t) ≈ e A+Bt

EXAMPLE 9.7a The following table gives the percentages of a chemical that were used
up when an experiment was run at various temperatures (in degrees Celsius). Use it to
estimate the percentage of the chemical that would be used up if the experiment were to
be run at 350 degrees.

Temperature Percentage

5◦ .061
10◦ .113
20◦ .192
30◦ .259
40◦ .339
50◦ .401
60◦ .461
80◦ .551
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FIGURE 9.10 Example 9.7a.

SOLUTION Let P(x) be the percentage of the chemical that is used up when the experiment
is run at 10x degrees. Even though a plot of P(x) looks roughly linear (see Figure 9.10),
we can improve upon the fit by considering a nonlinear relationship between x and P(x).
Specifically, let us consider a relationship of the form

1 − P(x) ≈ c(1 − d)x

That is, let us suppose that the percentage of the chemical that survives an experiment run
at temperature x approximately decreases at an exponential rate when x increases. Taking
logs, the preceding can be written as

log(1 − P(x)) ≈ log(c) + x log(1 − d)

Thus, setting

Y = −log(1 − P)

α = −log c

β = −log(1 − d)

we obtain the usual regression equation

Y = α + βx + e
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TABLE 9.2

Temperature −log(1 − P)

5◦ .063
10◦ .120
20◦ .213
30◦ .300
40◦ .414
50◦ .512
60◦ .618
80◦ .801
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FIGURE 9.11

To see whether the data support this model, we can plot −log(1 − P) versus x. The
transformed data are presented in Table 9.2 and the graph in Figure 9.11.

Running Program 9.2 yields that the least square estimates of α and β are

A = .0154

B = .0099
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TABLE 9.3

x P P̂ P − P̂

5 .061 .063 −.002
10 .113 .109 .040
20 .192 .193 −.001
30 .259 .269 −.010
40 .339 .339 .000
50 .401 .401 .000
60 .461 .458 .003
80 .551 .556 −.005

Transforming this back into the original variable gives that the estimates of c and d are

ĉ = e−A = .9847

1 − d̂ = e−B = .9901

and so the estimated functional relationship is

P̂ = 1 − .9847(.9901)x

The residuals P − P̂ are presented in Table 9.3. !

9.8 WEIGHTED LEAST SQUARES
In the regression model

Y = α + βx + e

it often turns out that the variance of a response is not constant but rather depends on its
input level. If these variances are known — at least up to a proportionality constant —
then the regression parameters α and β should be estimated by minimizing a weighted
sum of squares. Specifically, if

Var(Yi) = σ 2

wi

then the estimators A and B should be chosen to minimize

∑

i

[Yi − (A + Bxi)]2

Var(Yi)
= 1

σ 2

∑

i

wi(Yi − A − Bxi)
2
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On taking partial derivatives with respect to A and B and setting them equal to 0, we
obtain the following equations for the minimizing A and B.

∑

i

wiYi = A
∑

i

wi + B
∑

i

wixi (9.8.1)

∑

i

wixiYi = A
∑

i

wixi + B
∑

i

wix2
i

These equations are easily solved to yield the least squares estimators.

EXAMPLE 9.8a To develop a feel as to why the estimators should be obtained by mini-
mizing the weighted sum of squares rather than the ordinary sum of squares, consider
the following situation. Suppose that X1, . . . , Xn are independent normal random vari-
ables each having mean µ and variance σ 2. Suppose further that the Xi are not directly
observable but rather only Y1 and Y2, defined by

Y1 = X1 + · · · + Xk, Y2 = Xk+1 + · · · + Xn, k < n

are directly observable. Based on Y1 and Y2, how should we estimate µ?
Whereas the best estimator of µ is clearly X = ∑n

i=1 Xi/n = (Y1 + Y2)/n, let us see
what the ordinary least squares estimator would be. Since

E[Y1] = kµ, E[Y2] = (n − k)µ

the least squares estimator of µ would be that value of µ that minimizes

(Y1 − kµ)2 + (Y2 − [n − k]µ)2

On differentiating and setting equal to zero, we see that the least squares estimator of
µ — call it µ̂ — is such that

−2k(Y1 − kµ̂) − 2(n − k)[Y2 − (n − k)µ̂] = 0

or
[k2 + (n − k)2]µ̂ = kY1 + (n − k)Y2

or

µ̂ = kY1 + (n − k)Y2

k2 + (n − k)2

Thus we see that while the ordinary least squares estimator is an unbiased estimator of
µ — since

E[µ̂] = kE[Y1] + (n − k)E[Y2]
k2 + (n − k)2 = k2µ + (n − k)2µ

k2 + (n − k)2 = µ,

it is not the best estimator X .
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Now let us determine the estimator produced by minimizing the weighted sum of
squares. That is, let us determine the value of µ — call it µw — that minimizes

(Y1 − kµ)2

Var(Y1)
+ [Y2 − (n − k)µ]2

Var(Y2)

Since

Var(Y1) = kσ 2, Var(Y2) = (n − k)σ 2

this is equivalent to choosing µ to minimize

(Y1 − kµ)2

k
+ [Y2 − (n − k)µ]2

n − k

Upon differentiating and then equating to 0, we see that µw, the minimizing value,
satisfies

−2k(Y1 − kµw)

k
− 2(n − k)[Y2 − (n − k)µw]

n − k
= 0

or
Y1 + Y2 = nµw

or

µw = Y1 + Y2

n
That is, the weighted least squares estimator is indeed the preferred estimator
(Y1 + Y2)/n = X . !

REMARKS

(a) Assuming normally distributed data, the weighted least squares estimators are precisely
the maximum likelihood estimators. This follows because the joint density of the data
Y1, . . . , Yn is

f Y1,...,Yn( y1, . . . , yn) =
n∏

i=1

1√
2π(σ /

√
wi)

e−( yi−α−βxi)
2/(2σ 2/wi)

=
√

w1 . . . wn

(2π)n/2σ n e−
∑n

i=1 wi( yi−α−βxi)
2/2σ 2

Consequently, the maximum likelihood estimators of α and β are precisely the values of
α and β that minimize the weighted sum of squares

∑n
i=1 wi( yi − α − βxi)

2.
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(b) The weighted sum of squares can also be seen as the relevant quantity to be minimized
by multiplying the regression equation

Y = α + βx + e

by
√

w. This results in the equation

Y
√

w = α
√

w + βx
√

w + e
√

w

Now, in this latter equation the error term e
√

w has mean 0 and constant variance.
Hence, the natural least squares estimators of α and β would be the values of A and
B that minimize

∑

i

(Yi
√

wi − A
√

wi − Bxi
√

wi)
2 =

∑

i

wi(Yi − A − Bxi)
2

(c) The weighted least squares approach puts the greatest emphasis on those data pairs
having the greatest weights (and thus the smallest variance in their error term). !

At this point it might appear that the weighted least squares approach is not particularly
useful since it requires a knowledge, up to a constant, of the variance of a response at an
arbitrary input level. However, by analyzing the model that generates the data, it is often
possible to determine these values. This will be indicated by the following two examples.

EXAMPLE 9.8b The following data represent travel times in a downtown area of a certain
city. The independent, or input, variable is the distance to be traveled.

Distance (miles) .5 1 1.5 2 3 4 5 6 8 10
Travel time (minutes) 15.0 15.1 16.5 19.9 27.7 29.7 26.7 35.9 42 49.4

Assuming a linear relationship of the form

Y = α + βx + e

between Y , the travel time, and x, the distance, how should we estimate α and β? To uti-
lize the weighted least squares approach we need to know, up to a multiplicative constant,
the variance of Y as a function of x. We will now present an argument that Var(Y ) should
be proportional to x.

SOLUTION Let d denote the length of a city block. Thus a trip of distance x will consist of
x/d blocks. If we let Yi , i = 1, . . . , x/d , denote the time it takes to traverse block i, then
the total travel time can be expressed as

Y = Y1 + Y2 + · · · + Yx/d
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Now in many applications it is probably reasonable to suppose that the Yi are independent
random variables with a common variance, and thus,

Var(Y ) = Var(Y1) + · · · + Var(Yx/d)

= (x/d)Var(Y1) since Var(Yi) = Var(Y1)

= xσ 2, where σ 2 = Var(Y1)/d

Thus, it would seem that the estimators A and B should be chosen so as to minimize

∑

i

(Yi − A − Bxi)
2

xi

Using the preceding data with the weights wi = 1/xi, the least squares Equations 9.8.1 are

104.22 = 5.34A + 10B

277.9 = 10A + 41B

which yield the solution

A = 12.561, B = 3.714

A graph of the estimated regression line 12.561 + 3.714x along with the data points is
presented in Figure 9.12. As a qualitative check of our solution, note that the regression
line fits the data pairs best when the input levels are small, which is as it should be since
the weights are inversely proportional to the inputs. !

EXAMPLE 9.8c Consider the relationship between Y , the number of accidents on a heavily
traveled highway, and x, the number of cars traveling on the highway. After a little thought
it would probably seem to most that the linear model

Y = α + βx + e

would be appropriate. However, as there does not appear to be any a priori reason why
Var(Y ) should not depend on the input level x, it is not clear that we would be justified in
using the ordinary least squares approach to estimate α and β. Indeed, we will now argue
that a weighted least squares approach with weights 1/x should be employed — that is,
we should choose A and B to minimize

∑

i

(Yi − A − Bxi)
2

xi
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FIGURE 9.12 Example 9.8b.

The rationale behind this claim is that it seems reasonable to suppose that Y has
approximately a Poisson distribution. This is so since we can imagine that each of the
x cars will have a small probability of causing an accident and so, for large x, the number
of accidents should be approximately a Poisson random variable. Since the variance of a
Poisson random variable is equal to its mean, we see that

Var(Y ) * E[Y ] since Y is approximately Poisson

= α + βx

* βx for large x !

REMARKS

(a) Another technique that is often employed when the variance of the response depends
on the input level is to attempt to stabilize the variance by an appropriate transformation.
For example, if Y is a Poisson random variable with mean λ, then it can be shown [see
Remark (b)] that

√
Y has approximate variance .25 no matter what the value of λ. Based

on this fact, one might try to model E[
√

Y ] as a linear function of the input. That is, one
might consider the model √

Y = α + βx + e
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(b) Proof that Var(
√

Y ) ≈ .25 when Y is Poisson with mean λ. Consider the Taylor
series expansion of g(y) =√y about the value λ. By ignoring all terms beyond the second
derivative term, we obtain that

g( y) ≈ g(λ) + g ′(λ)( y − λ) + g ′′(λ)( y − λ)2

2
(9.8.2)

Since

g ′(λ) = 1
2λ−1/2, g ′′(λ) = − 1

4λ−3/2

we obtain, on evaluating Equation 9.8.2 at y = Y , that

√
Y ≈

√
λ + 1

2λ−1/2(Y − λ) − 1
8λ−3/2(Y − λ)2

Taking expectations, and using the results that

E[Y − λ] = 0, E[(Y − λ)2] = Var(Y ) = λ

yields that

E[
√

Y ] ≈
√

λ − 1

8
√

λ

Hence

(E[
√

Y ])2 ≈ λ + 1
64λ

− 1
4

≈ λ − 1
4

and so

Var(
√

Y ) = E[Y ] − (E[
√

Y ])2

≈ λ −
(
λ − 1

4

)

= 1
4
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9.9 POLYNOMIAL REGRESSION
In situations where the functional relationship between the response Y and the indepen-
dent variable x cannot be adequately approximated by a linear relationship, it is sometimes
possible to obtain a reasonable fit by considering a polynomial relationship. That is, we
might try to fit to the data set a functional relationship of the form

Y = β0 + β1x + β2x2 + · · · + βrxr + e

where β0, β1, . . . , βr are regression coefficients that would have to be estimated. If the
data set consists of the n pairs (xi, Yi), i = 1, . . . , n, then the least squares estimators of
β0, . . . , βr — call them B0, . . . , Br — are those values that minimize

n∑

i=1

(Yi − B0 − B1xi − B2x2
i − · · · − Brxr

i )
2

To determine these estimators, we take partial derivatives with respect to B0 . . . Br
of the foregoing sum of squares, and then set these equal to 0 so as to determine the
minimizing values. On doing so, and then rearranging the resulting equations, we obtain
that the least squares estimators B0, B1, . . . , Br satisfy the following set of r + 1 linear
equations called the normal equations.

n∑

i=1

Yi = B0n + B1

n∑

i=1

xi + B2

n∑

i=1

x2
i + · · · + Br

n∑

i=1

xr
i

n∑

i=1

xiYi = B0

n∑

i=1

xi + B1

n∑

i=1

x2
i + B2

n∑

i=1

x3
i + · · · + Br

n∑

i=1

xr+1
i

n∑

i=1

x2
i Yi = B0

n∑

i=1

x2
i + B1

n∑

i=1

x3
i + · · · + Br

n∑

i=1

xr+2
i

...
...

...
n∑

i=1

xr
i Yi = B0

n∑

i=1

xr
i + B1

n∑

i=1

xr+1
i + · · · + Br

n∑

i=1

x2r
i

In fitting a polynomial to a set of data pairs, it is often possible to determine the
necessary degree of the polynomial by a study of the scatter diagram. We emphasize that
one should always use the lowest possible degree that appears to adequately describe the
data. [Thus, for instance, whereas it is usually possible to find a polynomial of degree n
that passes through all the n pairs (xi, Yi), i = 1, . . . , n, it would be hard to ascribe much
confidence to such a fit.]
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Even more so than in linear regression, it is extremely risky to use a polynomial fit
to predict the value of a response at an input level x0 that is far away from the input
levels xi, i = 1, . . . , n used in finding the polynomial fit. (For one thing, the polynomial
fit may be valid only in a region around the xi, i = 1, . . . , n and not including x0.)

EXAMPLE 9.9a Fit a polynomial to the following data.

x Y
1 20.6
2 30.8
3 55
4 71.4
5 97.3
6 131.8
7 156.3
8 197.3
9 238.7

10 291.7

SOLUTION A plot of these data (see Figure 9.13) indicates that a quadratic relationship

Y = β0 + β1x + β2x2 + e
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FIGURE 9.13
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might hold. Since
∑

i

xi = 55,
∑

i

x2
i = 385,

∑

i

x3
i = 3,025,

∑

i

x4
i = 25,333

∑

i

Yi = 1,291.1,
∑

i

xiYi = 9,549.3,
∑

i

x2
i Yi = 77,758.9

the least squares estimates are the solution of the following set of equations.

1,291.1 = 10B0 + 55B1 + 385B2 (9.9.1)

9,549.3 = 55B0 + 385B1 + 3,025B2

77,758.9 = 385B0 + 3,025B1 + 25,333B2

Solving these equations (see the remark following this example) yields that the least
squares estimates are

B0 = 12.59326, B1 = 6.326172, B2 = 2.122818

Thus, the estimated quadratic regression equation is

Y = 12.59 + 6.33x + 2.12x2

This equation, along with the data, is plotted in Figure 9.14. !
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REMARK

In matrix notation Equation 9.9.1 can be written as



1,291.1
9,549.3

77,758.9



 =




10 55 385
55 385 3,025

385 3,025 25,333








B0
B1
B2





which has the solution



B0
B1
B2



 =




10 55 385
55 385 3,025

385 3,025 25,333




−1


1,291.1
9,549.3

77,758.9





*9.10 MULTIPLE LINEAR REGRESSION
In the majority of applications, the response of an experiment can be predicted more
adequately not on the basis of a single independent input variable but on a collection of
such variables. Indeed, a typical situation is one in which there are a set of, say, k input
variables and the response Y is related to them by the relation

Y = β0 + β1x1 + · · · + βkxk + e

where xj , j = 1, . . . , k is the level of the jth input variable and e is a random error that
we shall assume is normally distributed with mean 0 and (constant) variance σ 2. The
parameters β0, β1, . . . , βk and σ 2 are assumed to be unknown and must be estimated
from the data, which we shall suppose will consist of the values of Y1, . . . , Yn where Yi is
the response level corresponding to the k input levels xi1, xi2, . . . , xik. That is, the Yi are
related to these input levels through

E[Yi] = β0 + β1xi1 + β2xi2 + · · · + βkxik

If we let B0, B1, . . . , Bk denote estimators of β0, . . . , βk, then the sum of the squared
differences between the Yi and their estimated expected values is

n∑

i=1

(Yi − B0 − B1xi1 − B2xi2 − · · · − Bkxik)
2

The least squares estimators are those values of B0, B1, . . . , Bk that minimize the
foregoing.

* Optional section.
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To determine the least squares estimators, we repeatedly take partial derivatives of the
preceding sum of squares first with respect to B0, then to B1, . . . , then to Bk. On equating
these k + 1 equations to 0, we obtain the following set of equations:

n∑

i=1

(Yi − B0 − B1xi1 − B2xi2 − · · · − Bkxik) = 0

n∑

i=1

xi1(Yi − B0 − B1xi1 − · · · − Bkxik) = 0

n∑

i=1

xi2(Yi − B0 − B1xi1 − · · · − Bkxik) = 0

...
n∑

i=1

xik(Yi − B0 − B1xi1 − · · · − Bixik) = 0

Rewriting these equations yields that the least squares estimators B0, B1, . . . , Bk satisfy
the following set of linear equations, called the normal equations:

n∑

i=1

Yi = nB0 + B1

n∑

i=1

xi1 + B2

n∑

i=1

xi2 + · · · + Bk

n∑

i=1

xik (9.10.1)

n∑

i=1

xi1Yi = B0

n∑

i=1

xi1 + B1

n∑

i=1

x2
i1 + B2

n∑

i=1

xi1xi2 + · · · + Bk

n∑

i=1

xi1xik

...

k∑

i=1

xikYi = B0

n∑

i=1

xik + B1

n∑

i=1

xikxi1 + B2

n∑

i=1

xikxi2 + · · · + Bk

n∑

i=1

x2
ik

Before solving the normal equations, it is convenient to introduce matrix notation. If
we let

Y =





Y1
Y2
...

Yn




, X =





1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk
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β =





β0
β1
...

βk




, e =





e1
e2
...

en





then Y is an n × 1, X an n × p, β a p × 1, and e an n × 1 matrix where p ≡ k + 1.
The multiple regression model can now be written as

Y = Xβ + e

In addition, if we let

B =





B0
B1
...

Bk





be the matrix of least squares estimators, then the normal Equations 9.10.1 can be writ-
ten as

X′XB = X′Y (9.10.2)

where X′ is the transpose of X.
To see that Equation 9.10.2 is equivalent to the normal Equations 9.10.1, note that

X′X =





1 1 · · · 1
x11 x21 · · · xn1
x12 x22 · · · xn2
...

...
...

x1k x2k · · · xnk









1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk





=





n
∑

i
xi1

∑
i

xi2 · · · ∑
i

xik
∑

i
xi1

∑
i

x2
i1

∑
i

xi1xi2 · · · ∑
i

xi1xik

...
...

...
...∑

i
xik

∑
i

xikxi1
∑

i
xikxi2 · · · ∑

i
x2

ik





and

X′Y =





∑
i

Yi
∑

i
xi1Yi

...∑
i

xikYi
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It is now easy to see that the matrix equation

X′XB = X′Y

is equivalent to the set of normal Equations 9.10.1. Assuming that (X′X)−1 exists, which
is usually the case, we obtain, upon multiplying it by both sides of the foregoing, that
the least squares estimators are given by

B = (X′X)−1X′Y (9.10.3)

Program 9.10 computes the least squares estimates, the inverse matrix (X′X)−1,
and SSR .

EXAMPLE 9.10a The data in Table 9.4 relate the suicide rate to the population size and
the divorce rate at eight different locations.

TABLE 9.4

Population Divorce Rate Suicide Rate
Location in Thousands per 100,000 per 100,000

Akron, OH 679 30.4 11.6
Anaheim, CA 1,420 34.1 16.1
Buffalo, NY 1,349 17.2 9.3
Austin, TX 296 26.8 9.1
Chicago, IL 6,975 29.1 8.4
Columbia, SC 323 18.7 7.7
Detroit, MI 4,200 32.6 11.3
Gary, IN 633 32.5 8.4

Fit a multiple linear regression model to these data. That is, fit a model of the form

Y = β0 + β1x1 + β2x2 + e

where Y is the suicide rate, x1 is the population, and x2 is the divorce rate.

SOLUTION We run Program 9.10, and results are shown in Figures 9.15, 9.16, and 9.17.
Thus the estimated regression line is

Y = 3.5073 − .0002x1 + .2609x2

The value of β1 indicates that the population does not play a major role in predicting the
suicide rate (at least when the divorce rate is also given). Perhaps the population density,
rather than the actual population, would have been more useful. !
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Multiple Linear Regression

Enter the number of rows
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Quit

FIGURE 9.15

It follows from Equation 9.10.3 that the least squares estimators B0, B1, . . . , Bk —
the elements of the matrix B — are all linear combinations of the independent normal
random variables Y1, . . . , Yn and so will also be normally distributed. Indeed in such
a situation — namely, when each member of a set of random variables can be expressed
as a linear combination of independent normal random variables — we say that the set of
random variables has a joint multivariate normal distribution.

The least squares estimators turn out to be unbiased. This can be shown as follows:

E[B] = E[(X′X)−1X′Y]
= E[(X′X)−1X′(Xβ + e)] since Y = Xβ + e

= E[(X′X)−1X′Xβ + (X′X)−1X′e]
= E[β + (X′X)−1X′e]
= β + (X′X)−1X′E[e]
= β
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The variances of the least squares estimators can be obtained from the matrix (X′X)−1.
Indeed, the values of this matrix are related to the covariances of the Bi’s. Specifically, the
element in the (i + 1)st row, ( j + 1)st column of (X′X)−1 is equal to Cov(Bi, Bj)/σ 2.

To verify the preceding statement concerning Cov(Bi, Bj), let

C = (X′X)−1X′

Since X is an n×p matrix and X′ a p×n matrix, it follows that X′X is p×p, as is (X′X)−1,
and so C will be a p × n matrix. Let Cij denote the element in row i, column j of this
matrix. Now





B0
...

Bi−1
...

Bk




= B = CY =





C11 · · · C1n
...

...
Ci1 · · · Cin

...
...

Cp1 · · · Cpn









Y1

...

Yn
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Multiple Linear Regression

Compute coeffs.

Back 1 Step

Enter 8 response values:

8.4

Add This Value To List

Remove Selected Value From List

Response Values
11.6
16.1
9.3
9.1
8.4
7.7

Interval Estimates

Estimates of the
regression coefficients:

B(0) 5 3.5073534
B(1) 5 20.0002477
B(2) 5 0.2609466

The sum of the squares of the residuals is SSR 5 34.1212

Display Inverse

Inverse Matrix (X'X)-1 

29.73E20
22.55E20
0.0037

2.78312
0.00002
29.73E202

0.00002
2.70E208
22.55E206

FIGURE 9.17

and so

Bi−1 =
n∑

l=1

Cil Yl

Bj−1 =
n∑

r=1

CjrYr

Hence

Cov(Bi−1, Bj−1) = Cov

( n∑

l=1

Cil Yl ,
n∑

r=1

CjrYr

)

=
n∑

r=1

n∑

l=1

Cil Cjr Cov(Yl , Yr)

Now Yl and Yr are independent when l $= r, and so

Cov(Yl , Yr) =
{

0 if l $= r
Var(Yr) if l = r
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Since Var(Yr) = σ 2, we see that

Cov(Bi−1, Bj−1) = σ 2
n∑

r=1

CirCjr (9.10.4)

= σ 2(CC′)ij

where (CC′)ij is the element in row i, column j of CC′.
If we now let Cov(B) denote the matrix of covariances — that is,

Cov(B) =





Cov(B0, B0) · · · Cov(B0, Bk)
...

...
Cov(Bk, B0) · · · Cov(Bk, Bk)





then it follows from Equation 9.10.4 that

Cov(B) = σ 2CC′ (9.10.5)

Now

C′ =
(
(X′X)

−1X′
)′

= X
(
(X′X)

−1
)′

= X(X′X)
−1

where the last equality follows since (X′X)−1 is symmetric (since X′X is) and so is equal
to its transpose. Hence

CC′ = (X′X)−1X′X(X′X)−1

= (X′X)−1

and so we can conclude from Equation 9.10.5 that

Cov(B) = σ 2(X′X)−1 (9.10.6)

Since Cov(Bi, Bi) = Var(Bi), it follows that the variances of the least squares estimators
are given by σ 2 multiplied by the diagonal elements of (X′X)−1.
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The quantity σ 2 can be estimated by using the sum of squares of the residuals. That is,
if we let

SSR =
n∑

i=1

(Yi − B0 − B1xi1 − B2xi2 − · · · − Bkxik)
2

then it can be shown that
SSr

σ 2 ∼ χ2
n−(k+1)

and so

E
[

SSR

σ 2

]
= n − k − 1

or
E[SSR/(n − k − 1)] = σ 2

That is, SSR/(n − k − 1) is an unbiased estimator of σ 2. In addition, as in the case
of simple linear regression, SSR will be independent of the least squares estimators
B0, B1, . . . , Bk.

REMARK

If we let ri denote the ith residual

ri = Yi − B0 − B1xi1 − · · · − Bkxik, i = 1, . . . , n

then
r = Y − XB

where

r =





r1
r2
...

rn





Hence, we may write

SSR =
n∑

i=1

r2
i (9.10.7)

= r′r

= (Y − XB)′(Y − XB)

= [Y′ − (XB)′](Y − XB)
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= (Y′ − B′X′)(Y − XB)

= Y′Y − Y′XB − B′X′Y + B′X′XB

= Y′Y − Y′XB

where the last equality follows from the normal equations

X′XB = X′Y

Because Y′ is 1 ×n, X is n × p, and B is p ×1, it follows that Y′XB is a 1 ×1 matrix. That
is, Y′XB is a scalar and thus is equal to its transpose, which shows that

Y′XB = (Y′XB)′

= B′X′Y

Hence, using Equation 9.10.7 we have proven the following identity:

SSR = Y′Y − B′X′Y

The foregoing is a useful computational formula for SSR (though one must be careful
of possible roundoff error when using it).

EXAMPLE 9.10b For the data of Example 9.10a, we computed that SSR = 34.12. Since
n = 8, k = 2, the estimate of σ 2 is 34.12/5 = 6.824. !

EXAMPLE 9.10c The diameter of a tree at its breast height is influenced by many factors.
The data in Table 9.5 relate the diameter of a particular type of eucalyptus tree to its age,
average rainfall at its site, site’s elevation, and the wood’s mean specific gravity. (The data
come from R. G. Skolmen, 1975, “Shrinkage and Specific Gravity Variation in Robusta
Eucalyptus Wood Grown in Hawaii.” USDA Forest Service PSW-298.)

Assuming a linear regression model of the form

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + e

where x1 is the age, x2 is the elevation, x3 is the rainfall, x4 is the specific gravity, and Y is
the tree’s diameter, test the hypothesis that β2 = 0. That is, test the hypothesis that, given
the other three factors, the elevation of the tree does not affect its diameter.

SOLUTION To test this hypothesis, we begin by running Program 9.10, which yields,
among other things, the following:

(X′X)
−1
3,3 = .379, SSR = 19.262, B2 = .075
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TABLE 9.5

Diameter
Age Elevation Rainfall Specific at Breast Height

(years) (1,000 ft) (inches) Gravity (inches)

1 44 1.3 250 .63 18.1
2 33 2.2 115 .59 19.6
3 33 2.2 75 .56 16.6
4 32 2.6 85 .55 16.4
5 34 2.0 100 .54 16.9
6 31 1.8 75 .59 17.0
7 33 2.2 85 .56 20.0
8 30 3.6 75 .46 16.6
9 34 1.6 225 .63 16.2

10 34 1.5 250 .60 18.5
11 33 2.2 255 .63 18.7
12 36 1.7 175 .58 19.4
13 33 2.2 75 .55 17.6
14 34 1.3 85 .57 18.3
15 37 2.6 90 .62 18.8

It now follows from Equation 9.10.6 that

Var(B2) = .379σ 2

Since B2 is normal and

E[B2] = β2

we see that

B2 − β2

.616σ
∼ N (0, 1)

Replacing σ by its estimator SSR/10 transforms the foregoing standard normal distri-
bution into a t-distribution with 10(= n − k − 1) degrees of freedom. That is,

B2 − β2

.616
√

SSR/10
∼ t10

Hence, if β2 = 0 then
√

10/SSR B2

.616
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Since the value of the preceding statistic is (
√

10/19.262)(.075)/.616 = .088, the p-value
of the test of the hypothesis that β2 = 0 is

p-value = P{|T10| > .088}
= 2P{T10 > .088}
= .9316 by Program 5.8.2.A

Hence, the hypothesis is accepted (and, in fact, would be accepted at any significance level
less than .9316). !

REMARK

The quantity

R2 = 1 − SSR∑
i
(Yi − Y )2

which measures the amount of reduction in the sum of squares of the residuals when using
the model

Y = β0 + β1x1 + · · · + βnxn + e

as opposed to the model
Y = β0 + e

is called the coefficient of multiple determination.

9.10.1 Predicting Future Responses
Let us now suppose that a series of experiments is to be performed using the input levels
x1, . . . , xk. Based on our data, consisting of the prior responses Y1, . . . , Yn, suppose we
would like to estimate the mean response. Since the mean response is

E[Y |x] = β0 + β1x1 + · · · + βkxk

a point estimate of it is simply
∑k

i=0 Bixi where x0 ≡ 1.
To determine a confidence interval estimator, we need the distribution of

∑k
i=0 Bixi.

Because it can be expressed as a linear combination of the independent normal random
variables Yi , i = 1, . . . , n, it follows that it is also normally distributed. Its mean and vari-
ance are obtained as follows:

E

[ k∑

i=0

xiBi

]

=
k∑

i=0

xiE[Bi] (9.10.8)

=
k∑

i=0

xiβi since E[Bi] = βi
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That is, it is an unbiased estimator. Also, using the fact that the variance of a random
variable is equal to the covariance between that random variable and itself, we see that

Var

( k∑

i=0

xiBi

)
= Cov




k∑

i=0

xiBi,
k∑

j=0

xjBj



 (9.10.9)

=
k∑

i=0

k∑

j=0

xixjCov(Bi, Bj)

If we let x denote the matrix

x =





x0
x1
...

xk





then, recalling that Cov(Bi, Bj)/σ 2 is the element in the (i+1)st row and ( j+1)st column
of (X′X)−1, we can express Equation 9.10.9 as

Var

( k∑

i=0

xiBi

)

= x′(X′X)−1xσ 2 (9.10.10)

Using Equations 9.10.8 and 9.10.10, we see that

k∑
i=0

xiBi −
k∑

i=0
xiβi

σ
√

x′(X′X)−1x
∼ N (0, 1)

If we now replace σ by its estimator
√

SSR/(n − k − 1) we obtain, by the usual argument,
that

k∑
i=0

xiBi −
k∑

i=0
xiβi

√
SSR

(n − k − 1)

√
x′(X′X)−1x

∼ tn−k−1

which gives rise to the following confidence interval estimator of
∑k

i=0 xiβi .

Confidence Interval Estimate of E [Y |x] =
∑k

i =0xiβ i, (x0 ≡ 1)

A 100(1 − a) percent confidence interval estimate of
∑k

i=0 xiβi is given by

k∑

i=0

xibi ±
√

ssr
(n − k − 1)

√
x′(X′X)−1x ta/2,n−k−1
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TABLE 9.6

Annealing Temperature
Hardness Copper Content (units of 1,000◦F)

79.2 .02 1.05
64.0 .03 1.20
55.7 .03 1.25
56.3 .04 1.30
58.6 .10 1.30
84.3 .15 1.00
70.4 .15 1.10
61.3 .09 1.20
51.3 .13 1.40
49.8 .09 1.40

where b0, . . . , bk are the values of the least squares estimators B0, B1, . . . , Bk, and ssr is the
value of SSR .

EXAMPLE 9.10d A steel company is planning to produce cold reduced sheet steel con-
sisting of .15 percent copper at an annealing temperature of 1,150 (degrees F), and is
interested in estimating the average (Rockwell 30-T) hardness of a sheet. To determine
this, they have collected the data shown in Table 9.6 on 10 different specimens of sheet
steel having different copper contents and annealing temperatures. Estimate the average
hardness and determine an interval in which it will lie with 95 percent confidence.

SOLUTION To solve this, we first run Program 9.10, which gives the results shown in
Figures 9.18, 9.19, and 9.20.

Hence, a point estimate of the expected hardness of sheets containing .15 percent
copper at an annealing temperature of 1,150 is 69.862. In addition, since t.025,7 = 2.365,
a 95 percent confidence interval for this value is

69.862 ± 4.083 !

When it is only a single experiment that is going to be performed at the input levels
x1, . . . , xk, we are usually more concerned with predicting the actual response than its
mean value. That is, we are interested in utilizing our data set Y1, . . . , Yn to predict

Y (x) =
k∑

i=0

βixi + e, where x0 = 1

A point prediction is given by
∑k

i=0 Bixi where Bi is the least squares estimator of βi
based on the set of prior responses Y1, . . . , Yn, i = 1, . . . , k.
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FIGURE 9.18

To determine a prediction interval for Y (x), note first that since B0, . . . , Bk are based
on prior responses, it follows that they are independent of Y (x). Hence, it follows that
Y (x) −∑k

i=0 Bixi is normal with mean 0 and variance given by

Var

[
Y (x) −

k∑

i=0

Bixi

]
= Var[Y (x)] + Var

( k∑

i=0

Bixi

)
by independence

= σ 2 + σ 2x′(X′X)−1x from Equation 9.10.10

and so

Y (x) −
k∑

i=0
Bixi

σ
√

1 + x′(X′X)−1x
∼ N (0, 1)
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which yields, upon replacing σ by its estimator, that

Y (x) −
k∑

i=0
Bixi

√
SSR

(n − k − 1)

√
1 + x′(X′X)−1x

∼ tn−k−1

We thus have:

Prediction Interval for Y(x)

With 100(1 − a) percent confidence Y (x) will lie between

k∑

i=0

xibi ±
√

ssr
(n − k − 1)

√
1 + x′(X′X)−1x ta/2,n−k−1

where b0, . . . , bk are the values of the least squares estimators B0, B1, . . . , Bk, and ssr is
the value of SSR.

EXAMPLE 9.10e If in Example 9.10d we were interested in determining an interval in
which a single steel sheet, produced with a carbon content of .15 percent and at an anneal-
ing temperature of 1,150◦F, would lie, then the midpoint of the prediction interval would
be as given before. However, the half-length of this prediction interval would differ from
the confidence interval for the mean value by the factor

√
1.313/

√
.313 ≈ 2.048. Conse-

quently, the 95 percent prediction interval is

69.862 ± (4.083)(2.048) = 69.862 ± 8.363 !

9.10.2 Dummy Variables for Categorical Data
Suppose that in determining an appropriate multiple regression model for predicting a
person’s blood cholesterol level a researcher has decided on the following five independent
variables:

1. number of pounds overweight

2. number of pounds underweight

3. average number of hours of exercise per week

4. average number of calories due to saturated fats eaten daily

5. whether a smoker or not

Whereas each of the first four variables takes on values in some interval, the final vari-
able is a categorical variable that indicates whether the person under consideration has or
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does not have a certain characteristic (which, in this case, is the characteristic of being a
smoker). To determine which category the person belongs to, let

x5 =
{

1, if person is a smoker
0, if person is not a smoker

The researcher can now try to fit the multiple regression model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + e

where x1 is the number of pounds the individual is overweight, x2 is the number of pounds
the individual is underweight, x3 is the average number of hours the individual exercises
per week, x4 is the average number of calories due to saturated fats that is eaten daily, x5
is as above, and Y is the individual’s cholesterol level. The variable x5 is called a dummy
variable, as its only purpose is to indicate whether or not the Y value is determined from
data having a particular characteristic.

One might wonder at this point why a dummy variable is used rather than just running
separate multiple regressions for smokers and for nonsmokers. The main reason for using
a dummy variable is that we can use all the data in a single regression, thus yielding more
precise estimates than if we broke the data into two parts (one for smokers and the other
for nonsmokers) and then used the divided data to run separate regressions. However, it
is important to understand what is being assumed when dummy variables are being used.
Namely, we are assuming that if Ys stands for the cholesterol level of a smoker, and Yn, the
cholesterol level of a nonsmoker, then for specified values of x1, x2, x3, and x4

E[Ys] = β0 + β5 + β1x1 + β2x2 + β3x3 + β4x4

and
E[Yn] = β0 + β1x1 + β2x2 + β3x3 + β4x4

In other words, in using the model with a dummy variable we are assuming that if a
smoker and nonsmoker had the same values for the four quantitative variables x1, x2, x3, x4
then the difference between their mean cholesterol levels would always be a constant, no
matter what are the values of x1, x2, x3, x4. Thus, for instance, the dummy variable model
assumes that the amount that one is overweight has the same effect on raising the expected
cholesterol level on a smoker as it does on a nonsmoker. Because this might seem like a
questionable assumption, it is typically preferable when the data set is large enough to
use two regression models rather than combining into one model by the use of a dummy
variable.

In situations where there are multiple qualitative characteristics that the researcher feels
are relevant it might be necessary to utilize dummy variables, for otherwise the data set
may become too fragmented to yield reliable estimates of the regression parameters. So, for
instance, if the researcher felt that the sex of the person was also a relevant factor, then the
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researcher could utilize a multiple regression model having two dummy variables: namely
x5 and

x6 =
{

1, if person is a male
0, if person is a female

9.11 LOGISTIC REGRESSION MODELS FOR BINARY
OUTPUT DATA

In this section we consider experiments that result in either a success or a failure. We will
suppose that these experiments can be performed at various levels, and that an experiment
performed at level x will result in a success with probability p(x), −∞ < x < ∞. If p(x)
is of the form

p(x) = ea+bx

1 + ea+bx

then the experiments are said to come from a logistic regression model and p(x) is called
the logistics regression function. If b > 0, then p(x) = 1/[e−(a+bx) + 1] is an increasing
function that converges to 1 as x → ∞; if b < 0, then p(x) is a decreasing function that
converges to 0 as x → ∞. (When b = 0, p(x) is constant.) Plots of logistics regression
functions are given in Figure 9.21. Notice the s-shape of these curves.

Writing p(x) = 1 − [1/(1 + e a+bx)] and differentiating give that

∂

∂x
p(x) = be a+bx

(1 + e a+bx)2 = b p(x)[1 − p(x)]

x

b > 01

x

p (
x)

p (
x)

b < 0
1

2   

2   

FIGURE 9.21 Logistic regression functions.
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Thus the rate of change of p(x) depends on x and is largest at those values of x for which
p(x) is near .5. For instance, at the value x such that p(x) = .5, the rate of change is
∂
∂x p(x) = .25b, whereas at that value x for which p(x) = .8 the rate of change is .16b.

If we let o(x) be the odds for success when the experiment is run at level x, then

o(x) = p(x)
1 − p(x)

= ea+bx

Thus, when b > 0, the odds increase exponentially in the input level x; when b < 0, the
odds decrease exponentially in the input level x. Taking logs of the preceding shows that
the log odds, called the logit, is a linear function:

log[o(x)] = a + bx

The parameters a and b of the logistic regression function are assumed to be unknown
and need to be estimated. This can be accomplished by using the maximum likelihood
approach. That is, suppose that the experiment is to be performed at levels x1, . . . , xk.
Let Yi be the result (either 1 if a success or 0 if a failure) of the experiment when performed
at level xi. Then, using the Bernoulli density function (that is, the binomial density for
a single trial), gives

P{Yi = yi} = [p(xi)] yi [1 − p(xi)]1−yi =
(

ea+bxi

1 + ea+bxi

)yi (
1

1 + ea+bxi

)1−yi

, yi = 0, 1

Thus, the probability that the experiment at level xi results in outcome yi , for all
i = 1, . . . , k, is

P{Yi = yi, i = 1, . . . , k} =
∏

i

(
ea+bxi

1 + ea+bxi

)yi (
1

1 + ea+bxi

)1−yi

=
∏

i

(
ea+bxi

)yi

1 + ea+bxi

Taking logarithms gives that

log
(
P{Yi = yi , i = 1, . . . , k}

)
=

k∑

i=1

yi(a + bxi)−
k∑

i=1

log
(

1 + ea+bxi
)

The maximum likelihood estimates can now be obtained by numerically finding the val-
ues of a and b that maximize the preceding likelihood. However, because the likelihood
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is nonlinear this requires an iterative approach; consequently, one typically resorts to spe-
cialized software to obtain the estimates.

Whereas the logistic regression model is the most frequently used model when the
response data are binary, other models are often employed. For instance in situations
where it is reasonable to suppose that p(x), the probability of a positive response when
the input level is x, is an increasing function of x, it is often supposed that p(x) has the
form of a specified probability distribution function. Indeed, when b > 0, the logistic
regression model is of this form because p(x) is equal to the distribution function of a
logistic random variable (Section 5.9) with parameters µ = −a/b, ν = 1/b. Another
model of this type is the probit model, which supposes that for some constants, α, β > 0

p(x) = *(α + βx) = 1√
2π

∫ α+βx

−∞
e−y2/2 dy

In other words p(x) is equal to the probability that a standard normal random variable
is less than α + βx.

EXAMPLE 9.11a A common assumption for whether an animal becomes sick when
exposed to a chemical at dosage level x is to assume a threshold model, which supposes
that each animal has a random threshold and will become ill if the dosage level exceeds
that threshold. The exponential distribution has sometimes been used as the threshold
distribution. For instance, a model considered in Freedman and Zeisel (“From Mouse to
Man: The Quantitative Assessment of Cancer Risks,” Statistical Science, 1988, 3, 1, 3–56)
supposes that a mouse exposed to x units of DDT (measured in ppm) will contract cancer
of the liver with probability

p(x) = 1 − e−ax , x > 0

Because of the lack of memory of the exponential distribution, this is equivalent to assum-
ing that if the mouse who is still healthy after receiving a (partial) dosage of level x is as
good as it was before receiving any dosage.

It was reported in Freedman and Zeisel that 84 of 111 mice exposed to DDT at a level
of 250 ppm developed cancer. Therefore, α can be estimated from

1 − e−250α̂ = 84
111

or

α̂ = − log(27/111)

250
= .005655 !
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Problems

1. The following data relate x, the moisture of a wet mix of a certain product, to Y ,
the density of the finished product.

xi Yi
5 7.4
6 9.3
7 10.6

10 15.4
12 18.1
15 22.2
18 24.1
20 24.8

(a) Draw a scatter diagram.
(b) Fit a linear curve to the data.

2. The following data relate the number of units of a good that were ordered as a
function of the price of the good at six different locations.

Number ordered 88 112 123 136 158 172
Price 50 40 35 30 20 15

How many units do you think would be ordered if the price were 25?

3. The corrosion of a certain metallic substance has been studied in dry oxygen at
500 degrees centigrade. In this experiment, the gain in weight after various periods
of exposure was used as a measure of the amount of oxygen that had reacted with
the sample. Here are the data:

Hours Percent Gain

1.0 .02
2.0 .03
2.5 .035
3.0 .042
3.5 .05
4.0 .054
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(a) Plot a scatter diagram.
(b) Fit a linear relation.
(c) Predict the percent weight gain when the metal is exposed for 3.2 hours.

4. The following data indicate the relationship between x, the specific gravity of
a wood sample, and Y , its maximum crushing strength in compression parallel to
the grain.

xi yi(psi) xi yi(psi)
.41 1,850 .39 1,760
.46 2,620 .41 2,500
.44 2,340 .44 2,750
.47 2,690 .43 2,730
.42 2,160 .44 3,120

(a) Plot a scatter diagram. Does a linear relationship seem reasonable?
(b) Estimate the regression coefficients.
(c) Predict the maximum crushing strength of a wood sample whose specific

gravity is .43.

5. The following data indicate the gain in reading speed versus the number of weeks
in the program of 10 students in a speed-reading program.

Speed Gain
Number of Weeks (wds/min)

2 21
3 42
8 102

11 130
4 52
5 57
9 105
7 85
5 62
7 90

(a) Plot a scatter diagram to see if a linear relationship is indicated.
(b) Find the least squares estimates of the regression coefficients.
(c) Estimate the expected gain of a student who plans to take the program for

7 weeks.
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6. Infrared spectroscopy is often used to determine the natural rubber content of
mixtures of natural and synthetic rubber. For mixtures of known percentages, the
infrared spectroscopy gave the following readings:

Percentage 0 20 40 60 80 100
Reading .734 .885 1.050 1.191 1.314 1.432

If a new mixture gives an infrared spectroscopy reading of 1.15, estimate its per-
centage of natural rubber.

7. The following table gives the 1996 SAT mean math and verbal scores in each
state and the District of Columbia, along with the percentage of the states’ gradu-
ating high school students that took the examination. Use data relating to the
first 20 locations listed (Alabama to Maine) to develop a prediction of the mean
student mathematics score in terms of the percentage of students that take the
examination. Then compare your predicted values for the next 5 states (based
on the percentage taking the exam in these states) with the actual mean math
scores.

SAT Mean Scores by State, 1996 (recentered scale)

1996 % Graduates
Taking

Verbal Math SAT

Alabama . . . . . . . . . . . . . . . . 565 558 8
Alaska . . . . . . . . . . . . . . . . . . 521 513 47
Arizona . . . . . . . . . . . . . . . . . 525 521 28
Arkansas . . . . . . . . . . . . . . . . 566 550 6
California . . . . . . . . . . . . . . . 495 511 45
Colorado . . . . . . . . . . . . . . . 536 538 30
Connecticut . . . . . . . . . . . . . 507 504 79
Delaware . . . . . . . . . . . . . . . . 508 495 66
Dist. of Columbia . . . . . . . . 489 473 50
Florida . . . . . . . . . . . . . . . . . 498 496 48
Georgia . . . . . . . . . . . . . . . . . 484 477 63
Hawaii . . . . . . . . . . . . . . . . . 485 510 54
Idaho . . . . . . . . . . . . . . . . . . . 543 536 15
Illinois . . . . . . . . . . . . . . . . . . 564 575 14
Indiana . . . . . . . . . . . . . . . . 494 494 57
Iowa. . . . . . . . . . . . . . . . . . . . 590 600 5

(continued )
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1996
% Graduates

Taking
Verbal Math SAT

Kansas . . . . . . . . . . . . . . . . . . 579 571 9
Kentucky . . . . . . . . . . . . . . . 549 544 12
Louisiana . . . . . . . . . . . . . . . 559 550 9
Maine . . . . . . . . . . . . . . . . . . 504 498 68
Maryland . . . . . . . . . . . . . . . 507 504 64
Massachusetts . . . . . . . . . . . 507 504 80
Michigan . . . . . . . . . . . . . . . 557 565 11
Minnesota . . . . . . . . . . . . . . 582 593 9
Mississippi . . . . . . . . . . . . . . 569 557 4
Missouri . . . . . . . . . . . . . . . . 570 569 9
Montana . . . . . . . . . . . . . . . . 546 547 21
Nebraska . . . . . . . . . . . . . . . . 567 568 9
Nevada . . . . . . . . . . . . . . . . . 508 507 31
New Hampshire . . . . . . . . . 520 514 70
New Jersey . . . . . . . . . . . . . 498 505 69
New Mexico. . . . . . . . . . . . . 554 548 12
New York . . . . . . . . . . . . . . 497 499 73
North Carolina . . . . . . . . . . 490 486 59
North Dakota . . . . . . . . . . . 596 599 5
Ohio . . . . . . . . . . . . . . . . . . . 536 535 24
Oklahoma . . . . . . . . . . . . . . 566 557 8
Oregon . . . . . . . . . . . . . . . . 523 521 50
Pennsylvania . . . . . . . . . . . . 498 492 71
Rhode Island . . . . . . . . . . . . 501 491 69
South Carolina . . . . . . . . . . 480 474 57
South Dakota . . . . . . . . . . . 574 566 5
Tennessee . . . . . . . . . . . . . . . 563 552 14
Texas . . . . . . . . . . . . . . . . . . . 495 500 48
Utah . . . . . . . . . . . . . . . . . . . 583 575 4
Vermont . . . . . . . . . . . . . . . . 506 500 70
Virginia . . . . . . . . . . . . . . . . . 507 496 68
Washington . . . . . . . . . . . . . 519 519 47
West Virginia . . . . . . . . . . . . 526 506 17
Wisconsin . . . . . . . . . . . . . . 577 586 8
Wyoming . . . . . . . . . . . . . . . 544 544 11
National Average . . . . . . . . . 505 508 41

Source: The College Board.
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8. Verify Equation 9.3.3, which states that

Var(A) =
σ 2

n∑
i=1

x2
i

n
n∑

i=1
(xi − x̄)2

9. In Problem 4,

(a) Estimate the variance of an individual response.
(b) Determine a 90 percent confidence interval for the variance.

10. Verify that

SSR = SxxSYY − S2
xY

Sxx

11. The following table relates the number of sunspots that appeared each year from
1970 to 1983 to the number of auto accident deaths during that year. Test the
hypothesis that the number of auto deaths is not affected by the number of
sunspots. (The sunspot data are from Jastrow and Thompson, Fundamentals and
Frontiers of Astronomy, and the auto death data are from General Statistics of the
U.S. 1985.)

Auto Accident Deaths
Year Sunspots (1,000s)

70 165 54.6
71 89 53.3
72 55 56.3
73 34 49.6
74 9 47.1
75 30 45.9
76 59 48.5
77 83 50.1
78 109 52.4
79 127 52.5
80 153 53.2
81 112 51.4
82 80 46
83 45 44.6

12. The following data set presents the heights of 12 male law school classmates whose
law school examination scores were roughly equal. It also gives their first year
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salaries. Each of them went into corporate law. The height is in inches and the
salary in units of $1,000.

Height Salary

64 91
65 94
66 88
67 103
69 77
70 96
72 105
72 88
74 122
74 102
75 90
76 114

(a) Do the above data establish the hypothesis that a lawyer’s salary is related to
his height? Use the 5 percent level of significance.

(b) What was the null hypothesis in part (a)?

13. Suppose in the simple linear regression model

Y = α + βx + e

that 0 < β < 1.

(a) Show that if x < α/(1 − β), then

x < E[Y ] <
α

1 − β

(b) Show that if x > α/(1 − β), then

x > E[Y ] >
α

1 − β

and conclude that E[Y ] is always between x and α/(1 − β).

14. A study has shown that a good model for the relationship between X and Y , the
first and second year batting averages of a randomly chosen major league baseball
player, is given by the equation

Y = .159 + .4X + e



Problems 427

where e is a normal random variable with mean 0. That is, the model is a simple
linear regression with a regression toward the mean.

(a) If a player’s batting average is .200 in his first year, what would you predict
for the second year?

(b) If a player’s batting average is .265 in his first year, what would you predict
for the second year?

(c) If a player’s batting average is .310 in his first year, what would you predict
for the second year?

15. Experienced flight instructors have claimed that praise for an exceptionally fine
landing is typically followed by a poorer landing on the next attempt, whereas
criticism of a faulty landing is typically followed by an improved landing. Should
we thus conclude that verbal praise tends to lower performance levels, whereas
verbal criticism tends to raise them? Or is some other explanation possible?

16. Verify Equation 9.4.3.

17. The following data represent the relationship between the number of alignment
errors and the number of missing rivets for 10 different aircraft.

Number of Number of
Missing Rivets = x Alignment Errors = y

13 7
15 7
10 5
22 12
30 15
7 2

25 13
16 9
20 11
15 8

(a) Plot a scatter diagram.
(b) Estimate the regression coefficients.
(c) Test the hypothesis that α = 1.
(d) Estimate the expected number of alignment errors of a plane having 24 miss-

ing rivets.
(e) Compute a 90 percent confidence interval estimate for the quantity in (d).

18. The following are the average scores on the mathematics part of the Scholastic
Aptitude Test (SAT) for some of the years from 1994 to 2009.
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Year SAT Score

1994 504
1996 508
1998 512
2000 514
2002 516
2004 518
2005 520
2007 515
2009 515

Assuming a simple linear regression model, predict the average scores in the years
1997, 2006, 2008, and 2010.

19. (a) Draw a scatter diagram of cigarette consumption versus death rate from
bladder cancer.

(b) Does the diagram indicate the possibility of a linear relationship?
(c) Find the best linear fit.
(d) If next year’s average cigarette consumption is 2,500, what is your prediction

of the death rate from bladder cancer?

20. (a) Draw a scatter diagram relating cigarette use and death rates from lung
cancer.

(b) Estimate the regression parameters α and β.
(c) Test at the .05 level of significance the hypothesis that cigarette consumption

does not affect the death rate from lung cancer.
(d) What is the p-value of the test in part (c)?

21. (a) Draw a scatter diagram of cigarette use versus death rate from kidney cancer.
(b) Estimate the regression line.
(c) What is the p-value in the test that the slope of the regression line is 0?
(d) Determine a 90 percent confidence interval for the mean death rate from

kidney cancer in a state whose citizens smoke an average of 3,400 cigarettes
per year.

22. (a) Draw a scatter diagram of cigarettes smoked versus death rate from leukemia.
(b) Estimate the regression coefficients.
(c) Test the hypothesis that there is no regression of the death rate from leukemia

on the number of cigarettes used. That is, test that β = 0.
(d) Determine a 90 percent prediction interval for the leukemia death rate in

a state whose citizens smoke an average of 2,500 cigarettes.

23. (a) Estimate the variances in Problems 19 through 22.
(b) Determine a 95 percent confidence interval for the variance in the data relat-

ing to lung cancer.
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(c) Break up the lung cancer data into two parts — the first corresponding to
states whose average cigarette consumption is less than 2,300, and the second
greater. Assume a linear regression model for both sets of data. How would
you test the hypothesis that the variance of a response is the same for both
sets?

(d) Do the test in part (c) at the .05 level of significance.

24. Plot the standardized residuals from the data of Problem 1. What does the plot
indicate about the assumptions of the linear regression model?

25. It is difficult and time consuming to measure directly the amount of protein in
a liver sample. As a result, medical laboratories often make use of the fact that
the amount of protein is related to the amount of light that would be absorbed
by the sample. As a result, a spectrometer that emits light is shined on a solution
that contains the liver sample and the amount of light absorbed is then used to
estimate the amount of protein.

The above procedure was tried on five samples having known amounts of pro-
tein, with the following data resulting.

Light Absorbed Amount of Protein (mg)

.44 2

.82 16
1.20 30
1.61 46
1.83 55

(a) Determine the coefficient of determination.
(b) Does this appear to be a reasonable way of estimating the amount of protein

in a liver sample?
(c) What is the estimate of the amount of protein when the light absorbed is

1.5?
(d) Determine a prediction interval, in which we can have 90 percent confi-

dence, for the quantity in part (c).

26. The determination of the shear strength of spot welds is relatively difficult,
whereas measuring the weld diameter of spot welds is relatively simple. As a result,
it would be advantageous if shear strength could be predicted from a measurement
of weld diameter. The data are as follows:

(a) Draw a scatter diagram.
(b) Find the least squares estimates of the regression coefficients.
(c) Test the hypothesis that the slope of the regression line is equal to 1 at the

.05 level of significance.
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Shear Strength (psi) Weld Diameter (.0001 in.)

370 400
780 800

1,210 1,250
1,560 1,600
1,980 2,000
2,450 2,500
3,070 3,100
3,550 3,600
3,940 4,000
3,950 4,000

(d) Estimate the expected value of shear strength when the weld diameter is
.2500.

(e) Find a prediction interval such that, with 95 percent confidence, the value
of shear strength corresponding to a weld diameter of .2250 inch will be
contained in it.

(f ) Plot the standardized residuals.
(g) Does the plot in part (f ) support the assumptions of the model?

27. The following are the ages and weights of a random sample of 10 high school
male students

Age Weight

14 129
16 173
18 188
15 121
17 190
16 166
14 133
16 155
15 152
14 115

Assuming a simple linear regression model, give an interval that, with 95 percent
confidence, will contain the average weight of all 17 year old male high school
students.

28. Glass plays a key role in criminal investigations, because criminal activity often
results in the breakage of windows and other glass objects. Since glass fragments
often lodge in the clothing of the criminal, it is of great importance to be able
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to identify such fragments as originating at the scene of the crime. Two physical
properties of glass that are useful for identification purposes are its refractive index,
which is relatively easy to measure, and its density, which is much more difficult
to measure. The exact measurement of density is, however, greatly facilitated if
one has a good estimate of this value before setting up the laboratory experiment
needed to determine it exactly. Thus, it would be quite useful if one could use the
refractive index of a glass fragment to estimate its density.

The following data relate the refractive index to the density for 18 pieces of
glass.

Refractive Index Density Refractive Index Density

1.5139 2.4801 1.5161 2.4843
1.5153 2.4819 1.5165 2.4858
1.5155 2.4791 1.5178 2.4950
1.5155 2.4796 1.5181 2.4922
1.5156 2.4773 1.5191 2.5035
1.5157 2.4811 1.5227 2.5086
1.5158 2.4765 1.5227 2.5117
1.5159 2.4781 1.5232 2.5146
1.5160 2.4909 1.5253 2.5187

(a) Predict the density of a piece of glass with a refractive index 1.52.
(b) Determine an interval that, with 95 percent confidence, will contain the

density of the glass in part (a).

29. The regression model

Y = βx + e, e ∼ N (0, σ 2)

is called regression through the origin since it presupposes that the expected
response corresponding to the input level x = 0 is equal to 0. Suppose that
(xi, Yi), i = 1, . . . , n is a data set from this model.

(a) Determine the least squares estimator B of β.
(b) What is the distribution of B?
(c) Define SSR and give its distribution.
(d) Derive a test of H0 : β = β0 versus H1 : β $= β0.
(e) Determine a 100(1 − α) percent prediction interval for Y (x0), the response

at input level x0.

30. The following are the body mass index (BMI) and the systolic blood pressure of
eight randomly chosen men who do not take any blood pressure medication.
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BMI Systolic Blood Pressure

20.3 116
22.0 110
26.4 131
28.2 136
31.0 144
32.6 138
17.6 122
19.4 115

Give an interval that, with 95 percent confidence, will include the systolic blood
pressure of a man whose BMI is 26.0.

31. The weight and systolic blood pressure of randomly selected males in age group
25 to 30 are shown in the following table.

Subject Weight Systolic BP Subject Weight Systolic BP

1 165 130 11 172 153
2 167 133 12 159 128
3 180 150 13 168 132
4 155 128 14 174 149
5 212 151 15 183 158
6 175 146 16 215 150
7 190 150 17 195 163
8 210 140 18 180 156
9 200 148 19 143 124

10 149 125 20 240 170

(a) Estimate the regression coefficients.
(b) Do the data support the claim that systolic blood pressure does not depend

on an individual’s weight?
(c) If a large number of males weighing 182 pounds have their blood pressures

taken, determine an interval that, with 95 percent confidence, will contain
their average blood pressure.

(d) Analyze the standardized residuals.
(e) Determine the sample correlation coefficient.

32. It has been determined that the relation between stress (S) and the number of
cycles to failure (N ) for a particular type of alloy is given by

S = A
N m

where A and m are unknown constants. An experiment is run yielding the follow-
ing data.
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Stress N
(thousand psi) (million cycles to failure)

55.0 .223
50.5 .925
43.5 6.75
42.5 18.1
42.0 29.1
41.0 50.5
35.7 126
34.5 215
33.0 445
32.0 420

Estimate A and m.

33. In 1957 the Dutch industrial engineer J. R. DeJong proposed the following model
for the time it takes to perform a simple manual task as a function of the number
of times the task has been practiced:

T ≈ ts−n

where T is the time, n is the number of times the task has been practiced, and t
and s are parameters depending on the task and individual. Estimate t and s for
the following data set.

T 22.4 21.3 19.7 15.6 15.2 13.9 13.7
n 0 1 2 3 4 5 6

34. The chlorine residual in a swimming pool at various times after being cleaned is
as given:

Chlorine Residual
Time (hr) (pt/million)

2 1.8
4 1.5
6 1.45
8 1.42

10 1.38
12 1.36

Fit a curve of the form
Y ≈ ae−bx

What would you predict for the chlorine residual 15 hours after a cleaning?
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35. The proportion of a given heat rise that has dissipated a time t after the source is
cut off is of the form

P = 1 − e−αt

for some unknown constant α. Given the data

P .07 .21 .32 .38 .40 .45 .51
t .1 .2 .3 .4 .5 .6 .7

estimate the value of α. Estimate the value of t at which half of the heat rise is
dissipated.

36. The following data represent the bacterial count of five individuals at different
times after being inoculated by a vaccine consisting of the bacteria.

Days Since Inoculation Bacterial Count

3 121,000
6 134,000
7 147,000
8 210,000
9 330,000

(a) Fit a curve.
(b) Estimate the bacteria count of a new patient after 8 days.

37. The following data yield the amount of hydrogen present (in parts per million)
in core drillings of fixed size at the following distances (in feet) from the base of
a vacuum-cast ingot.

Distance 1 2 3 4 5 6 7 8 9 10
Amount 1.28 1.50 1.12 .94 .82 .75 .60 .72 .95 1.20

(a) Draw a scatter diagram.
(b) Fit a curve of the form

Y = α + βx + γ x2 + e

to the data.

38. A new drug was tested on mice to determine its effectiveness in reducing cancer-
ous tumors. Tests were run on 10 mice, each having a tumor of size 4 grams, by
varying the amount of the drug used and then determining the resulting reduction
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in the weight of the tumor. The data were as follows:

Coded Amount of Drug Tumor Weight Reduction

1 .50
2 .90
3 1.20
4 1.35
5 1.50
6 1.60
7 1.53
8 1.38
9 1.21

10 .65

Estimate the maximum expected tumor reduction and the amount of the drug
that attains it by fitting a quadratic regression equation of the form

Y = β0 + β1x + β2x2 + e

39. The following data represent the relation between the number of cans damaged
in a boxcar shipment of cans and the speed of the boxcar at impact.

Speed Number of Cans Damaged

3 54
3 62
3 65
5 94
5 122
5 84
6 142
7 139
7 184
8 254

(a) Analyze as a simple linear regression model.
(b) Plot the standardized residuals.
(c) Do the results of part (b) indicate any flaw in the model?
(d) If the answer to part (c) is yes, suggest a better model and estimate all result-

ing parameters.
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40. Redo Problem 5 under the assumption that the variance of the gain in reading
speed is proportional to the number of weeks in the program.

41. The following data relate the proportions of coal miners who exhibit symptoms
of pneumoconiosis to the number of years of working in coal mines.

Years Working Proportion Having Penumoconiosis

5 0
10 .0090
15 .0185
20 .0672
25 .1542
30 .1720
35 .1840
40 .2105
45 .3570
50 .4545

Estimate the probability that a coal miner who has worked for 42 years will have
pneumoconiosis.

42. The following data set refers to Example 9.8c.

Number of Cars Number of Accidents
(Daily) (Monthly)

2,000 15
2,300 27
2,500 20
2,600 21
2,800 31
3,000 16
3,100 22
3,400 23
3,700 40
3,800 39
4,000 27
4,600 43
4,800 53

(a) Estimate the number of accidents in a month when the number of cars using
the highway is 3,500.



Problems 437

(b) Use the model √
Y = α + βx + e

and redo part (a).

43. The peak discharge of a river is an important parameter for many engineering
design problems. Estimates of this parameter can be obtained by relating it to the
watershed area (x1) and watershed slope (x2). Estimate the relationship based on
the following data.

Peak
x 1 x 2 Discharge

(m2) (ft/ft) (ft3/sec)

36 .005 50
37 .040 40
45 .004 45
87 .002 110

450 .004 490
550 .001 400

1,200 .002 650
4,000 .0005 1,550

44. The sediment load in a stream is related to the size of the contributing drainage
area (x1) and the average stream discharge (x2). Estimate this relationship using
the following data.

Area Discharge Sediment Yield
(×103 mi2) (ft3/sec) (Millions of tons/yr)

8 65 1.8
19 625 6.4
31 1,450 3.3
16 2,400 1.4
41 6,700 10.8
24 8,500 15.0

3 1,550 1.7
3 3,500 .8
3 4,300 .4
7 12,100 1.6

45. Fit a multiple linear regression equation to the following data set.
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x1 x2 x3 x4 y

1 11 16 4 275
2 10 9 3 183
3 9 4 2 140
4 8 1 1 82
5 7 2 1 97
6 6 1 −1 122
7 5 4 −2 146
8 4 9 −3 246
9 3 16 −4 359

10 2 25 −5 482

46. The following data refer to Stanford heart transplants. It relates the survival time
of patients that have received heart transplants to their age when the transplant
occurred and to a so-called mismatch score that is supposed to be an indicator of
how well the transplanted heart should fit the recipient.

Survival Time (in days) Mismatch Score Age

624 1.32 51.0
46 .61 42.5
64 1.89 54.6

1,350 .87 54.1
280 1.12 49.5

10 2.76 55.3
1,024 1.13 43.4

39 1.38 42.8
730 .96 58.4
136 1.62 52.0
836 1.58 45.0

60 .69 64.5

(a) Letting the dependent variable be the logarithm of the survival time, fit
a regression on the independent variable’s mismatch score and age.

(b) Estimate the variance of the error term.

47. (a) Fit a multiple linear regression equation to the following data set.
(b) Test the hypothesis that β0 = 0.
(c) Test the hypothesis that β3 = 0.
(d) Test the hypothesis that the mean response at the input levels x1 = x2 =

x3 = 1 is 8.5.
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x1 x2 x3 y

7.1 .68 4 41.53
9.9 .64 1 63.75
3.6 .58 1 16.38
9.3 .21 3 45.54
2.3 .89 5 15.52
4.6 .00 8 28.55
.2 .37 5 5.65

5.4 .11 3 25.02
8.2 .87 4 52.49
7.1 .00 6 38.05
4.7 .76 0 30.76
5.4 .87 8 39.69
1.7 .52 1 17.59
1.9 .31 3 13.22
9.2 .19 5 50.98

48. The tensile strength of a certain synthetic fiber is thought to be related to x1, the
percentage of cotton in the fiber, and x2, the drying time of the fiber. A test of 10
pieces of fiber produced under different conditions yielded the following results.

Y = Tensile x 1 = Percentage x 2 = Drying
Strength of Cotton Time

213 13 2.1
220 15 2.3
216 14 2.2
225 18 2.5
235 19 3.2
218 20 2.4
239 22 3.4
243 17 4.1
233 16 4.0
240 18 4.3

(a) Fit a multiple regression equation.
(b) Determine a 90 percent confidence interval for the mean tensile strength of

a synthetic fiber having 21 percent cotton whose drying time is 3.6.

49. The time to failure of a machine component is related to the operating volt-
age (x1), the motor speed in revolutions per minute (x2), and the operating
temperature (x3).
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A designed experiment is run in the research and development laboratory, and the
following data, where y is the time to failure in minutes, are obtained.

y x 1 x2 x3

2,145 110 750 140
2,155 110 850 180
2,220 110 1,000 140
2,225 110 1,100 180
2,260 120 750 140
2,266 120 850 180
2,334 120 1,000 140
2,340 130 1,000 180
2,212 115 840 150
2,180 115 880 150

(a) Fit a multiple regression model to these data.
(b) Estimate the error variance.
(c) Determine a 95 percent confidence interval for the mean time to failure

when the operating voltage is 125, the motor speed is 900, and the operating
temperature is 160.

50. Explain why, for the same data, a prediction interval for a future response always
contains the corresponding confidence interval for the mean response.

51. Consider the following data set:

x1 x2 y
5.1 2 55.42
5.4 8 100.21
5.9 −2 27.07
6.6 12 169.95
7.5 −6 −17.93
8.6 16 197.77
9.9 −10 −25.66

11.4 20 264.18
13.1 −14 −53.88
15 24 317.84
17.1 −18 −72.53
19.4 28 385.53

(a) Fit a linear relationship between y and x1, x2.
(b) Determine the variance of the error term.
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(c) Determine an interval that, with 95 percent confidence, will contain the
response when the inputs are x1 = 10.2 and x2 = 17.

52. The cost of producing power per kilowatt hour is a function of the load factor
and the cost of coal in cents per million Btu. The following data were obtained
from 12 mills.

Load Factor Cost of Power
(in percent) Coal Cost

84 14 4.1
81 16 4.4
73 22 5.6
74 24 5.1
67 20 5.0
87 29 5.3
77 26 5.4
76 15 4.8
69 29 6.1
82 24 5.5
90 25 4.7
88 13 3.9

(a) Estimate the relationship.
(b) Test the hypothesis that the coefficient of the load factor is equal to 0.
(c) Determine a 95 percent prediction interval for the power cost when the load

factor is 85 and the coal cost is 20.

53. The following data relate the systolic blood pressure to the age (x1) and weight
(x2) of a set of individuals of similar body type and lifestyle.

Age Weight Blood Pressure

25 162 112
25 184 144
42 166 138
55 150 145
30 192 152
40 155 110
66 184 118
60 202 160
38 174 108

(a) Test the hypothesis that, when an individual’s weight is known, age gives
no additional information in predicting blood pressure.
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(b) Determine an interval that, with 95 percent confidence, will contain the
average blood pressure of all individuals of the preceding type who are
45 years old and weigh 180 pounds.

(c) Determine an interval that, with 95 percent confidence, will contain the
blood pressure of a given individual of the preceding type who is 45 years
old and weighs 180 pounds.

54. A recently completed study attempted to relate job satisfaction to income (in
1,000s) and seniority for a random sample of 9 municipal workers. The job sat-
isfaction value given for each worker is his or her own assessment of such, with a
score of 1 being the lowest and 10 being the highest. The following data resulted.

Yearly Income Years on the Job Job Satisfaction

52 8 5.6
47 4 6.3
59 12 6.8
53 9 6.7
61 16 7.0
64 14 7.7
58 10 7.0
67 15 8.0
71 22 7.8

(a) Estimate the regression parameters.
(b) What qualitative conclusions can you draw about how job satisfaction

changes when income remains fixed and the number of years of service
increases?

(c) Predict the job satisfaction of an employee who has spent 5 years on the job
and earns a yearly salary of $56,000.

55. Suppose in Problem 54 that job satisfaction was related solely to years on the job,
with the following data resulting.

Years on the Job Job Satisfaction

8 5.6
4 6.3

12 6.8
9 6.7

16 7.0
14 7.7
10 7.0
15 8.0
22 7.8
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(a) Estimate the regression parameters α and β.
(b) What is the qualitative relationship between years of service and job satisfac-

tion? That is, what appears to happen to job satisfaction as service increases?
(c) Compare your answer to part (b) with the answer you obtained in part (b)

of Problem 54.
(d) What conclusion, if any, can you draw from your answer in part (c)?

56. For the logistics regression model, find the value x such that p(x) = .5.

57. A study of 64 prematurely born infants was interested in the relation between
the gestational age (in weeks) of the infant at birth and whether the infant was
breast-feeding at the time of release from the birthing hospital. The following data
resulted:

Gestational Age Frequency Number Breast-Feeding

28 6 2
29 5 2
30 9 7
31 9 7
32 20 16
33 15 14

In the preceding, the frequency column refers to the number of babies born after
the specified gestational number of weeks.

(a) Explain how the relationship between gestational age and whether the infant
was breast-feeding can be analyzed via a logistics regression model.

(b) Use appropriate software to estimate the parameters for this model.
(c) Estimate the probability that a newborn with a gestational age of 29 weeks

will be breast-feeding.

58. Twelve first-time heart attack victims were given a test that measures internal
anger. The following data relates their scores and whether they had a second heart
attack within 5 years.

Anger Score Second Heart Attack

80 yes
77 yes
70 no
68 yes
64 no

(continued )
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Anger Score Second Heart Attack

60 yes
50 yes
46 no
40 yes
35 no
30 no
25 yes

(a) Explain how the relationship between a second heart attack and one’s anger
score can be analyzed via a logistics regression model.

(b) Use appropriate software to estimate the parameters for this model.
(c) Estimate the probability that a heart attack victim with an anger score of 55

will have a second attack within 5 years.
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ANALYSIS OF VARIANCE

10.1 INTRODUCTION
A large company is considering purchasing, in quantity, one of four different computer
packages designed to teach a new programming language. Some influential people within
this company have claimed that these packages are basically interchangeable in that the
one chosen will have little effect on the final competence of its user. To test this hypothesis
the company has decided to choose 160 of its engineers, and divide them into 4 groups
of size 40. Each member in group i will then be given teaching package i, i = 1, 2, 3, 4,
to learn the new language. When all the engineers complete their study, a comprehensive
exam will be given. The company then wants to use the results of this examination to
determine whether the computer teaching packages are really interchangeable or not. How
can they do this?

Before answering this question, let us note that we clearly desire to be able to conclude
that the teaching packages are indeed interchangeable when the average test scores in all
the groups are similar and to conclude that the packages are essentially different when
there is a large variation among these average test scores. However, to be able to reach
such a conclusion, we should note that the method of division of the 160 engineers into
4 groups is of vital importance. For example, suppose that the members of the first group
score significantly higher than those of the other groups. What can we conclude from
this? Specifically, is this result due to teaching package 1 being a superior teaching package,
or is it due to the fact that the engineers in group 1 are just better learners? To be able to
conclude the former, it is essential that we divide the 160 engineers into the 4 groups in such
a way to make it extremely unlikely that one of these groups is inherently superior. The time-
tested method for doing this is to divide the engineers into 4 groups in a completely random
fashion. That is, we should do it in such a way so that all possible divisions are equally
likely; for in this case, it would be very unlikely that any one group would be significantly
superior to any other group. So let us suppose that the division of the engineers was indeed
done “at random.” (Whereas it is not at all obvious how this can be accomplished, one
efficient procedure is to start by arbitrarily numbering the 160 engineers. Then generate
a random permutation of the integers 1, 2, . . . , 160 and put the engineers whose numbers

445
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are among the first 40 of the permutation into group 1, those whose numbers are among
the 41st through the 80th of the permutation into group 2, and so on.)

It is now probably reasonable to suppose that the test score of a given individual should
be approximately a normal random variable having parameters that depend on the package
from which he was taught. Also, it is probably reasonable to suppose that whereas the
average test score of an engineer will depend on the teaching package she was exposed
to, the variability in the test score will result from the inherent variation of 160 different
people and not from the particular package used. Thus, if we let Xij , i = 1, . . . , 4, j =
1, . . . , 40, denote the test score of the jth engineer in group i, a reasonable model might
be to suppose that the Xij are independent random variables with Xij having a normal
distribution with unknown mean µi and unknown variance σ 2. The hypothesis that the
teaching packages are interchangeable is then equivalent to the hypothesis that µ1 =
µ2 = µ3 = µ4.

In this chapter, we present a technique that can be used to test such a hypothesis. This
technique, which is rather general and can be used to make inferences about a multitude
of parameters relating to population means, is known as the analysis of variance.

10.2 AN OVERVIEW
Whereas hypothesis tests concerning two population means were studied in Chapter 8,
tests concerning multiple population means will be considered in the present chapter. In
Section 10.3, we suppose that we have been provided samples of size n from m distinct
populations and that we want to use these data to test the hypothesis that the m popu-
lation means are equal. Since the mean of a random variable depends only on a single
factor, namely, the sample the variable is from, this scenario is said to constitute a one-
way analysis of variance. A procedure for testing the hypothesis is presented. In addition,
in Section 10.3.1 we show how to obtain multiple comparisons of the

(m
2

)
differences

between the pairs of population means, and in Section 10.3.2 we show how the equal
means hypothesis can be tested when the m sample sizes are not all equal.

In Sections 10.4 and 10.5, we consider models that assume that there are two factors
that determine the mean value of a variable. In these models, the variables can be thought
of as being arranged in a rectangular array, with the mean value of a specified variable
depending both on the row and on the column in which it is located. Such a model is
called a two-way analysis of variance. In these sections we suppose that the mean value
of a variable depends on its row and column in an additive fashion; specifically, that the
mean of the variable in row i, column j can be written as µ + αi + βj . In Section 10.4,
we show how to estimate these parameters, and in Section 10.5 how to test hypotheses
to the effect that a given factor — either the row or the column in which a variable is
located — does not affect the mean. In Section 10.6, we consider the situation where the
mean of a variable is allowed to depend on its row and column in a nonlinear fashion,
thus allowing for a possible interaction between the two factors. We show how to test the
hypothesis that there is no interaction, as well as ones concerning the lack of a row effect
and the lack of a column effect on the mean value of a variable.
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In all of the models considered in this chapter, we assume that the data are normally
distributed with the same (although unknown) variance σ 2. The analysis of variance
approach for testing a null hypothesis H0 concerning multiple parameters relating to the
population means is based on deriving two estimators of the common variance σ 2. The
first estimator is a valid estimator of σ 2 whether the null hypothesis is true or not, while
the second one is a valid estimator only when H0 is true. In addition, when H0 is not true
this latter estimator will tend to exceed σ 2. The test will be to compare the values of these
two estimators, and to reject H0 when the ratio of the second estimator to the first one is
sufficiently large. In other words, since the two estimators should be close to each other
when H0 is true (because they both estimate σ 2 in this case) whereas the second estimator
should tend to be larger than the first when H0 is not true, it is natural to reject H0 when
the second estimator is significantly larger than the first.

We will obtain estimators of the variance σ 2 by making use of certain facts concerning
chi-square random variables, which we now present. Suppose that X1, . . . , XN are inde-
pendent normal random variables having possibly different means but a common variance
σ 2, and let µi = E[Xi], i = 1, . . . , N . Since the variables

Zi = (Xi − µi)/σ , i = 1, . . . , N

have standard normal distributions, it follows from the definition of a chi-square random
variable that

N∑

i=1

Z2
i =

N∑

i=1

(Xi − µi)
2/σ 2 (10.2.1)

is a chi-square random variable with N degrees of freedom. Now, suppose that each of the
values µi, i = 1, . . . , N , can be expressed as a linear function of a fixed set of k unknown
parameters. Suppose, further, that we can determine estimators of these k parameters,
which thus gives us estimators of the mean values µi. If we let µ̂i denote the resulting
estimator of µi, i = 1, . . . , N , then it can be shown that the quantity

N∑

i=1

(Xi − µ̂i)
2/σ 2

will have a chi-square distribution with N − k degrees of freedom.
In other words, we start with

N∑

i=1

(Xi − E[Xi])2/σ 2

which is a chi-square random variable with N degrees of freedom. If we now write each
E[Xi] as a linear function of k parameters and then replace each of these parameters by its
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estimator, then the resulting expression remains chi-square but with a degree of freedom
that is reduced by 1 for each parameter that is replaced by its estimator.

For an illustration of the preceding, consider the case where all the means are known
to be equal; that is,

E[Xi] = µ, i = 1, . . . , N

Thus k = 1, because there is only one parameter that needs to be estimated. Substituting
X , the estimator of the common mean µ, for µi in Equation 10.2.1, results in the quantity

N∑

i=1

(Xi − X )2/σ 2 (10.2.2)

and the conclusion is that this quantity is a chi-square random variable with N − 1
degrees of freedom. But in this case where all the means are equal, it follows that the
data X1, . . . , XN constitute a sample from a normal population, and thus Equation 10.2
is equal to (N − 1)S2/σ 2, where S2 is the sample variance. In other words, the conclu-
sion in this case is just the well-known result (see Section 6.5.2) that (N − 1)S2/σ 2 is a
chi-square random variable with N − 1 degrees of freedom.

10.3 ONE-WAY ANALYSIS OF VARIANCE
Consider m independent samples, each of size n, where the members of the ith sample —
Xi1, Xi2, . . . , Xin — are normal random variables with unknown mean µi and unknown
variance σ 2. That is,

Xij ∼ N (µi , σ 2), i = 1, . . . , m, j = 1, . . . , n

We will be interested in testing

H0 : µ1 = µ2 = · · · = µm

versus

H1 : not all the means are equal

That is, we will be testing the null hypothesis that all the population means are equal
against the alternative that at least two of them differ. One way of thinking about this is
to imagine that we have m different treatments, where the result of applying treatment
i on an item is a normal random variable with mean µi and variance σ2. We are then
interested in testing the hypothesis that all treatments have the same effect, by applying
each treatment to a (different) sample of n items and then analyzing the result.
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Since there are a total of nm independent normal random variables Xij , it follows that
the sum of the squares of their standardized versions will be a chi-square random variable
with nm degrees of freedom. That is,

m∑

i=1

n∑

j=1

(Xij − E[Xij])2/σ 2 =
m∑

i=1

n∑

j=1

(Xij − µi)
2/σ 2 ∼ χ2

nm (10.3.1)

To obtain estimators for the m unknown parameters µ1, . . . , µm, let Xi . denote the
average of all the elements in sample i; that is,

Xi. =
n∑

j=1

Xij/n

The variable Xi. is the sample mean of the ith population, and as such is the estimator of
the population mean µi, for i = 1, . . . , m. Hence, if in Equation 10.3.1 we substitute
the estimators Xi. for the means µi , for i = 1, . . . , m, then the resulting variable

m∑

i=1

n∑

j=1

(Xij − Xi.)
2/σ 2 (10.3.2)

will have a chi-square distribution with nm−m degrees of freedom. (Recall that 1 degree
of freedom is lost for each parameter that is estimated.) Let

SSW =
m∑

i=1

n∑

j=1

(Xij − Xi .)2

and so the variable in Equation 10.3.2 is SSW /σ 2. Because the expected value of a chi-
square random variable is equal to its number of degrees of freedom, it follows upon
taking the expectation of the variable in 10.3.2 that

E[SSW ]/σ 2 = nm−m

or, equivalently,

E[SSW /(nm−m)] = σ 2

We thus have our first estimator of σ 2, namely, SSW /(nm − m). Also, note that this
estimator was obtained without assuming anything about the truth or falsity of the null
hypothesis.
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Definition
The statistic

SSW =
m∑

i=1

n∑

j=1

(Xij − Xi.)
2

is called the within samples sum of squares because it is obtained by substituting the sample
population means for the population means in expression 10.3.1. The statistic

SSW /(nm−m)

is an estimator of σ 2.
Our second estimator of σ 2 will only be a valid estimator when the null hypothesis is

true. So let us assume that H0 is true and so all the population means µi are equal, say,
µi = µ for all i. Under this condition it follows that the m sample means X1., X2., . . . , Xm.
will all be normally distributed with the same mean µ and the same variance σ 2/n. Hence,
the sum of squares of the m standardized variables

Xi. − µ√
σ 2/n

= √n(Xi. − µ)/σ

will be a chi-square random variable with m degrees of freedom. That is, when H0 is true,

n
m∑

i=1

(Xi. − µ)2/σ 2 ∼ χ2
m (10.3.3)

Now, when all the population means are equal to µ, then the estimator of µ is the average
of all the nm data values. That is, the estimator of µ is X.., given by

X.. =

m∑
i=1

n∑
j=1

Xij

nm
=

m∑
i=1

Xi.

m

If we now substitute X.. for the unknown parameter µ in expression 10.5, it follows,
when H0 is true, that the resulting quantity

n
m∑

i=1

(Xi. − X..)
2/σ 2
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will be a chi-square random variable with m − 1 degrees of freedom. That is, if we define
SSb by

SSb = n
m∑

i=1

(Xi. − X..)
2

then it follows that, when H0 is true, SSb/σ 2 is chi-square with m − 1 degrees of
freedom.

From the above we obtain that when H0 is true,

E[SSb]/σ 2 = m− 1

or, equivalently,

E[SSb/(m− 1)] = σ 2 (10.3.4)

So, when H0 is true, SSb/(m− 1) is also an estimator of σ 2.

Definition
The statistic

SSb = n
m∑

i=1

(Xi. − X..)
2

is called the between samples sum of squares. When H0 is true, SSb/(m− 1) is an estimator
of σ 2.

Thus we have shown that

SSW /(nm−m) always estimates σ 2

SSb/(m− 1) estimates σ 2 when H0 is true

Because it can be shown that SSb/(m− 1) will tend to exceed σ 2 when H0 is not true,* it
is reasonable to let the test statistic be given by

TS = SSb/(m− 1)

SSW /(nm− m)

and to reject H0 when TS is sufficiently large.

* A proof is given at the end of this subsection.
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TABLE 10.1 Values of Fr,s,.05

r = Degrees of Freedom
for the Numerator

s = Degrees of
Freedom for the
Denominator 1 2 3 4

4 7.71 6.94 6.59 6.39
5 6.61 5.79 5.41 5.19

10 4.96 4.10 3.71 3.48

To determine how large TS needs to be to justify rejecting H0, we use the fact that
it can be shown that if H0 is true then SSb and SSW are independent. It follows from
this that, when H0 is true, TS has an F -distribution with m − 1 numerator and nm − m
denominator degrees of freedom. Let Fm−1,nm−m,α denote the 100(1 − α) percentile of
this distribution — that is,

P{Fm−1,nm−m > Fm−1,nm−m,α} = α

where we are using the notation Fr,s to represent an F -random variable with r numerator
and s denominator degrees of freedom.

The significance level α test of H0 is as follows:

reject H0 if
SSb/(m− 1)

SSW /(nm−m)
> Fm−1,nm−m,α

do not reject H0 otherwise

A table of values of Fr,s,.05 for various values of r and s is presented in Table A4 of the
Appendix. Part of this table is presented in Table 10.1. For instance, from Table 10.1 we
see that there is a 5 percent chance that an F -random variable having 3 numerator and 10
denominator degrees of freedom will exceed 3.71.

Another way of doing the computations for the hypothesis test that all the population
means are equal is by computing the p-value. If the value of the test statistic is TS = v,
then the p-value will be given by

p-value = P{Fm−1,nm−m ≥ v}

Program 10.3 will compute the value of the test statistic TS and the resulting p-value.

EXAMPLE 10.3a An auto rental firm is using 15 identical motors that are adjusted to run
at a fixed speed to test 3 different brands of gasoline. Each brand of gasoline is assigned to
exactly 5 of the motors. Each motor runs on 10 gallons of gasoline until it is out of fuel.
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p -values in a One-way ANOVA

Start

Quit

1
2
3
4
5

Sample  1
220
251
226
246
260

244
235
232
242
225

The value of the F-statistic is 2.6009
The p-value is 0.1124

SSW
M*(N21)

5 165.9667
SSB
M21

5 431.6667

Sample 2 Sample 3 
252
272
250
238
256

FIGURE 10.1

The following represents the total mileages obtained by the different motors:

Gas 1: 220 251 226 246 260
Gas 2: 244 235 232 242 225
Gas 3: 252 272 250 238 256

Test the hypothesis that the average mileage obtained is not affected by the type of gas
used. Use the 5 percent level of significance.

SOLUTION We run Program 10.3 to obtain the results shown in Figure 10.1. Since the
p-value is greater than .05, the null hypothesis that the mean mileage is the same for all 3
brands of gasoline cannot be rejected. !

The following algebraic identity, called the sum of squares identity, is useful when doing
the computations by hand.

The Sum of Squares Identity

m∑

i=1

n∑

j=1

X 2
ij = nmX 2

.. + SSb + SSW
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When computing by hand, the quantity SSb defined by

SSb = n
m∑

i=1

(Xi. − X..)
2

should be computed first. Once SSb has been computed, SSW can be determined from
the sum of squares identity. That is,

∑m
i=1

∑n
j=1 X 2

ij and X 2
.. should also be computed and

then SSW determined from

SSW =
m∑

i=1

n∑

j=1

X 2
ij − nmX 2

.. − SSb

EXAMPLE 10.3b Let us do the computations of Example 10.3a by hand. The first thing
to note is that subtracting a constant from each data value will not affect the value of the
test statistic. So we subtract 220 from each data value to get the following information.

Gas Mileage
∑

j Xij
∑

j X 2
ij

1 0 31 6 26 40 103 3,273
2 24 15 12 22 5 78 1,454
3 32 52 30 18 36 168 6,248

Now m = 3 and n = 5 and

X1. = 103/5 = 20.6

X2. = 78/5 = 15.6

X3. = 168/5 = 33.6

X.. = (103 + 78 + 168)/15 = 23.2667, X 2
.. = 541.3393

Thus,

SSb = 5[(20.6− 23.2667)2 + (15.6− 23.2667)2 + (33.6− 23.2667)2] = 863.3335

Also,
∑ ∑

X 2
ij = 3,273 + 1,454 + 6,248 = 10,975

and, from the sum of squares identity,

SSW = 10,975− 15(541.3393)− 863.3335 = 1991.5785
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The value of the test statistic is thus

TS = 863.3335/2
1991.5785/12

= 2.60

Now, from Table A4 in the Appendix, we see that F2,12,.05 = 3.89. Hence, because
the value of the test statistic does not exceed 3.89, we cannot, at the 5 percent level of
significance, reject the null hypothesis that the gasolines give equal mileage. !

Let us now show that

E[SSb/(m− 1)] ≥ σ 2

with equality only when H0 is true. So, we must show that

E

[ m∑

i=1

(Xi. − X..)
2/(m− 1)

]
≥ σ 2/n

with equality only when H0 is true. To verify this, let µ. = ∑m
i=1 µi/m be the average

of the means. Also, for i = 1, . . . , m, let

Yi = Xi. − µi + µ.

Because Xi. is normal with mean µi and variance σ 2/n, it follows that Yi is normal with
mean µ. and variance σ 2/n. Consequently, Y1, . . . , Ym constitutes a sample from a nor-
mal population having variance σ 2/n. Let

Ȳ = Y. =
m∑

i=1

Yi/m = X.. − µ. + µ. = X..

be the average of these variables. Now,

Xi. − X.. = Yi + µi − µ. − Y.

Consequently,

E

[ m∑

i=1

(Xi. − X..)
2

]
= E

[ m∑

i=1

(Yi − Y. + µi − µ.)
2

]

= E

[ m∑

i=1

[(Yi − Y.)
2 + (µi − µ.)

2 + 2(µi − µ.)(Yi − Y.)

]

= E

[ m∑

i=1

(Yi − Y.)
2

]

+
m∑

i=1

(µi − µ.)
2+2

m∑

i=1

(µi − µ.)E[Yi − Y.]
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= (m− 1)σ 2/n +
m∑

i=1

(µi − µ.)
2 + 2

m∑

i=1

(µi − µ.)E[Yi − Y.]

= (m− 1)σ 2/n +
m∑

i=1

(µi − µ.)
2

where the next to last equality follows because the sample variance
∑m

i=1(Yi−Y.)
2/(m−1)

is an unbiased estimator of its population variance σ 2/n and the final equality because
E[Yi]− E[Y.] = µ. − µ. = 0. Dividing by m− 1 gives that

E

[ m∑

i=1

(Xi. − X..)
2/(m− 1)

]
= σ 2/n +

m∑

i=1

(µi − µ.)
2/(m− 1)

and the result follows because
∑m

i=1(µi − µ.)
2 ≥ 0, with equality only when all the µi

are equal.
Table 10.2 sums up the results of this section.

TABLE 10.2 One-Way ANOVA Table

Source of Degrees of Value of Test
Variation Sum of Squares Freedom Statistic

Between samples SSb = n
∑m

i=1(Xi. − X..)
2 m− 1

Within samples SSW = ∑m
i=1

∑n
j=1(Xij − Xi.)

2 nm− m

TS = SSb/(m−1)
SSW /(nm−m)

Significance level α test:
reject H0 if TS ≥ Fm−1,nm−m,α
do not reject otherwise

If TS = v, then p-value = P{Fm−1,nm−m ≥ v}

10.3.1 Multiple Comparisons of Sample Means
When the null hypothesis of equal means is rejected, we are often interested in a com-
parison of the different sample means µ1, . . . , µm. One procedure that is often used for
this purpose is known as the T -method. For a specified value of α, this procedure gives
joint confidence intervals for all the

(m
2

)
differences µi − µj , i %= j, i, j = 1, . . . , m, such

that with probability 1 − α all of the confidence intervals will contain their respective
quantities µi − µj . The T -method is based on the following result:

With probability 1− α, for every i %= j

Xi. − Xj. −W < µi − µj < Xi. − Xj. + W
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where

W = 1√
n

C(m, nm−m, α)
√

SSW /(nm−m)

and where the values of C(m, nm− m, α) are given, for α = .05 and α = .01, in Table
A5 of the Appendix.

EXAMPLE 10.3c A college administrator claims that there is no difference in first-year
grade point averages for students entering the college from any of three different city
high schools. The following data give the first-year grade point averages of 12 randomly
chosen students, 4 from each of the three high schools. At the 5 percent level of signifi-
cance, do these data disprove the claim of the administrator? If so, determine confidence
intervals for the difference in means of students from the different high schools, such that
we can be 95 percent confident that all of the interval statements are valid.

School 1 School 2 School 3

3.2 3.4 2.8
3.4 3.0 2.6
3.3 3.7 3.0
3.5 3.3 2.7

SOLUTION To begin, note that there are m = 3 samples, each of size n = 4. Program 10.3
on the text disk yields the results:

SSW /9 = .0431

p-value = .0046

so the hypothesis of equal mean scores for students from the three schools is rejected.
To determine the confidence intervals for the differences in the population means, note

first that the sample means are

X1. = 3.350, X2. = 3.350, X3. = 2.775

From Table A5 of the Appendix, we see that C (3, 9, .05) = 3.95; thus, as W =
1√
4
3.95
√

.0431 = .410, we obtain the following confidence intervals.

−.410 < µ1 − µ2 < .410

.165 < µ1 − µ3 < .985

.165 < µ2 − µ3 < .985
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Hence, with 95 percent confidence, we can conclude that the mean grade point average
of first-year students from high school 3 is less than the mean average of students from
high school 1 or from high school 2 by an amount that is between .165 and .985, and
that the difference in grade point averages of students from high schools 1 and 2 is less
than .410. !

10.3.2 One-Way Analysis of Variance with Unequal Sample Sizes
The model in the previous section supposed that there were an equal number of data
points in each sample. Whereas this is certainly a desirable situation (see the Remark at the
end of this section), it is not always possible to attain. So let us now suppose that we have m
normal samples of respective sizes n1, n2, . . . , nm. That is, the data consist of the

∑m
i=1 ni

independent random variables Xij , i = 1, . . . , m, j = 1, . . . , ni, where

Xij ∼ (µi, σ 2)

Again we are interested in testing the hypothesis H0 that all means are equal.
To derive a test of H0, we start with the fact that

m∑

i=1

ni∑

j=1

(Xij − E[Xij])2/σ 2 =
m∑

i=1

ni∑

j=1

(Xij − µi)
2/σ 2

is a chi-square random variable with
∑m

i=1 ni degrees of freedom. Hence, upon replacing
each mean µi by its estimator Xi., the average of the elements in sample i, we obtain

m∑

i=1

ni∑

j=1

(Xij − Xi.)
2/σ 2

which is chi-square with
∑m

i=1 ni −m degrees of freedom. Therefore, letting

SSW =
m∑

i=1

ni∑

j=1

(Xij − Xi.)
2

it follows that SSW /
(∑m

i=1 ni −m
)

is an unbiased estimator of σ 2.
Furthermore, if H0 is true and µ is the common mean, then the random variables

Xi., i = 1, . . . , m will be independent normal random variables with

E[Xi.] = µ, Var(Xi.) = σ 2/ni

As a result, when H0 is true

m∑

i=1

(Xi. − µ)2

σ 2/ni
=

m∑

i=1

ni(Xi. − µ)2/σ 2
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is chi-square with m degrees of freedom; therefore, replacing µ in the preceding by its
estimator X.., the average of all the Xij , results in the statistic

m∑

i=1

ni(Xi. − X..)
2/σ 2

which is chi-square with m− 1 degrees of freedom. Thus, letting

SSb =
m∑

i=1

ni(Xi. − X..)
2

it follows, when H0 is true, that SSb/(m− 1) is also an unbiased estimator of σ 2. Because
it can be shown that when H0 is true the quantities SSb and SSW are independent, it
follows under this condition that the statistic

SSb/(m− 1)

SSW
/( m∑

i=1
ni −m

)

is an F -random variable with m− 1 numerator and
∑m

i=1 ni−m denominator degrees of
freedom. From this we can conclude that a significance level α test of the null hypothesis

H0 : µ1 = · · · = µm

is to let N = ∑
i ni − m, and then

reject H0 if
SSb/(m− 1)

SSW
/( m∑

i=1
ni − m

) > Fm−1,N ,α

not reject H0 otherwise

REMARK

When the samples are of different sizes we say that we are in the unbalanced case. When-
ever possible it is advantageous to choose a balanced design over an unbalanced one. For
one thing, the test statistic in a balanced design is relatively insensitive to slight departures
from the assumption of equal population variances. (That is, the balanced design is more
robust than the unbalanced one.)
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10.4 TWO-FACTOR ANALYSIS OF VARIANCE:
INTRODUCTION AND PARAMETER ESTIMATION

Whereas the model of Section 10.3 enabled us to study the effect of a single factor on a
data set, we can also study the effects of several factors. In this section, we suppose that
each data value is affected by two factors.

EXAMPLE 10.4a Four different standardized reading achievement tests were administered
to each of 5 students, with the scores shown in the table resulting. Each value in this set
of 20 data points is affected by two factors, namely, the exam and the student whose score
on that exam is being recorded. The exam factor has 4 possible values, or levels, and the
student factor has 5 possible levels.

Student
Exam 1 2 3 4 5

1 75 73 60 70 86
2 78 71 64 72 90
3 80 69 62 70 85
4 73 67 63 80 92

In general, let us suppose that there are m possible levels of the first factor and n possible
levels of the second. Let Xij denote the value obtained when the first factor is at level i and
the second factor is at level j. We will often portray the data set in the following array of
rows and columns.

X11 X12 . . . X1j . . . X1n
X21 X22 . . . X2j . . . X2n
Xi1 Xi2 . . . Xij . . . Xin
Xm1 Xm2 . . . Xmj . . . Xmn

Because of this we will refer to the first factor as the “row” factor, and the second factor as
the “column” factor.

As in Section 10.3, we will suppose that the data Xij , i = 1, . . . , m j = 1, . . . , n are
independent normal random variables with a common variance σ 2. However, whereas
in Section 10.3 we supposed that only a single factor affected the mean value of a data
point — namely, the sample to which it belongs — we will suppose in the present section
that the mean value of data depends in an additive manner on both its row and its column.

If, in the model of Section 10.3, we let Xij represent the value of the jth member of
sample i, then that model could be symbolically represented as

E[Xij] = µi
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However, if we let µ denote the average value of the µi — that is,

µ =
m∑

i=1

µi/m

then we can rewrite the model as

E[Xij] = µ + αi

where αi = µi − µ. With this definition of αi as the deviation of µi from the average
mean value, it is easy to see that

m∑

i=1

αi = 0

A two-factor additive model can also be expressed in terms of row and column devi-
ations. If we let µij = E[Xij], then the additive model supposes that for some constants
ai, i = 1, . . . , m and bj, j = 1, . . . , n

µij = ai + bj

Continuing our use of the “dot” (or averaging) notation, we let

µi. =
n∑

j=1

µij/n, µ.j =
m∑

i=1

µij/m, µ.. =
m∑

i=1

n∑

j=1

µij/nm

Also, we let

a. =
m∑

i=1

ai/m, b. =
n∑

j=1

bj/n

Note that

µi. =
n∑

j=1

(ai + bj)/n = ai + b.

Similarly,
µ.j = a. + bj, µ.. = a. + b.

If we now set

µ = µ.. = a. + b.

αi = µi. − µ = ai − a.

βj = µ.j − µ = bj − b.

then the model can be written as

µij = E[Xij] = µ + αi + βj
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where
m∑

i=1

αi =
n∑

j=1

βj = 0

The value µ is called the grand mean, αi is the deviation from the grand mean due to row i,
and βj is the deviation from the grand mean due to column j.

Let us now determine estimators of the parameters µ, αi, βj, i = 1, . . . , m, j = 1, . . . , n.
To do so, continuing our use of “dot” notation, we let

Xi. =
n∑

j=1

Xij/n = average of the values in row i

X.j =
m∑

i=1

Xij/m = average of the values in column j

X.. =
m∑

i=1

n∑

j=1

Xij/nm = average of all data values

Now,

E[Xi.] =
n∑

j=1

E[Xij]/n

= µ +
n∑

j=1

αi/n +
n∑

j=1

βj/n

= µ + αi since
n∑

j=1

βj = 0

Similarly, it follows that

E[X.j] = µ + βj

E[X..] = µ

Because the preceding is equivalent to

E[X..] = µ

E[Xi. − X..] = αi

E[X.j − X..] = βj
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we see that unbiased estimators of µ, αi, βj — call them µ̂, α̂i, β̂j — are given by

µ̂ = X..

α̂i = Xi. − X..

β̂j = X.j − X.. !

EXAMPLE 10.4b The following data from Example 10.4a give the scores obtained when
four different reading tests were given to each of five students. Use it to estimate the
parameters of the model.

Student
Examination 1 2 3 4 5 Row Totals Xi.

1 75 73 60 70 86 364 72.8
2 78 71 64 72 90 375 75
3 80 69 62 70 85 366 73.2
4 73 67 63 80 92 375 75

Column totals 306 280 249 292 353 1,480 ← grand total

X.j 76.5 70 62.25 73 88.25 X.. = 1,480
20

= 74

SOLUTION The estimators are

µ̂ = 74

α̂1 = 72.8− 74 = −1.2 β̂1 = 76.5− 74 = 2.5
α̂2 = 75− 74 = 1 β̂2 = 70− 74 = −4
α̂3 = 73.2− 74 = −.8 β̂3 = 62.25− 74 = −11.75
α̂4 = 75− 74 = 1 β̂4 = 73− 74 = −1

β̂5 = 88.25− 74 = 14.25

Therefore, for instance, if one of the students is randomly chosen and then given a ran-
domly chosen examination, then our estimate of the mean score that will be obtained is
µ̂ = 74. If we were told that examination i was taken, then this would increase our esti-
mate of the mean score by the amount α̂i; and if we were told that the student chosen was
number j, then this would increase our estimate of the mean score by the amount β̂j . Thus,
for instance, we would estimate that the score obtained on examination 1 by student 2
is the value of a random variable whose mean is µ̂+ α̂1 + β̂2 = 74−1.2−4 = 68.8. !
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10.5 TWO-FACTOR ANALYSIS OF VARIANCE:
TESTING HYPOTHESES

Consider the two-factor model in which one has data Xij , i = 1, . . . , m and j = 1, . . . , n.
These data are assumed to be independent normal random variables with a common
variance σ 2 and with mean values satisfying

E[Xij] = µ + αi + βj

where
m∑

i=1

αi =
n∑

j=1

βj = 0

In this section, we will be concerned with testing the hypothesis

H0 : all αi = 0

against
H1 : not all the αi are equal to 0

This null hypothesis states that there is no row effect, in that the value of a datum is not
affected by its row factor level.

We will also be interested in testing the analogous hypothesis for columns, that is

H0 : all βj are equal to 0

against

H1 : not all βj are equal to 0

To obtain tests for the above null hypotheses, we will apply the analysis of variance
approach in which two different estimators are derived for the variance σ 2. The first will
always be a valid estimator, whereas the second will only be a valid estimator when the null
hypothesis is true. In addition, the second estimator will tend to overestimate σ 2 when
the null hypothesis is not true.

To obtain our first estimator of σ 2, we start with the fact that

m∑

i=1

n∑

j=1

(Xij − E[Xij])2/σ 2 =
m∑

i=1

n∑

j=1

(Xij − µ− αi − βj)
2/σ 2

is chi-square with nm degrees of freedom. If in the above expression we now
replace the unknown parameters µ, α1, α2, . . . , αm, β1, β2, . . . , βn by their estimators
µ̂, α̂1, α̂2, . . . , α̂m, β̂1, β̂2, . . . , β̂n, then it turns out that the resulting expression will remain
chi-square but will lose 1 degree of freedom for each parameter that is estimated. To deter-
mine how many parameters are to be estimated, we must be careful to remember that
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∑m
i=1 αi = ∑n

j=1 βj = 0. Since the sum of all the αi is equal to 0, it follows that once
we have estimated m− 1 of the αi then we have also estimated the final one. Hence, only
m − 1 parameters are to be estimated in order to determine all of the estimators α̂i. For
the same reason, only n − 1 of the βj need be estimated to determine estimators for all
n of them. Because µ also must be estimated, we see that the number of parameters that
need to be estimated is 1 + m− 1 + n− 1 = n + m− 1. As a result, it follows that

m∑

i=1

n∑

j=1

(Xij − µ̂− α̂i − β̂j)
2/σ 2

is a chi-square random variable with nm − (n + m − 1) = (n − 1)(m − 1) degrees of
freedom.

Since µ̂ = X.., α̂i = Xi.−X.., β̂j = X.j−X.., it follows that µ̂+α̂i +β̂j = Xi. +X.j−X..;
thus,

m∑

i=1

n∑

j=1

(Xij − Xi. − X.j + X..)
2/σ 2 (10.5.1)

is a chi-square random variable with (n− 1)(m− 1) degrees of freedom.

Definition
The statistic SSe defined by

SSe =
m∑

i=1

n∑

j=1

(Xij − Xi. − X.j + X..)
2

is called the error sum of squares.

If we think of the difference between a value and its estimated mean as being an “error,”
then SSe is equal to the sum of the squares of the errors. Since SSe/σ 2 is just the expression
in 10.5.1, we see that SSe/σ 2 is chi-square with (n−1)(m−1) degrees of freedom. Because
the expected value of a chi-square random variable is equal to its number of degrees of
freedom, we have that

E[SSe/σ 2] = (n− 1)(m− 1)

or
E[SSe/(n− 1)(m− 1)] = σ 2

That is,
SSe/(n− 1)(m− 1)

is an unbiased estimator of σ 2.
Suppose now that we want to test the null hypothesis that there is no row effect — that

is, we want to test
H0 : all the αi are equal to 0

against
H1 : not all the αi are equal to 0
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To obtain a second estimator of σ 2, consider the row averages Xi., i = 1, . . . , m. Note
that, when H0 is true, each αi is equal to 0, and so

E[Xi.] = µ + αi = µ

Because each Xi. is the average of n random variables, each having variance σ 2, it
follows that

Var(Xi.) = σ 2/n

Thus, we see that when H0 is true
m∑

i=1

(Xi. − E[Xi.])2/Var(Xi.) = n
m∑

i=1

(Xi. − µ)2/σ 2

will be chi-square with m degrees of freedom. If we now substitute X.. (the estimator of
µ) for µ in the preceding, then the resulting expression will remain chi-square but with 1
less degree of freedom. We thus have the following:

when H0 is true

n
m∑

i=1

(Xi. − X..)
2/σ 2

is chi-square with m− 1 degrees of freedom.

Definition
The statistic SSr is defined by

SSr = n
m∑

i=1

(Xi. − X..)
2

and is called the row sum of squares.

We saw earlier that when H0 is true, SSr/σ 2 is chi-square with m−1 degrees of freedom.
As a result, when H0 is true,

E[SSr/σ 2] = m− 1

or, equivalently,

E[SSr/(m− 1)] = σ 2

In addition, it can be shown that SSr/(m − 1) will tend to be larger than σ 2 when H0
is not true. Thus, once again we have obtained two estimators of σ 2. The first estimator,
SSe/(n−1)(m−1), is a valid estimator whether or not the null hypothesis is true, whereas
the second estimator, SSr/(m − 1), is only a valid estimator of σ 2 when H0 is true and
tends to be larger than σ 2 when H0 is not true.
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We base our test of the null hypothesis H0 that there is no row effect, on the ratio of
the two estimators of σ 2. Specifically, we use the test statistic

TS = SSr/(m− 1)

SSe/(n− 1)(m− 1)

Because the estimators can be shown to be independent when H0 is true, it follows that
the significance level α test is to

reject H0 if TS ≥ Fm−1,(n−1)(m−1),α
do not reject H0 otherwise

Alternatively, the test can be performed by calculating the p-value. If the value of the test
statistic is v, then the p-value is given by

p-value = P{Fm−1,(n−1)(m−1) ≥ v}
A similar test can be derived for testing the null hypothesis that there is no column

effect — that is, that all the βj are equal to 0. The results are summarized in Table 10.3.
Program 10.5 will do the computations and give the p-value.

TABLE 10.3 Two-Factor ANOVA

Sum of Squares Degrees of Freedom

Row SSr = n
∑m

i=1(Xi. − X..)
2 m− 1

Column SSc = m
∑n

j=1(X.j − X..)
2 n− 1

Error SSe = ∑m
i=1

∑n
j=1(Xij − Xi. − X.j + X..)

2 (n− 1)(m− 1)

Let N = (n – 1)(m – 1)
Null Test Significance p-value if

Hypothesis Statistic Level α Test TS = v

All αi = 0
SSr /(m − 1)

SSe/N
Reject if P{Fm−1,N ≥ v}

TS ≥ Fm−1,N ,α

All βj = 0
SSc/(n − 1)

SSe/N
Reject if P{Fn−1,N ≥ v}

TS ≥ Fn−1,N ,α

EXAMPLE 10.5a The following data* represent the number of different macroinvertebrate
species collected at 6 stations, located in the vicinity of a thermal discharge, from 1970 to
1977.

* Taken from Wartz and Skinner, “A 12-year macroinvertebrate study in the vicinity of 2 thermal discharges to the
Susquehanna River near York Haven, PA.” Jour. of Testing and Evaluation. Vol. 12. No. 3, May 1984, 157–163.
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Station

Year 1 2 3 4 5 6

1970 53 35 31 37 40 43
1971 36 34 17 21 30 18
1972 47 37 17 31 45 26
1973 55 31 17 23 43 37
1974 40 32 19 26 45 37
1975 52 42 20 27 26 32
1976 39 28 21 21 36 28
1977 40 32 21 21 36 35

The p -values in a Two-way ANOVA  

Start

Quit

1
2
3
4
5
6

A
53
36
47
55
40
52

35
34
37
31
32
43

31
17
17
17
19
38

B C D E F
37
21
31
23
26
27

40
30
45
43
45
36

43
18
26
37
37
22

The value of the F-statistic for testing that there is no row effect is 3.72985

The p -value for testing that there is no row effect is 0.00404

The value of the F-statistic for testing that there is no column effect is
22.47898

The p -value for testing that there is no column effect is less than 0.0001

FIGURE 10.2

To test the hypotheses that the data are unchanging (a) from year to year, and (b) from
station to station, run Program 10.5. Results are shown in Figure 10.2. Thus both the
hypothesis that the data distribution does not depend on the year and the hypothesis that
it does not depend on the station are rejected at very small significance levels. !
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10.6 TWO-WAY ANALYSIS OF VARIANCE WITH
INTERACTION

In Sections 10.4 and 10.5, we considered experiments in which the distribution of the
observed data depended on two factors — which we called the row and column factors.
Specifically, we supposed that the mean value of Xij , the data value in row i and column
j, can be expressed as the sum of two terms — one depending on the row of the element
and one on the column. That is, we supposed that

Xij ∼ (µ + αi + βj , σ 2), i = 1, . . . , m, j = 1, . . . , n

However, one weakness of this model is that in supposing that the row and column effects
are additive, it does not allow for the possibility of a row and column interaction.

For instance, consider an experiment designed to compare the mean number of defec-
tive items produced by four different workers when using three different machines. In
analyzing the resulting data, we might suppose that the incremental number of defects
that resulted from using a given machine was the same for each of the workers. However,
it is certainly possible that a machine could interact in a different manner with different
workers. That is, there could be a worker–machine interaction that the additive model
does not allow for.

To allow for the possibility of a row and column interaction, let

µij = E[Xij]

and define the quantities µ, αi, βj, γij , i = 1, . . . , m, j = 1, . . . , n as follows:

µ = µ..

αi = µi. − µ..

βj = µ.j − µ..

γij = µij − µi. − µ.j + µ..

It is immediately apparent that

µij = µ + αi + βj + γij

and it is easy to check that

m∑

i=1

αi =
n∑

j=1

βj =
m∑

i=1

γij =
n∑

j=1

γij = 0

The parameter µ is the average of all nm mean values; it is called the grand mean. The
parameter αi is the amount by which the average of the mean values of the variables in
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row i exceeds the grand mean; it is called the effect of row i. The parameter βj is the amount
by which the average of the mean values of the variables in column j exceeds the grand
mean; it is called the effect of column j. The parameter γij = µij − (µ + αi + βj) is the
amount by which µij exceeds the sum of the grand mean and the increments due to row
i and to column j; it is thus a measure of the departure from row and column additivity
of the mean value µij , and is called the interaction of row i and column j.

As we shall see, in order to be able to test the hypothesis that there are no row and column
interactions — that is, that all γij = 0 — it is necessary to have more than one observation for
each pair of factors. So let us suppose that we have l observations for each row and column.
That is, suppose that the data are {Xijk, i = 1, . . . , m, j = 1, . . . , n, k = 1, . . . , l}, where
Xijk is the kth observation in row i and column j. Because all observations are assumed to
be independent normal random variables with a common variance σ 2, the model is

Xijk ∼ (µ + αi + βj + γij , σ 2)

where

m∑

i=1

αi =
n∑

j=1

βj =
m∑

i=1

γij =
n∑

j=1

γij = 0 (10.6.1)

We will be interested in estimating the preceding parameters and in testing the following
null hypotheses:

Hr
0 : αi = 0, for all i

Hc
0 : βj = 0, for all j

Hint
0 : γij = 0, for all i, j

That is, Hr
0 is the hypothesis of no row effect; Hc

0 is the hypothesis of no column effect;
and Hint

0 is the hypothesis of no row and column interaction.
To estimate the parameters, note that it is easily verified from Equation 10.8 and the

identity

E[Xijk] = µij = µ + αi + βj + γij

that

E[Xij.] = µij = µ + αi + βj + γij

E[Xi..] = µ + αi

E[X.j.] = µ + βj

E[X...] = µ
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Therefore, with a “hat” over a parameter denoting the estimator of that parameter, we
obtain from the preceding that unbiased estimators are given by

µ̂ = X...

β̂j = X.j. − X...

α̂i = Xi.. − X...

γ̂ij = Xij. − µ̂− β̂j − α̂i = Xij. − Xi.. − X.j. + X...

To develop tests for the null hypotheses Hint
0 , Hr

0, and Hc
0, start with the fact that

l∑

k=1

n∑

j=1

m∑

i=1

(Xijk − µ− αi − βj − γij)
2

σ 2

is a chi-square random variable with nml degrees of freedom. Therefore,

l∑

k=1

n∑

j=1

m∑

i=1

(Xijk − µ̂− α̂i − β̂j − γ̂ij)
2

σ 2

will also be chi-square, but with 1 degree of freedom lost for each parameter that is esti-
mated. Now, since

∑
i αi = 0, it follows that m − 1 of the αi need to be estimated;

similarly, n−1 of the βj need to be estimated. Also, since
∑

i γij = ∑
j γij = 0, it follows

that if we arrange all the γij in a rectangular array having m rows and n columns, then all
the row and column sums will equal 0, and so the values of the quantities in the last row
and last column will be determined by the values of all the others; hence we need only
estimate (m−1)(n−1) of these quantities. Because we also need to estimate µ, it follows
that a total of

n− 1 + m− 1 + (n− 1)(m− 1) + 1 = nm

parameters need to be estimated. Since

µ̂ + α̂i + β̂j + γ̂ij = Xij .

it thus follows from the preceding that if we let

SSe =
l∑

k=1

n∑

j=1

m∑

i=1

(Xijk − Xij.)
2

then
SSe

σ 2 is chi-square with nm(l − 1) degrees of freedom

Therefore,
SSe

nm(l − 1)
is an unbiased estimator of σ 2
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Suppose now that we want to test the hypothesis that there are no row and column
interactions — that is, we want to test

Hint
0 : γij = 0, i = 1, . . . , m, j = 1, . . . , n

Now, if Hint
0 is true, then the random variables Xij . will be normal with mean

E[Xij.] = µ + αi + βj

Also, since each of these terms is the average of l normal random variables having variance
σ 2, it follows that

Var(Xij.) = σ 2/l

Hence, under the assumption of no interactions,
n∑

j=1

m∑

i=1

l(Xij. − µ− αi − βj)
2

σ 2

is a chi-square random variable with nm degrees of freedom. Since a total of 1 + m− 1 +
n − 1 = n + m − 1 of the parameters µ, αi, i = 1, . . . , m, βj, j = 1, . . . , n, must be
estimated, it follows that if we let

SSint =
n∑

j=1

m∑

i=1

l(Xij. − µ̂− α̂i − β̂j)
2 =

n∑

j=1

m∑

i=1

l(Xij. − Xi.. − X.j. + X...)
2

then, under Hint
0 ,

SSint

σ 2 is chi-square with (n− 1)(m− 1) degrees of freedom.

Therefore, under the assumption of no interactions,

SSint

(n− 1)(m− 1)
is an unbiased estimator of σ 2.

Because it can be shown that, under the assumption of no interactions, SSe and SSint are
independent, it follows that when Hint

0 is true

Fint = SSint /(n− 1)(m− 1)

SSe/nm(l − 1)

is an F -random variable with (n − 1)(m − 1) numerator and nm(l − 1) denominator
degrees of freedom. This gives rise to the following significance level α test of

Hint
0 : all γij = 0
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Namely,

reject Hint
0 if

SSint /(n− 1)(m− 1)

SSe/nm(l − 1)
> F(n−1)(m−1),nm(l−1),α

do not reject Hint
0 otherwise

Alternatively, we can compute the p-value. If Fint = v, then the p-value of the test of the
null hypothesis that all interactions equal 0 is

p-value = P{F(n−1)(m−1),nm(l−1) > v}

If we want to test the null hypothesis

Hr
0 : αi = 0, i = 1, . . . , m

then we use the fact that when Hr
0 is true, Xi.. is the average of nl independent normal

random variables, each with mean µ and variance σ 2. Hence, under Hr
0,

E[Xi..] = µ, Var(Xi..) = σ 2/nl

and so

m∑

i=1

nl
(Xi.. − µ)2

σ 2

is chi-square with m degrees of freedom. Thus, if we let

SSr =
m∑

i=1

nl(Xi.. − µ̂)2 =
m∑

i=1

nl(Xi.. − X..)
2

then, when Hr
0 is true,

SSr

σ 2 is chi-square with m− 1 degrees of freedom

and so

SSr

m− 1
is an unbiased estimator of σ 2

Because it can be shown that, under Hr
0, SSe and SSr are independent, it follows that

when Hr
0 is true

SSr/(m− 1)

SSe/nm(l − 1)
is an Fm−1, nm(l − 1) random variable
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Thus we have the following significance level α test of

Hr
0 : all αi = 0

versus

Hr
1 : at least one αi %= 0

Namely,

reject Hr
0 if

SSr/(m− 1)

SSe/nm(l − 1)
> Fm−1,nm(l−1),α

do not reject Hr
0 otherwise

Alternatively, if
SSr/(m− 1)

SSe/nm(l − 1)
= v, then

p-value = P{Fm−1,nm(l−1) > v}
Because an analogous result can be shown to hold when testing H0 : all βj = 0, we obtain
the ANOVA information shown in Table 10.4.

Note that all of the preceding tests call for rejection only when their related F -statistic
is large. The reason that only large (and not small) values call for rejection of the null
hypothesis is that the numerator of the F -statistic will tend to be larger when H0 is not
true than when it is, whereas the distribution of the denominator will be the same whether
or not H0 is true.

Program 10.6 computes the values of the F -statistics and their associated p-values.

EXAMPLE 10.6a The life of a particular type of generator is thought to be influenced by
the material used in its construction and also by the temperature at the location where it
is utilized. The following table represents lifetime data on 24 generators made from three
different types of materials and utilized at two different temperatures. Do the data indicate
that the material and the temperature do indeed affect the lifetime of a generator? Is there
evidence of an interaction effect?

Temperature
Material 10◦C 18◦C

1 135, 150 50, 55
176, 85 64, 38

2 150, 162 76, 88
171, 120 91, 57

3 138, 111 68, 60
140, 106 74, 51

SOLUTION Run Program 10.6 (see Figures 10.3 and 10.4). !
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The p -values in a Two-way ANOVA with a Possible Interaction

Enter the number of rows:

Enter the number of columns:

Enter the number of
observations in each cell:

3

2

4

Begin Data Entry

Quit

FIGURE 10.3

The p -values in a Two-way ANOVA with Possible Interaction

Start

Clear All Observations

1
2
3

A B
Click on a cell to enter data

135, 150, 176, 85
150, 162, 171, 120
138, 111, 140, 106

50, 55, 64, 38
76, 88, 91, 57
68, 60, 74, 51

The value of the F -statistic for testing that there is no row effect is 2.47976

The p -value for testing that there is no row effect is 0.1093

The value of the F -statistic for testing that there is no column effect is 69.63223

The p -value for testing that there is no column effect is less than 0.0001

The value of the F -statistic for testing that there is no interaction effect is 0.64625

The p -value for testing that there is no interaction effect is 0.5329

FIGURE 10.4
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Problems

1. A purification process for a chemical involves passing it, in solution, through
a resin on which impurities are adsorbed. A chemical engineer wishing to test
the efficiency of 3 different resins took a chemical solution and broke it into
15 batches. She tested each resin 5 times and then measured the concentration of
impurities after passing through the resins. Her data were as follows:

Concentration of Impurities

Resin I Resin II Resin III

.046 .038 .031

.025 .035 .042

.014 .031 .020

.017 .022 .018

.043 .012 .039

Test the hypothesis that there is no difference in the efficiency of the resins.

2. We want to know what type of filter should be used over the screen of a cathode-
ray oscilloscope in order to have a radar operator easily pick out targets on the
presentation. A test to accomplish this has been set up. A noise is first applied to
the scope to make it difficult to pick out a target. A second signal, representing the
target, is put into the scope, and its intensity is increased from zero until detected
by the observer. The intensity setting at which the observer first notices the target
signal is then recorded. This experiment is repeated 20 times with each filter. The
numerical value of each reading listed in the table of data is proportional to the
target intensity at the time the operator first detects the target.

Filter No. 1 Filter No. 2 Filter No. 3

90 88 95
87 90 95
93 97 89
96 87 98
94 90 96
88 96 81
90 90 92
84 90 79

101 100 105
96 93 98
90 95 92

(continued )
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Filter No. 1 Filter No. 2 Filter No. 3

82 86 85
93 89 97
90 92 90
96 98 87
87 95 90
99 102 101

101 105 100
79 85 84
98 97 102

Test, at the 5 percent level of significance, the hypothesis that the filters are the
same.

3. Explain why we cannot efficiently test the hypothesis H0 : µ1 = µ2 = · · · = µm
by running t-tests on all of the

(m
2

)
pairs of samples.

4. A machine shop contains 3 ovens that are used to heat metal specimens. Subject
to random fluctuations, they are all supposed to heat to the same temperature.
To test this hypothesis, temperatures were noted on 15 separate heatings. The
following data resulted.

Oven Temperature

1 492.4, 493.6, 498.5, 488.6, 494
2 488.5, 485.3, 482, 479.4, 478
3 502.1, 492, 497.5, 495.3, 486.7

Do the ovens appear to operate at the same temperature? Test at the 5 percent
level of significance. What is the p-value?

5. Four standard chemical procedures are used to determine the magnesium content
in a certain chemical compound. Each procedure is used four times on a given
compound with the following data resulting.

Method

1 2 3 4
76.42 80.41 74.20 86.20
78.62 82.26 72.68 86.04
80.40 81.15 78.84 84.36
78.20 79.20 80.32 80.68

Do the data indicate that the procedures yield equivalent results?
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6. Twenty overweight individuals, each more than 40 pounds overweight, were
randomly assigned to one of two diets. After 10 weeks, the total weight losses
(in pounds) of the individuals on each of the diets were as follows:

Weight Loss

Diet 1 Diet 2

22.2 24.2
23.4 16.8
24.2 14.6
16.1 13.7

9.4 19.5
12.5 17.6
18.6 11.2
32.2 9.5

8.8 30.1
7.6 21.5

Test, at the 5 percent level of significance, the hypothesis that the two diets have
equal effect.

7. In a test of the ability of a certain polymer to remove toxic wastes from water,
experiments were conducted at three different temperatures. The data below give
the percentages of the impurities that were removed by the polymer in 21 inde-
pendent attempts.

Low Temperature Medium Temperature High Temperature

42 36 33
41 35 44
37 32 40
29 38 36
35 39 44
40 42 37
32 34 45

Test the hypothesis that the polymer performs equally well at all three tempera-
tures. Use the (a) 5 percent level of significance and (b) 1 percent level of signifi-
cance.

8. In the one-factor analysis of variance model with n observations per sample, let S2
i ,

i = 1, . . . , m denote the sample variances for the m samples. Show that

SSW = (n− 1)

m∑

i=1

S2
i



480 Chapter 10: Analysis of Variance

9. The following data relate to the ages at death of a certain species of rats that were
fed 1 of 3 types of dies. Thirty rats of a type having a short life span were randomly
divided into 3 groups of size 10 each. The sample means and sample variances of
the ages at death (measured in months) of the 3 groups are as follows:

Very Low Calorie Moderate Calorie High Calorie

Sample mean 22.4 16.8 13.7
Sample variance 24.0 23.2 17.1

Test the hypothesis, at the 5 percent level of significance, that the mean lifetime
of a rat is not affected by its diet. What about at the 1 percent level?

10. Plasma bradykininogen levels are related to the body’s ability to resist inflamma-
tion. In a 1968 study (Eilam, N., Johnson, P. K., Johnson, N. L., and Creger, W.,
“Bradykininogen levels in Hodgkin’s disease,” Cancer, 22, pp. 631–634), levels
were measured in normal patients, in patients with active Hodgkin’s disease, and
in patients with inactive Hodgkin’s disease. The following data (in micrograms of
bradykininogen per milliliter of plasma) resulted.

Normal Active Hodgkin’s Disease Inactive Hodgkin’s Disease

5.37 3.96 5.37
5.80 3.04 10.60
4.70 5.28 5.02
5.70 3.40 14.30
3.40 4.10 9.90
8.60 3.61 4.27
7.48 6.16 5.75
5.77 3.22 5.03
7.15 7.48 5.74
6.49 3.87 7.85
4.09 4.27 6.82
5.94 4.05 7.90
6.38 2.40 8.36

Test, at the 5 percent level of significance, the hypothesis that the mean
bradykininogen levels are the same for all three groups.

11. A study of the trunk flexor muscle strength of 75 girls aged 3 to 7 was reported
by Baldauf, K., Swenson, D., Medeiros, J., and Radtka, S., “Clinical assessment
of trunk flexor muscle strength in healthy girls 3 to 7,” Physical Therapy, 64,
pp. 1203–1208, 1984. With muscle strength graded on a scale of 0 to 5, and
with 15 girls in each age group, the following sample means and sample standard
deviations resulted.
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Age 3 4 5 6 7

Sample mean 3.3 3.7 4.1 4.4 4.8
Sample standard deviation .9 1.1 1.1 .9 .5

Test, at the 5 percent level of significance, the hypothesis that the mean trunk
flexor strength is the same for all five age groups.

12. An emergency room physician wanted to know whether there were any differences
in the amount of time it takes for three different inhaled steroids to clear a mild
asthmatic attack. Over a period of weeks she randomly administered these steroids
to asthma sufferers, and noted the time it took for the patients’ lungs to become
clear. Afterward, she discovered that 12 patients had been treated with each type
of steroid, with the following sample means (in minutes) and sample variances
resulting.

Steroid X i S2
i

A 32 145
B 40 138
C 30 150

(a) Test the hypothesis that the mean time to clear a mild asthmatic attack is the
same for all three steroids. Use the 5 percent level of significance.

(b) Find confidence intervals for all quantities µi − µj that, with 95 percent
confidence, are valid.

13. Five servings each of three different brands of processed meat were tested for fat
content. The following data (in fat percentage per gram) resulted.

Brand 1 2 3

32 41 36
Fat 34 32 37
content 31 33 30

35 29 28
33 35 33

(a) Does the fat content differ depending on the brand?
(b) Find confidence intervals for all quantities µi − µj that, with 95 percent

confidence, are valid.

14. A nutritionist randomly divided 15 bicyclists into 3 groups of 5 each. The first
group was given a vitamin supplement to take with each of their meals during the
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next 3 weeks. The second group was instructed to eat a particular type of high-fiber
whole-grain cereal for the next 3 weeks. The final group was instructed to eat as
they normally do. After the 3-week period elapsed, the nutritionist had each of
the bicyclists ride 6 miles. The following times were recorded.

Vitamin group: 15.6 16.4 17.2 15.5 16.3
Fiber cereal group: 17.1 16.3 15.8 16.4 16.0
Control group: 15.9 17.2 16.4 15.4 16.8

(a) Are the data consistent with the hypothesis that neither the vitamin nor the
fiber cereal affected the bicyclists’ speeds? Use the 5 percent level of signifi-
cance.

(b) Find confidence intervals for all quantities µi − µj that, with 95 percent
confidence, are valid.

15. Test the hypothesis that the following three independent samples all come from
the same normal probability distribution.

Sample 1 Sample 2 Sample 3

35 29 44
37 38 52
29 34 56
27 30
30 32

16. For data xij , i = 1, . . . , m, j = 1, . . . , n, show that

x.. =
m∑

i=1

xi./m =
n∑

j=1

x.j/n

17. If xij = i + j2, determine

(a)
∑3

j=1

∑2

i=1
xij

(b)
∑2

i=1

∑3

j=1
xij

18. If xij = ai + bj, show that
m∑

i=1

n∑

j=1

xij = n
m∑

i=1

ai + m
n∑

j=1

bj

19. A study has been made on pyrethrum flowers to determine the content of pyrethrin,
a chemical used in insecticides. Four methods of extracting the chemical are used,
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and samples are obtained from flowers stored under three conditions: fresh flow-
ers, flowers stored for 1 year, and flowers stored for 1 year but treated. It is assumed
that there is no interaction present. The data are as follows:

Pyrethrin Content, Percent

MethodStorage
Condition A B C D

1 1.35 1.13 1.06 .98
2 1.40 1.23 1.26 1.22
3 1.49 1.46 1.40 1.35

Suggest a model for the preceding information, and use the data to estimate its
parameters.

20. The following data refer to the number of deaths per 10,000 adults in a large
Eastern city in the different seasons for the years 1982 to 1986.

Year Winter Spring Summer Fall

1982 33.6 31.4 29.8 32.1
1983 32.5 30.1 28.5 29.9
1984 35.3 33.2 29.5 28.7
1985 34.4 28.6 33.9 30.1
1986 37.3 34.1 28.5 29.4

(a) Assuming a two-factor model, estimate the parameters.
(b) Test the hypothesis that death rates do not depend on the season. Use the

5 percent level of significance.
(c) Test, at the 5 percent level of significance, the hypothesis that there is no

effect due to the year.

21. For the model of Problem 19:

(a) Do the methods of extraction appear to differ?
(b) Do the storage conditions affect the content? Test at the α = .05 level of

significance.

22. Three different washing machines were employed to test four different detergents.
The following data give a coded score of the effectiveness of each washing.

(a) Estimate the improvement in mean value when using detergent 1 over using
detergents (i) 2; (ii) 3; (iii) 4.

(b) Estimate the improvement in mean value when using machine 3 as opposed
to using machine (i) 1; (ii) 2.
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Machine
1 2 3

Detergent 1 53 50 59
Detergent 2 54 54 60
Detergent 3 56 58 62
Detergent 4 50 45 57

(c) Test the hypothesis that the detergent used does not affect the score.
(d) Test the hypothesis that the machine used does not affect the score.

Use, in both (c) and (d), the 5 percent level of significance.

23. An experiment was devised to test the effects of running 3 different types of
gasoline with 3 possible types of additives. The experiment called for 9 identi-
cal motors to be run with 5 gallons for each of the pairs of gasoline and additives.
The following data resulted.

Mileage Obtained

Additive
Gasoline 1 2 3

1 124.1 131.5 127
2 126.4 130.6 128.4
3 127.2 132.7 125.6

(a) Test the hypothesis that the gasoline used does not affect the mileage.
(b) Test the hypothesis that the additives are equivalent.
(c) What assumptions are you making?

24. Suppose in Problem 6 that the 10 people placed on each diet consisted of 5 men
and 5 women, with the following data.

Diet 1 Diet 2

Women 7.6 19.5
8.8 17.6

12.5 16.8
16.1 13.7
18.6 21.5

Men 22.2 30.1
23.4 24.2
24.2 9.5
32.2 14.6
9.4 11.2
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(a) Test the hypothesis that there is no interaction between gender and diet.
(b) Test the hypothesis that the diet has the same effect on men and women.

25. A researcher is interested in comparing the breaking strength of different lami-
nated beams made from 3 different types of glue and 3 varieties of wood. To make
the comparison, 5 beams of each of the 9 combinations were manufactured and
then put under a stress test. The following table indicates the pressure readings at
which each of the beams broke.

Glue
Wood G1 G2 G3

196 208 214 216 258 250
W 1 247 216 235 240 264 248

221 252 272
216 228 215 217 246 247

W 2 240 224 235 219 261 250
236 241 255
230 242 212 218 255 251

W 3 232 244 216 224 261 258
228 222 247

(a) Test the hypothesis that the wood and glue effect is additive.
(b) Test the hypothesis that the wood used does not affect the breaking strength.
(c) Test the hypothesis that the glue used does not affect the breaking strength.

26. A study was made as to how the concentration of a certain drug in the blood,
24 hours after being injected, is influenced by age and gender. An analysis of the
blood samples of 40 people given the drug yielded the following concentrations
(in milligrams per cubic centimeter).

Age Group
11–25 26–40 41–65 Over 65

Male 52 52.5 53.2 82.4
56.6 49.6 53.6 86.2
68.2 48.7 49.8 101.3
82.5 44.6 50.0 92.4
85.6 43.4 51.2 78.6

Female 68.6 60.2 58.7 82.2
80.4 58.4 55.9 79.6
86.2 56.2 56.0 81.4
81.3 54.2 57.2 80.6
77.2 61.1 60.0 82.2
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(a) Test the hypothesis of no age and gender interaction.
(b) Test the hypothesis that gender does not affect the blood concentration.
(c) Test the hypothesis that age does not affect blood concentration.

27. Suppose, in Problem 23, that there has been some controversy about the assump-
tion of no interaction between gasoline and additive used. To allow for the possi-
bility of an interaction effect between gasoline and additive, it was decided to run
36 motors — 4 in each grouping. The following data resulted.

Additive
Gasoline 1 2 3

1 126.2 130.4 127
124.8 131.6 126.6
125.3 132.5 129.4
127.0 128.6 130.1

2 127.2 142.1 129.5
126.6 132.6 142.6
125.8 128.5 140.5
128.4 131.2 138.7

3 127.1 132.3 125.2
128.3 134.1 123.3
125.1 130.6 122.6
124.9 133.0 120.9

(a) Do the data indicate an interaction effect?
(b) Do the gasolines appear to give equal results?
(c) Test whether or not there is an additive effect or whether all additives work

equally well.
(d) What conclusions can you draw?

28. An experiment has been devised to test the hypothesis that an elderly person’s
memory retention can be improved by a set of “oxygen treatments.” A group of
scientists administered these treatments to men and women. The men and women
were each randomly divided into 4 groups of 5 each, and the people in the ith
group were given treatments over an (i − 1) week interval, i = 1, 2, 3, 4. (The
2 groups not given any treatments served as “controls.”) The treatments were set
up in such a manner that all individuals thought they were receiving the oxy-
gen treatments for the total 3 weeks. After treatment ended, a memory retention
test was administered. The results (with higher scores indicating higher memory
retentions) are shown in the table.

(a) Test whether or not there is an interaction effect.
(b) Test the hypothesis that the length of treatment does not affect memory

retention.
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(c) Is there a gender difference?
(d) A randomly chosen group of 5 elderly men, without receiving any oxygen

treatment, were given the memory retention test. Their scores were 37, 35,
33, 39, 29. What conclusions can you draw?

Scores

Number of Weeks of Oxygen Treatment
0 1 2 3

Men 42 39 38 42
54 52 50 55
46 51 47 39
38 50 45 38
51 47 43 51

Women 49 48 27 61
44 51 42 55
50 52 47 45
45 54 53 40
43 40 58 42

29. In a study of platelet production, 16 rats were put at an altitude of 15,000 feet,
while another 16 were kept at sea level (Rand, K., Anderson, T., Lukis, G., and
Creger, W., “Effect of hypoxia on platelet level in the rat,” Clinical Research, 18,

Spleen Removed Normal Spleen

Altitude 528 434
444 331
338 312
342 575
338 472
331 444
288 575
319 384

Sea Level 294 272
254 275
352 350
241 350
291 466
175 388
241 425
238 344
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p. 178, 1970). Half of the rats in both groups had their spleens removed. The
fibrinogen levels on day 21 are reported below.

(a) Test the hypothesis that there are no interactions.
(b) Test the hypothesis that there is no effect due to altitude.
(c) Test the hypothesis that there is no effect due to spleen removal. In all cases,

use the 5 percent level of significance.

30. Suppose that µ, α1, . . . , αm, β1, . . . , βn and µ′, α′1, . . . , α′m, β ′1, . . . , β ′n are such
that

µ + αi + βj = µ′ + α′i + β ′j for all i, j
∑

i

αi =
∑

i

α′i =
∑

j

βj =
∑

j

β ′j = 0

Show that
µ = µ′, αi = α′i , βj = β ′j

for all i and j. This shows that the parameters µ, α1, . . . , αm, β1, . . . , βn in our
representation of two-factor ANOVA are uniquely determined.



Chapter 11

GOODNESS OF FIT TESTS AND
CATEGORICAL DATA ANALYSIS

11.1 INTRODUCTION
We are often interested in determining whether or not a particular probabilistic model
is appropriate for a given random phenomenon. This determination often reduces to
testing whether a given random sample comes from some specified, or partially specified,
probability distribution. For example, we may a priori feel that the number of industrial
accidents occurring daily at a particular plant should constitute a random sample from
a Poisson distribution. This hypothesis can then be tested by observing the number of
accidents over a sequence of days and then testing whether it is reasonable to suppose
that the underlying distribution is Poisson. Statistical tests that determine whether a given
probabilistic mechanism is appropriate are called goodness of fit tests.

The classical approach to obtaining a goodness of fit test of a null hypothesis that
a sample has a specified probability distribution is to partition the possible values of the
random variables into a finite number of regions. The numbers of the sample values
that fall within each region are then determined and compared with the theoretical
expected numbers under the specified probability distribution, and when they are signifi-
cantly different the null hypothesis is rejected. The details of such a test are presented
in Section 11.2, where it is assumed that the null hypothesis probability distribution is
completely specified. In Section 11.3, we show how to do the analysis when some of the
parameters of the null hypothesis distribution are left unspecified; that is, for instance, the
null hypothesis might be that the sample distribution is a normal distribution, without
specifying the mean and variance of this distribution. In Sections 11.4 and 11.5, we con-
sider situations where each member of a population is classified according to two distinct
characteristics, and we show how to use our previous analysis to test the hypothesis that
the characteristics of a randomly chosen member of the population are independent. As
an application, we show how to test the hypothesis that m population all have the same
discrete probability distribution. Finally, in the optional section, Section 11.6, we return

489
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to the problem of testing that sample data come from a specified probability distribution,
which we now assume is continuous. Rather than discretizing the data so as to be able to
use the test of Section 11.2, we treat the data as given and make use of the Kolmogorov–
Smirnov test.

11.2 GOODNESS OF FIT TESTS WHEN ALL PARAMETERS
ARE SPECIFIED

Suppose that n independent random variables — Y1, . . . , Yn, each taking on one of the
values 1, 2, . . . , k — are to be observed and we are interested in testing the null hypothesis
that {pi , i = 1, . . . , k} is the probability mass function of the Yj . That is, if Y represents
any of the Yj , then the null hypothesis is

H0 : P{Y = i} = pi , i = 1, . . . , k

whereas the alternative hypothesis is

H1 : P{Y = i} != pi , for some i = 1, . . . , k

To test the foregoing hypothesis, let Xi, i = 1, . . . , k, denote the number of the Yj ’s that
equal i. Then as each Yj will independently equal i with probability P{Y = i}, it follows
that, under H0, Xi is binomial with parameters n and pi . Hence, when H0 is true,

E[Xi] = npi

and so (Xi − npi)
2 will be an indication as to how likely it appears that pi indeed equals

the probability that Y = i. When this is large, say, in relationship to npi , then it is an
indication that H0 is not correct. Indeed such reasoning leads us to consider the following
test statistic:

T =
k∑

i=1

(Xi − npi)
2

npi
(11.2.1)

and to reject the null hypothesis when T is large.
To determine the critical region, we need first specify a significance level α and then

we must determine that critical value c such that

PH0{T ≥ c} = α

That is, we need to determine c so that the probability that the test statistic T is at least
as large as c, when H0 is true, is α. The test is then to reject the hypothesis, at the α level
of significance, when T ≥ c and to accept when T < c.

It remains to determine c. The classical approach to doing so is to use the result that
when n is large T will have, when H0 is true, approximately (with the approximation
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becoming exact as n approaches infinity) a chi-square distribution with k − 1 degrees of
freedom. Hence, for n large, c can be taken to equal χ2

α,k−1; and so the approximate α

level test is

reject H0 if T ≥ χ2
α,k−1

accept H0 otherwise

If the observed value of T is T = t, then the preceding test is equivalent to rejecting H0
if the significance level α is at least as large as the p-value given by

p-value = PH0{T ≥ t}

≈ P{χ2
k−1 ≥ t}

where χ2
k−1 is a chi-square random variable with k − 1 degrees of freedom.

An accepted rule of thumb as to how large n need be for the foregoing to be a good
approximation is that it should be large enough so that npi ≥ 1 for each i, i = 1, . . . , k,
and also at least 80 percent of the values npi should exceed 5.

REMARKS

(a) A computationally simpler formula for T can be obtained by expanding the square
in Equation 11.2.1 and using the results that

∑
i pi = 1 and

∑
i Xi = n (why is this

true?):

T =
k∑

i=1

X 2
i − 2npiXi + n2p2

i
npi

(11.2.2)

=
∑

i

X 2
i /npi − 2

∑

i

Xi + n
∑

i

pi

=
∑

i

X 2
i /npi − n

(b) The intuitive reason why T , which depends on the k values X1, . . . , Xk, has only k−1
degrees of freedom is that 1 degree of freedom is lost because of the linear relationship∑

i Xi = n.
(c) Whereas the proof that, asymptotically, T has a chi-square distribution is advanced, it
can be easily shown when k = 2. In this case, since X1 + X2 = n, and p1 + p2 = 1, we
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see that

T = (X1 − np1)
2

np1
+ (X2 − np2)

2

np2

= (X1 − np1)
2

np1
+ (n − X1 − n[1 − p1])2

n(1 − p1)

= (X1 − np1)
2

np1
+ (X1 − np1)

2

n(1 − p1)

= (X1 − np1)
2

np1(1 − p1)
since

1
p

+ 1
1 − p

= 1
p(1 − p)

However, X1 is a binomial random variable with mean np1 and variance np1(1 − p1)

and thus, by the normal approximation to the binomial, it follows that (X1 − np1)/√
np1(1 − p1) has, for large n, approximately a standard normal distribution, and so its

square has approximately a chi-square distribution with 1 degree of freedom.

EXAMPLE 11.2a In recent years, a correlation between mental and physical well-being has
increasingly become accepted. An analysis of birthdays and death days of famous peo-
ple could be used as further evidence in the study of this correlation. To use these data,
we are supposing that being able to look forward to something betters a person’s men-
tal state, and that a famous person would probably look forward to his or her birth-
day because of the resulting attention, affection, and so on. If a famous person is in
poor health and dying, then perhaps anticipating his birthday would “cheer him up and
therefore improve his health and possibly decrease the chance that he will die shortly
before his birthday.” The data might therefore reveal that a famous person is less likely
to die in the months before his or her birthday and more likely to die in the months
afterward.

SOLUTION To test this, a sample of 1,251 (deceased) Americans was randomly chosen
from Who Was Who in America, and their birth and death days were noted. (The data
are taken from D. Phillips, “Death Day and Birthday: An Unexpected Connection,” in
Statistics: A Guide to the Unknown, Holden-Day, 1972.) The data are summarized in
Table 11.1.

If the death day does not depend on the birthday, then it would seem that each of the
1,251 individuals would be equally likely to fall in any of the 12 categories. Thus, let us
test the null hypothesis

H0 = pi = 1
12

, i = 1, . . . , 12
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Since npi = 1, 251/12 = 104.25, the chi-square test statistic for this hypothesis is

T = (90)2 + (100)2 + (87)2 + · · · + (106)2

104.25
− 1,251

= 17.192

The p-value is

p-value ≈ P{χ2
11 ≥ 17.192}

= 1 − .8977 = .1023 by Program 5.8.1a

The results of this test leave us somewhat up in the air about the hypothesis that an
approaching birthday has no effect on an individual’s remaining lifetime. For whereas the
data are not quite strong enough (at least, at the 10 percent level of significance) to reject
this hypothesis, they are certainly suggestive of its possible falsity. This raises the possibility
that perhaps we should not have allowed as many as 12 data categories, and that we might
have obtained a more powerful test by allowing for a fewer number of possible outcomes.
For instance, let us determine what the result would have been if we had coded the data
into 4 possible outcomes as follows:

outcome 1 = −6, −5, −4

outcome 2 = −3, −2, −1

outcome 3 = 0, 1, 2

outcome 4 = 3, 4, 5

That is, for instance, an individual whose death day occurred 3 months before his or her
birthday would be placed in outcome 2. With this classification, the data would be as
follows:

Number of
Outcome Times Occurring

1 277
2 283
3 358
4 333

n = 1,251
n/4 = 312.75
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The test statistic for testing H0 = pi = 1/4, i = 1, 2, 3, 4 is

T = (277)2 + (283)2 + (358)2 + (333)2

312.75
− 1.251

= 14.775

Hence, as χ2
.01,3 = 11.345, the null hypothesis would be rejected even at the 1 percent

level of significance. Indeed, using Program 5.8.1a yields that

p-value ≈ P{χ2
3 ≥ 14.775} = 1 − .998 = .002

The foregoing analysis is, however, subject to the criticism that the null hypothesis was
chosen after the data were observed. Indeed, while there is nothing incorrect about using
a set of data to determine the “correct way” of phrasing a null hypothesis, the additional
use of those data to test that very hypothesis is certainly questionable. Therefore, to be
quite certain of the conclusion to be drawn from this example, it seems prudent to choose
a second random sample — coding the values as before — and again test H0 : pi =
1/4, i = 1, 2, 3, 4 (see Problem 3). !

Program 11.2.1 can be used to quickly calculate the value of T .

EXAMPLE 11.2b A contractor who purchases a large number of fluorescent lightbulbs has
been told by the manufacturer that these bulbs are not of uniform quality but rather have
been produced in such a way that each bulb produced will, independently, either be of
quality level A, B, C, D, or E, with respective probabilities .15, .25, .35, .20, .05. However,
the contractor feels that he is receiving too many type E (the lowest quality) bulbs, and
so he decides to test the producer’s claim by taking the time and expense to ascertain the
quality of 30 such bulbs. Suppose that he discovers that of the 30 bulbs, 3 are of quality
level A, 6 are of quality level B, 9 are of quality level C, 7 are of quality level D, and
5 are of quality level E. Do these data, at the 5 percent level of significance, enable the
contractor to reject the producer’s claim?

SOLUTION Program 11.2.1 gives the value of the test statistic as 9.348. Therefore,

p-value = PH0{T ≥ 9.348}
≈ P{χ2

4 ≥ 9.348}
= 1 − .947 from Program 5.8.1a

= .053

Thus the hypothesis would not be rejected at the 5 percent level of significance (but since
it would be rejected at all significance levels above .053, the contractor should certainly
remain skeptical). !
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11.2.1 Determining the Critical Region by Simulation
From 1900 when Karl Pearson first showed that T has approximately (becoming exact
as n approaches infinity) a chi-square distribution with k − 1 degrees of freedom, until
relatively recently, this approximation was the only means available for determining the
p-value of the goodness of fit test. However, with the advent of inexpensive, fast, and easily
available computational power a second, potentially more accurate, approach has become
available: namely, the use of simulation to obtain to a high level of accuracy the p-value
of the test statistic.

The simulation approach is as follows. First, the value of T is determined — say, T = t.
Now to determine whether or not to accept H0, at a given significance level α, we need to
know the probability that T would be at least as large as t when H0 is true. To determine
this probability, we simulate n independent random variables Y (1)

1 , . . . , Y (1)
n each having

the probability mass function {pi , i = 1, . . . , k} — that is,

P{Y (1)
j = i} = pi , i = 1, . . . , k, j = 1, . . . , n

Now let

X (1)
i = number j : Y (1)

j = i

and set

T (1) =
k∑

i=1

(X (1)
i − npi)

2

npi

Now repeat this procedure by simulating a second set, independent of the first set, of n
independent random variables Y (2)

1 , . . . , Y (2)
n each having the probability mass function

{pi , i = 1, . . . , k} and then, as for the first set, determining T (2). Repeating this a large
number, say, r, of times yields r independent random variables T (1), T (2), . . . , T (r), each
of which has the same distribution as does the test statistic T when H0 is true. Hence, by
the law of large numbers, the proportion of the Ti that are as large as t will be very nearly
equal to the probability that T is as large as t when H0 is true — that is,

number l : T (l) ≥ t
r

≈ PH0{T ≥ t}

In fact, by letting r be large, the foregoing can be considered to be, with high probability,
almost an equality. Hence, if that proportion is less than or equal to α, then the p-value,
equal to the probability of observing a T as large as t when H0 is true, is less than α and
so H0 should be rejected.
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REMARKS

(a) To utilize the foregoing simulation approach to determine whether or not to accept
H0 when T is observed, we need to specify how one can simulate, or generate, a random
variable Y such that P{Y = i} = pi, i = 1, . . . , k. One way is as follows:

Step 1: Generate a random number U .
Step 2: If

p1 + · · · + pi−1 ≤ U < p1 + · · · + pi

set Y = i (where p1 + · · · + pi−1 ≡ 0 when i = 1). That is,

U < p1 ⇒ Y = 1

p1 ≤ U < p1 + p2 ⇒ Y = 2
...

p1 + · · · + pi−1 ≤ U < p1 + · · · + pi ⇒ Y = i
...

p1 + · · · + pn−1 < U ⇒ Y = n

Since a random number is equivalent to a uniform (0, 1) random variable, we have that

P{a < U < b} = b − a, 0 < a < b < 1

and so

P{Y = i} = P{p1 + · · · + pi−1 < U < p1 + · · · + pi} = pi

(b) A significant question that remains is how many simulation runs are necessary. It has
been shown that the value r = 100 is usually sufficient at the conventional 5 percent level
of significance.*

EXAMPLE 11.2c Let us reconsider the problem presented in Example 11.2b. A simulation
study yielded the result

PH0{T ≤ 9.52381} = .95

and so the critical value should be 9.52381, which is remarkably close to χ2
.05,4 = 9.488

given as the critical value by the chi-square approximation. This is most interesting since
the rule of thumb for when the chi-square approximation can be applied — namely, that

* See Hope, A., “A Simplified Monte Carlo Significance Test Procedure,” J. of Royal Statist. Soc., B. 30, 582–598,
1968.
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each npi ≥ 1 and at least 80 percent of the npi exceed 5 — does not apply, thus raising
the possibility that it is rather conservative. !

Program 11.2.2 can be utilized to determine the p-value.
To obtain more information as to how well the chi-square approximation performs,

consider the following example.

EXAMPLE 11.2d Consider an experiment having six possible outcomes whose prob-
abilities are hypothesized to be .1, .1, .05, .4, .2, and .15. This is to be tested by per-
forming 40 independent replications of the experiment. If the resultant number of times
that each of the six outcomes occurs is 3, 3, 5, 18, 4, 7, should the hypothesis be accepted?

SOLUTION A direct computation, or the use of Program 11.2.1, yields that the value of
the test statistic is 7.4167. Utilizing Program 5.8.1a gives the result that

P{χ2
5 ≤ 7.4167} = .8088

and so

p-value ≈ .1912

To check the foregoing approximation, we ran Program 11.2.2, using 10,000 simulation
runs, and obtained an estimate of the p-value equal to .1843 (see Figure 11.1).

The estimate of the p -value is 0.1843

Simulation Approximation to the p -value in Goodness of Fit

Start

Quit

Enter sample size:

Enter desired number
of simulation runs:

Enter the value of the
test statistic:

40

Enter value for p : .15

Add This Point To List

Remove Selected Point From List

Probabilities

Clear List

This program uses simulation to approximate
the p -value in the goodness of fit test.

0.1
0.1
0.05
0.4
0.2
0.15

10000

7.416667

FIGURE 11.1
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Since the number of the 104 simulated values that exceed 7.4167 is a binomial random
variable with parameters n = 104 and p = p-value, it follows that a 90 percent confidence
interval for the p-value is

p-value ∈ .1843 ± 1.645
√

.1843(.8157)/104

That is, with 90 percent confidence

p-value ∈ (.1779, .1907) !

11.3 GOODNESS OF FIT TESTS WHEN SOME
PARAMETERS ARE UNSPECIFIED

We can also perform goodness of fit tests of a null hypothesis that does not completely
specify the probabilities {pi , i = 1, . . . , k}. For instance, consider the situation previously
mentioned in which one is interested in testing whether the number of accidents occurring
daily in a certain industrial plant is Poisson distributed with some unknown mean λ. To
test this hypothesis, suppose that the daily number of accidents is recorded for n days —
let Y1, . . . , Yn be these data. To analyze these data we must first address the difficulty that
the Yi can assume an infinite number of possible values. However, this is easily dealt with
by breaking up the possible values into a finite number k of regions and then considering
the region in which each Yi falls. For instance, we might say that the outcome of the
number of accidents on a given day is in region 1 if there are 0 accidents, region 2 if
there is 1 accident, and region 3 if there are 2 or 3 accidents, region 4 if there are 4 or
5 accidents, and region 5 if there are more than 5 accidents. Hence, if the distribution is
indeed Poisson with mean λ, then

p1 = P{Y = 0} = e−λ (11.3.1)

p2 = P{Y = 1} = λe−λ

p3 = P{Y = 2} + P{Y = 3} = e−λλ2

2
+ e−λλ3

6

p4 = P{Y = 4} + P{Y = 5} = e−λλ4

24
+ e−λλ5

120

p5 = P{Y > 5} = 1 − e−λ − λe−λ − e−λλ2

2
− e−λλ3

6
− e−λλ4

24
− e−λλ5

120

The second difficulty we face in obtaining a goodness of fit test results from the fact
that the mean value λ is not specified. Clearly, the intuitive thing to do is to assume that
H0 is true and then estimate it from the data — say, λ̂ is the estimate of λ — and then
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compute the test statistic

T =
k∑

i=1

(Xi − np̂i)
2

np̂i

where Xi is, as before, the number of Yj that fall in region i, i = 1, . . . , k, and p̂i is
the estimated probability of the event that Yj falls in region i, which is determined by
substituting λ̂ for λ in expression 11.3.1 for pi .

In general, this approach can be utilized whenever there are unspecified parameters in
the null hypothesis that are needed to compute the quantities pi , i = 1, . . . , k. Suppose
now that there are m such unspecified parameters and that they are to be estimated by
the method of maximum likelihood. It can then be proven that when n is large, the
test statistic T will have, when H0 is true, approximately a chi-square distribution with
k − 1 − m degrees of freedom. (In other words, one degree of freedom is lost for each
parameter that needs to be estimated.) The test is, therefore, to

reject H0 if T ≥ χ2
α,k−1−m

accept H0 otherwise

An equivalent way of performing the foregoing is to first determine the value of the test
statistic T , say T = t, and then compute

p-value ≈ P{χ2
k−1−m ≥ t}

The hypothesis would be rejected if α ≥ p-value.

EXAMPLE 11.3a Suppose the weekly number of accidents over a 30-week period is as
follows:

8 0 0 1 3 4 0 2 12 5
1 8 0 2 0 1 9 3 4 5
3 3 4 7 4 0 1 2 1 2

Test the hypothesis that the number of accidents in a week has a Poisson distribution.

SOLUTION Since the total number of accidents in the 30 weeks is 95, the maximum like-
lihood estimate of the mean of the Poisson distribution is

λ̂ = 95
30

= 3.16667

Since the estimate of P{Y = i} is then

P{Y = i} est= e−λ̂λ̂i

i!
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we obtain, after some computation, that with the five regions as given in the beginning of
this section,

p̂1 = .04214

p̂2 = .13346

p̂3 = .43434

p̂4 = .28841

p̂5 = .10164

Using the data values X1 = 6, X2 = 5, X3 = 8, X4 = 6, X5 = 5, an additional computa-
tion yields the test statistic value

T =
5∑

i=1

(Xi − 30p̂i)
2

30p̂i
= 21.99156

To determine the p-value, we run Program 5.8.1a. This yields

p-value ≈ P{χ2
3 > 21.99}

= 1 − .999936

= .000064

and so the hypothesis of an underlying Poisson distribution is rejected. (Clearly, there
were too many weeks having 0 accidents for the hypothesis that the underlying distribu-
tion is Poisson with mean 3.167 to be tenable.) !

11.4 TESTS OF INDEPENDENCE IN CONTINGENCY
TABLES

In this section, we consider problems in which each member of a population can
be classified according to two distinct characteristics — which we shall denote as the
X -characteristic and the Y -characteristic. We suppose that there are r possible values for
the X -characteristic and s for the Y -characteristic, and let

Pij = P{X = i, Y = j}

for i = 1, . . . , r, j = 1, . . . , s. That is, Pij represents the probability that a randomly
chosen member of the population will have X -characteristic i and Y -characteristic j.
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The different members of the population will be assumed to be independent. Also, let

pi = P{X = i} =
s∑

j=1

Pij , i = 1, . . . , r

and

qj = P{Y = j} =
r∑

i=1

Pij , j = 1, . . . , s

That is, pi is the probability that an arbitrary member of the population will have
X -characteristic i, and qj is the probability it will have Y -characteristic j.

We are interested in testing the hypothesis that a population member’s X - and
Y -characteristics are independent. That is, we are interested in testing

H0 : Pij = piqj, for all i = 1, . . . , r

j = 1, . . . , s

against the alternative

H1 : Pij != piqj , for some i, j i = 1, . . . , r
j = 1, . . . , s

To test this hypothesis, suppose that n members of the population have been sampled,
with the result that Nij of them have simultaneously had X -characteristic i and
Y -characteristic j, i = 1, . . . , r, j = 1, . . . , s.

Since the quantities pi, i = 1, . . . , r, and qj, j = 1, . . . , s are not specified by the null
hypothesis, they must first be estimated. Now since

Ni =
s∑

j=1

Nij , i = 1, . . . , r

represents the number of the sampled population members that have X -characteristic i,
a natural (in fact, the maximum likelihood) estimator of pi is

p̂i = Ni

n
, i = 1, . . . , r

Similarly, letting

Mj =
r∑

i=1

Nij , j = 1, . . . , s
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denote the number of sampled members having Y -characteristic j, the estimator for qj is

q̂j = Mj

n
, j = 1, . . . , s

At first glance, it may seem that we have had to use the data to estimate r+s parameters.
However, since the pi ’s and qj ’s have to sum to 1 — that is,

∑r
i=1 pi = ∑s

j=1 qj = 1 —
we need estimate only r − 1 of the p’s and s − 1 of the q’s. (For instance, if r were
equal to 2, then an estimate of p1 would automatically provide an estimate of p2 since
p2 = 1 − p1.) Hence, we actually need estimate r − 1 + s − 1 = r + s − 2 parameters,
and since each population member has k = rs different possible values, it follows that the
resulting test statistic will, for large n, have approximately a chi-square distribution with
rs − 1 − (r + s − 2) = (r − 1)(s − 1) degrees of freedom.

Finally, since

E[Nij] = nPij

= npiqj when H0 is true

it follows that the test statistic is given by

T =
s∑

j=1

r∑

i=1

(Nij − np̂iq̂j)
2

np̂iq̂j
=

s∑

j=1

r∑

i=1

N 2
ij

np̂iq̂j
− n

and the approximate significance level α test is to

reject H0 if T ≥ χ2
α,(r−1)(s−1)

not reject H0 otherwise

EXAMPLE 11.4a A sample of 300 people was randomly chosen, and the sampled individ-
uals were classified as to their gender and political affiliation, Democrat, Republican, or
Independent. The following table, called a contingency table, displays the resulting data.

j

i Democrat Republican Independent Total

Women 68 56 32 156
Men 52 72 20 144
Total 120 128 52 300

Thus, for instance, the contingency table indicates that the sample of size 300 contained
68 women who classified themselves as Democrats, 56 women who classified themselves
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as Republicans, and 32 women who classified themselves as Independents; that is, N11 =
68, N12 = 56, and N13 = 32. Similarly, N21 = 52, N22 = 72, and N23 = 20.

Use these data to test the hypothesis that a randomly chosen individual’s gender and
political affiliation are independent.

SOLUTION From the above data, we obtain that the six values of np̂iq̂j = NiMj/n are as
follows:

N1M1

n
= 156 × 120

300
= 62.40

N1M2

n
= 156 × 128

300
= 66.56

N1M3

n
= 156 × 52

300
= 27.04

N2M1

n
= 144 × 120

300
= 57.60

N2M2

n
= 144 × 128

300
= 61.44

N2M3

n
= 144 × 52

300
= 24.96

The value of the test statistic is thus

TS = (68 − 62.40)2

62.40
+ (56 − 66.56)2

66.56
+ (32 − 27.04)2

27.04
+ (52 − 57.60)2

57.60

+ (72 − 61.44)2

61.44
+ (20 − 24.96)2

24.96
= 6.433

Since (r − 1)(s − 1) = 2, we must compare the value of TS with the critical value χ2
.05,2.

From Table A2

χ2
.05,2 = 5.991

Since TS ≥ 5.991, the null hypothesis is rejected at the 5 percent level of significance.
That is, the hypothesis that gender and political affiliation of members of the population
are independent is rejected at the 5 percent level of significance. !

The results of the test of independence of the characteristics of a randomly chosen
member of the population can also be obtained by computing the resulting p-value. If
the observed value of the test statistic is T = t, then the significance level α test would call
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for rejecting the hypothesis of independence if the p-value is less than or equal to α, where

p-value = PH0{T ≥ t}
≈ P{χ2

(r−1)(s−1) ≥ t}

Program 11.4 will compute the value of T .

EXAMPLE 11.4b A company operates four machines on three separate shirts daily. The
following contingency table presents the data during a 6-month time period, concerning
the machine breakdowns that resulted.

Number of Breakdowns

Machine
A B C D Total per Shift

Shift 1 10 12 6 7 35
Shift 2 10 24 9 10 53
Shift 3 13 20 7 10 50
Total per Machine 33 56 22 27 138

Suppose we are interested in determining whether a machine’s breakdown probability
during a particular shift is influenced by that shift. In other words, we are interested in
testing, for an arbitrary breakdown, whether the machine causing the breakdown and the
shift on which the breakdown occurred are independent.

SOLUTION A direct computation, or the use of Program 11.4, gives that the value of
the test statistic is 1.8148 (see Figure 11.2). Utilizing Program 5.8.1a then gives that

p-value ≈ P{χ2
6 ≥ 1.8148}

= 1 − .0641

= .9359

and so the hypothesis that the machine that causes a breakdown is independent of the
shift on which the breakdown occurs is accepted. !

11.5 TESTS OF INDEPENDENCE IN CONTINGENCY
TABLES HAVING FIXED MARGINAL TOTALS

In Example 11.4a, we were interested in determining whether gender and political affili-
ation were dependent in a particular population. To test this hypothesis, we first chose
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The Test Statistic for Independence in a Contingency Table

Start

Quit

1
2
3

A B C
10
10
13

12
24
20

D
6
9
7

7
10
10

The test statistic has value t 5 1.81478

FIGURE 11.2

a random sample of people from this population and then noted their characteristics.
However, another way in which we could gather data is to fix in advance the numbers of
men and women in the sample and then choose random samples of those sizes from the
subpopulations of men and women. That is, rather than let the numbers of women and
men in the sample be determined by chance, we might decide these numbers in advance.
Because doing so would result in fixed specified values for the total numbers of men and
women in the sample, the resulting contingency table is often said to have fixed margins
(since the totals are given in the margins of the table).

It turns out that even when the data are collected in the manner prescribed above, the
same hypothesis test as given in Section 11.4 can still be used to test for the independence
of the two characteristics. The test statistic remains

TS =
∑

i

∑

j

(Nij − êij)
2

êij

where

Nij = number of members of sample who have both X -characteristic i
and Y -characteristic j

Ni = number of members of sample who have X -characteristic i

Mj = number of members of sample who have Y -characteristic j
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and

êij = np̂iq̂j = NiMj

n

where n is the total size of the sample.
In addition, it is still true that when H0 is true, TS will approximately have a chi-square

distribution with (r−1)(s−1) degrees of freedom. (The quantities r and s refer, of course,
to the numbers of possible values of the X - and Y -characteristic, respectively.) In other
words, the test of the independence hypothesis is unaffected by whether the marginal
totals of one characteristic are fixed in advance or result from a random sample of the
entire population.

EXAMPLE 11.5a A randomly chosen group of 20,000 nonsmokers and one of 10,000
smokers were followed over a 10-year period. The following data relate the numbers of
them that developed lung cancer during that period.

Smokers Nonsmokers Total

Lung cancer 62 14 76
No lung cancer 9,938 19,986 29,924
Total 10,000 20,000 30,000

Test the hypothesis that smoking and lung cancer are independent. Use the 1 percent level
of significance.

SOLUTION The estimates of the expected number to fall in each ij cell when smoking and
lung cancer are independent are

ê11 = (76)(10,000)

30,000
= 25.33

ê12 = (76)(20,000)

30,000
= 50.67

ê21 = (29,924)(10,000)

30,000
= 9,974.67

ê22 = (29,924)(20,000)

30,000
= 19,949.33
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Therefore, the value of the test statistic is

TS = (62 − 25.33)2

25.33
+ (14 − 50.67)2

50.67
+ (9,938 − 9,974.67)2

9,974.67

+ (19,986 − 19,949.33)2

19,949.33

= 53.09 + 26.54 + .13 + .07 = 79.83

Since this is far larger than χ2
.01,1 = 6.635, we reject the null hypothesis that whether

a randomly chosen person develops lung cancer is independent of whether that person is
a smoker. !

We now show how to use the framework of this section to test the hypothesis that
m discrete population distributions are equal. Consider m separate populations, each of
whose members takes on one of the values 1, . . . , n. Suppose that a randomly chosen
member of population i will have value j with probability

pi, j, i = 1, . . . , m, j = 1, . . . , n

and consider a test of the null hypothesis

H0 : p1, j = p2, j = p3, j = · · · = pm, j , for each j = 1, . . . , n

To obtain a test of this null hypothesis, consider first the superpopulation consisting of
all members of each of the m populations. Any member of this superpopulation can be
classified according to two characteristics. The first characteristic specifies which of the
m populations the member is from, and the second characteristic specifies its value. The
hypothesis that the population distributions are equal becomes the hypothesis that, for
each value, the proportion of members of each population having that value are the same.
But this is exactly the same as saying that the two characteristics of a randomly chosen
member of the superpopulation are independent. (That is, the value of a randomly cho-
sen superpopulation member is independent of the population to which this member
belongs.)

Therefore, we can test H0 by randomly choosing sample members from each
population. If we let Mi denote the sample size from population i and let Ni,j
denote the number of values from that sample that are equal to j, i = 1, . . . , m, j =
1, . . . , n, then we can test H0 by testing for independence in the following contingency
table.
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Population

Value 1 2 i m Totals

1 N1,1 N2,1 . . . Ni,1 . . . Nm,1 N1
2
...
j N1,j N2,j . . . Ni,j . . . Nm,j Nj
...
n N1,n N2,n . . . Ni,n Nm,n Nn

Totals M1 M2 . . . Mi . . . Mm

Note that Nj denotes the number of sampled members that have value j.

EXAMPLE 11.5b A recent study reported that 500 female office workers were randomly
chosen and questioned in each of four different countries. One of the questions related to
whether these women often received verbal or sexual abuse on the job. The following data
resulted.

Country Number Reporting Abuse

Australia 28
Germany 30
Japan 51
United States 55

Based on these data, is it plausible that the proportions of female office workers who
often feel abused at work are the same for these countries?

SOLUTION Putting the above data in the form of a contingency table gives the following.

Country

1 2 3 4 Totals

Receive abuse 28 30 58 55 171
Do not receive abuse 472 470 442 445 1,829
Totals 500 500 500 500 2,000

We can now test the null hypothesis by testing for independence in the preceding contin-
gency table. If we run Program 11.4, then the value of the test statistic and the resulting
p-value are

TS = 19.51, p-value ≈ .0002



510 Chapter 11: Goodness of Fit Tests and Categorical Data Analysis

Therefore, the hypothesis that the percentages of women who feel they are being abused
on the job are the same for these countries is rejected at the 1 percent level of significance
(and, indeed, at any significance level above .02 percent). !

*11.6 THE KOLMOGOROV–SMIRNOV GOODNESS OF
FIT TEST FOR CONTINUOUS DATA

Suppose now that Y1, . . . , Yn represents sample data from a continuous distribution, and
that we wish to test the null hypothesis H0 that F is the population distribution, where F
is a specified continuous distribution function. One approach to testing H0 is to break up
the set of possible values of the Yj into k distinct intervals, say,

( y0, y1), ( y1, y2), . . . , ( yk−1, yk), where y0 = −∞, yk = +∞

and then consider the discretized random variables Y d
j , j = 1, . . . , n, defined by

Y d
j = i if Yj lies in the interval ( yi−1, yi)

The null hypothesis then implies that

P{Y d
j = i} = F( yi) − F( yi−1), i = 1, . . . , k

and this can be tested by the chi-square goodness of fit test already presented.
There is, however, another way of testing that the Yj come from the continuous dis-

tribution function F that is generally more efficient than discretizing; it works as follows.
After observing Y1, . . . , Yn, let Fe be the empirical distribution function defined by

Fe(x) = #i : Yi ≤ x
n

That is, Fe(x) is the proportion of the observed values that are less than or equal to x.
Because Fe(x) is a natural estimator of the probability that an observation is less than or
equal to x, it follows that, if the null hypothesis that F is the underlying distribution is
correct, it should be close to F(x). Since this is so for all x, a natural quantity on which to
base a test of H0 is the test quantity

D ≡ Maximum
x

|Fe(x) − F(x)|

where the maximum is over all values of x from −∞ to +∞. The quantity D is called the
Kolmogorov–Smirnov test statistic.

* Optional section.
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To compute the value of D for a given data set Yj = yj , j = 1, . . . , n, let y(1), y(2), . . . , y(n)

denote the values of the yj in increasing order. That is,

y( j) = jth smallest of y1, . . . , yn

For example, if n = 3 and y1 = 3, y2 = 5, y3 = 1, then y(1) = 1, y(2) = 3, y(3) = 5.
Since Fe(x) can be written

Fe(x) =






0 if x < y(1)
1
n

if y(1) ≤ x < y(2)

...
j
n

if y( j) ≤ x < y( j+1)

...
1 if y(n) ≤ x

we see that Fe(x) is constant within the intervals ( y( j−1), y( j)) and then jumps by 1/n at
the points y(1), . . . , y(n). Since F(x) is an increasing function of x that is bounded by 1, it
follows that the maximum value of Fe(x) − F(x) is nonnegative and occurs at one of the
points y( j), j = 1, . . . , n (see Figure 11.3).

That is,

Maximum
x

{Fe(x) − F(x)} = Maximum
j=1,...,n

{
j
n

− F( y( j))

}
(11.6.1)

1

x

Fe(x)

F(x)

y(1) y(2) y(3) y(4) y(5)

FIGURE 11.3 n = 5.
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Similarly, the maximum value of F(x)−Fe(x) is also nonnegative and occurs immediately
before one of the jump points y( j); and so

Maximum
x

{F(x) − Fe(x)} = Maximum
j=1,...,n

{
F( y( j)) − j − 1

n

}
(11.6.2)

From Equations 11.6.1 and 11.6.2, we see that

D = Maximum
x

|Fe(x) − F(x)|
= Maximum{Maximum{Fe(x) − F(x)}, Maximum{F(x) − Fe(x)}}

= Maximum
{

j
n

− F( y( j)), F( y( j)) − j − 1
n

, j = 1, . . . , n
}

(11.6.3)

Equation 11.6.3 can be used to compute the value of D.
Suppose now that the Yj are observed and their values are such that D = d . Since a

large value of D would appear to be inconsistent with the null hypothesis that F is the
underlying distribution, it follows that the p-value for this data set is given by

p-value = PF {D ≥ d}

where we have written PF to make explicit that this probability is to be computed under
the assumption that H0 is correct (and so F is the underlying distribution).

The above p-value can be approximated by a simulation that is made easier by the
following proposition, which shows that PF {D ≥ d} does not depend on the underlying
distribution F . This result enables us to estimate the p-value by doing the simulation
with any continuous distribution F we choose [thus allowing us to use the uniform (0, 1)
distribution].

PROPOSITION 11.6.1

PF {D ≥ d} is the same for any continuous distribution F .

Proof

PF {D ≥ d} = PF

{
Maximum

x

∣∣∣∣
#i : Yi ≤ x

n
− F(x)

∣∣∣∣ ≥ d
}

= PF

{
Maximum

x

∣∣∣∣
#i : F(Yi) ≤ F(x)

n
− F(x)

∣∣∣∣ ≥ d
}

= P
{

Maximum
x

∣∣∣∣
#i : Ui ≤ F(x)

n
− F(x)

∣∣∣∣ ≥ d
}
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where U1, . . . , Un are independent uniform (0, 1) random variables. The first equality
following because F is an increasing function and so Y ≤ x is equivalent to F(Y ) ≤ F(x);
and the second because of the result (whose proof is left as an exercise) that if Y has the
continuous distribution F then the random variable F(Y ) is uniform on (0, 1).

Continuing the above, we see by letting y = F(x) and noting that as x ranges from
−∞ to +∞, F(x) ranges from 0 to 1, that

PF {D ≥ d} = P
{

Maximum
0≤y≤1

∣∣∣∣
#i : Ui ≤ y

n
− y

∣∣∣∣ ≥ d
}

which shows that the distribution of D, when H0 is true, does not depend on the actual
distribution F . !

It follows from the above proposition that after the value of D is determined from the
data, say, D = d , the p-value can be obtained by doing a simulation with the uniform (0,
1) distribution. That is, we generate a set of n random numbers U1, . . . , Un and then
check whether or not the inequality

Maximum
0≤y≤1

∣∣∣∣
#i : Ui ≤ y

n
− y

∣∣∣∣ ≥ d

is valid. This is then repeated many times and the proportion of times that it is valid is
our estimate of the p-value of the data set. As noted earlier, the left side of the inequality
can be computed by ordering the random numbers and then using the identity

Max
∣∣∣∣
#i : Ui ≤ y

n
− y

∣∣∣∣ = Max
{

j
n

− U( j), U( j) − ( j − 1)

n
, j = 1, . . . , n

}

where U( j) is the jth smallest value of U1, . . . , Un. For example, if n = 3 and U1 = .7,
U2 = .6, U3 = .4, then U(1) = .4, U(2) = .6, U(3) = .7 and the value of D for this data
set is

D = Max
{

1
3

− .4,
2
3

− .6, 1 − .7, .4, .6 − 1
3

, .7 − 2
3

}
= .4

A significance level α test can be obtained by considering the quantity D∗ defined by

D∗ = (
√

n + .12 + .11/
√

n)D

Letting d∗
α be such that

PF {D∗ ≥ d∗
α } = α

then the following are accurate approximations for d∗
α for a variety of values:

d∗
.1 = 1.224, d∗

.05 = 1.358, d∗
.025 = 1.480, d∗

.01 = 1.626
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The level α test would reject the null hypothesis that F is the distribution if the observed
value of D∗ is at least as large as d∗

α .

EXAMPLE 11.6a Suppose we want to test the hypothesis that a given population distribu-
tion is exponential with mean 100; that is, F(x) = 1 − e−x/100. If the (ordered) values
from a sample of size 10 from this distribution are

66, 72, 81, 94, 112, 116, 124, 140, 145, 155

what conclusion can be drawn?

SOLUTION To answer the above, we first employ Equation 11.6.3 to compute the value of
the Kolmogorov–Smirnov test quantity D. After some computation this gives the result
D = .4831487, which results in

D∗ = .48315(
√

10 + 0.12 + 0.11/
√

10) = 1.603

Because this exceeds d∗
.025 = 1.480, it follows that the null hypothesis that the data come

from an exponential distribution with mean 100 would be rejected at the 2.5 percent
level of significance. (On the other hand, it would not be rejected at the 1 percent level of
significance.) !

Problems

1. According to the Mendelian theory of genetics, a certain garden pea plant should
produce either white, pink, or red flowers, with respective probabilities 1

4 , 1
2 , 1

4 .
To test this theory, a sample of 564 peas was studied with the result that 141
produced white, 291 produced pink, and 132 produced red flowers. Using the
chi-square approximation, what conclusion would be drawn at the 5 percent level
of significance?

2. To ascertain whether a certain die was fair, 1,000 rolls of the die were recorded,
with the following results.

Outcome Number of Occurrences

1 158
2 172
3 164
4 181
5 160
6 165
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Test the hypothesis that the die is fair (that is, that pi = 1
6 , i = 1, . . . , 6) at the

5 percent level of significance. Use the chi-square approximation.

3. Determine the birth and death dates of 100 famous individuals and, using the
four-category approach of Example 11.2a, test the hypothesis that the death
month is not affected by the birth month. Use the chi-square approximation.

4. It is believed that the daily number of electrical power failures in a certain Mid-
western city is a Poisson random variable with mean 4.2. Test this hypothesis if
over 150 days the number of days having i power failures is as follows:

Failures Number of Days

0 0
1 5
2 22
3 23
4 32
5 22
6 19
7 13
8 6
9 4

10 4
11 0

5. Among 100 vacuum tubes tested, 41 had lifetimes of less than 30 hours, 31 had
lifetimes between 30 and 60 hours, 13 had lifetimes between 60 and 90 hours,
and 15 had lifetimes of greater than 90 hours. Are these data consistent with the
hypothesis that a vacuum tube’s lifetime is exponentially distributed with a mean
of 50 hours?

6. The past output of a machine indicates that each unit it produces will be

top grade with probability .40
high grade with probability .30
medium grade with probability .20
low grade with probability .10

A new machine, designed to perform the same job, has produced 500 units with
the following results.
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top grade 234
high grade 117
medium grade 81
low grade 68

Can the difference in output be ascribed solely to chance?

7. The neutrino radiation from outer space was observed during several days. The
frequencies of signals were recorded for each sidereal hour and are as given below:

Frequency of Neutrino Radiation from Outer Space

Hour Frequency Hour Frequency
Starting at of Signals Starting at of Signals

0 24 12 29
1 24 13 26
2 36 14 38
3 32 15 26
4 33 16 37
5 36 17 28
6 41 18 43
7 24 19 30
8 37 20 40
9 37 21 22

10 49 22 30
11 51 23 42

Test whether the signals are uniformly distributed over the 24-hour period.

8. Neutrino radiation was observed over a certain period and the number of hours
in which 0, 1, 2,. . . signals were received was recorded.

Number of Number of Hours with
Signals per Hour This Frequency of Signals

0 1,924
1 541
2 103
3 17
4 1
5 1
6 or more 0

Test the hypothesis that the observations come from a population having a Poisson
distribution with mean .3.
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9. In a certain region, insurance data indicate that 82 percent of drivers have no
accidents in a year, 15 percent have exactly 1 accident, and 3 percent have 2 or
more accidents. In a random sample of 440 engineers, 366 had no accidents,
68 had exactly 1 accident, and 6 had 2 or more. Can you conclude that engineers
follow an accident profile that is different from the rest of the drivers in the region?

10. A study was instigated to see if southern California earthquakes of at least moder-
ate size (having values of at least 4.4 on the Richter scale) are more likely to occur
on certain days of the week than on others. The catalogs yielded the following
data on 1,100 earthquakes.

Day Sun Mon Tues Wed Thurs Fri Sat
Number of Earthquakes 156 144 170 158 172 148 152

Test, at the 5 percent level, the hypothesis that an earthquake is equally likely to
occur on any of the 7 days of the week.

11. Sometimes reported data fit a model so well that it makes one suspicious that the
data are not being accurately reported. For instance, a friend of mine has reported
that he tossed a fair coin 40,000 times and obtained 20,004 heads and 19,996
tails. Is such a result believable? Explain your reasoning.

12. Use simulation to determine the p-value and compare it with the result you
obtained using the chi-square approximation in Problem 1. Let the number of
simulation runs be

(a) 1,000;
(b) 5,000;
(c) 10,000.

13. A sample of size 120 had a sample mean of 100 and a sample standard deviation
of 15. Of these 120 data values, 3 were less than 70; 18 were between 70 and 85;
30 were between 85 and 100; 35 were between 100 and 115; 32 were between
115 and 130; and 2 were greater than 130. Test the hypothesis that the sample
distribution was normal.

14. In Problem 4, test the hypothesis that the daily number of failures has a Poisson
distribution.

15. A random sample of 500 migrant families was classified by region and income (in
units of $1,000). The following data resulted.

Income South North

0–10 42 53
10–20 55 90
20–30 47 88
>30 36 89
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Determine the p-value of the test that a family’s income and region are
independent.

16. The following data relate the mother’s age and the birthweight (in grams) of her
child.

Birthweight

Maternal Age Less Than 2,500 Grams More Than 2,500 Grams

20 years or less 10 40
Greater than 20 15 135

Test the hypothesis that the baby’s birthweight is independent of the mother’s age.

17. Repeat Problem 16 with all of the data values doubled — that is, with these data:

20 80
30 270

18. The number of infant mortalities as a function of the baby’s birthweight (in
grams) for 72,730 live white births in New York in 1974 is as follows:

Outcome at the End of 1 Year

Birthweight Alive Dead

Less than 2,500 4,597 618
Greater than 2,500 67,093 422

Test the hypothesis that the birthweight is independent of whether or not the
baby survives its first year.

19. An experiment designed to study the relationship between hypertension and
cigarette smoking yielded the following data.

Nonsmoker Moderate Smoker Heavy Smoker

Hypertension 20 38 28
No hypertension 50 27 18

Test the hypothesis that whether or not an individual has hypertension is inde-
pendent of how much that person smokes.

20. The following table shows the number of defective, acceptable, and superior items
in samples taken both before and after the introduction of a modification in the
manufacturing process.
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Defective Acceptable Superior

Before 25 218 22
After 9 103 14

Is this change significant at the .05 level?

21. A sample of 300 cars having cellular phones and one of 400 cars without phones
were tracked for 1 year. The following table gives the number of these cars
involved in accidents over that year.

Accident No Accident

Cellular phone 22 278
No phone 26 374

Use the above to test the hypothesis that having a cellular phone in your car
and being involved in an accident are independent. Use the 5 percent level of
significance.

22. To study the effect of fluoridated water supplies on tooth decay, two communities
of roughly the same socioeconomic status were chosen. One of these communities
had fluoridated water while the other did not. Random samples of 200 teenagers
from both communities were chosen, and the numbers of cavities they had were
determined. The following data resulted.

Cavities Fluoridated Town Nonfluoridated Town

0 154 133
1 20 18
2 14 21

3 or more 12 28

Do these data establish, at the 5 percent level of significance, that the number
of dental cavities a person has is not independent of whether that person’s water
supply is fluoridated? What about at the 1 percent level?

23. To determine if a malpractice lawsuit is more likely to follow certain types of
surgeries, random samples of three different types of surgeries were studied, and
the following data resulted.

Type of Operation Number Sampled Number Leading to a Lawsuit

Heart surgery 400 16
Brain surgery 300 19
Appendectomy 300 7
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Test the hypothesis that the percentages of the surgical operations that lead to
lawsuits are the same for each of the three types.

(a) Use the 5 percent level of significance.
(b) Use the 1 percent level of significance.

24. In a famous article (S. Russell, “A red sky at night. . . ,” Metropolitan Magazine
London, 61, p. 15, 1926) the following data set of frequencies of sunset colors
and whether each was followed by rain was presented.

Sky Color Number of Observations Number Followed by Rain

Red 61 26
Mainly red 194 52
Yellow 159 81
Mainly yellow 188 86
Red and yellow 194 52
Gray 302 167

Test the hypothesis that whether it rains tomorrow is independent of the color of
today’s sunset.

25. Data are said to be from a lognormal distribution with parameters µ and σ if
the natural logarithms of the data are normally distributed with mean µ and
standard deviation σ . Use the Kolmogorov–Smirnov test with significance level
.05 to decide whether the following lifetimes (in days) of a sample of cancer-
bearing mice that have been treated with a certain cancer therapy might come
from a lognormal distribution with parameters µ = 3 and σ = 4.

24, 12, 36, 40, 16, 10, 12, 30, 38, 14, 22, 18
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NONPARAMETRIC HYPOTHESIS TESTS

12.1 INTRODUCTION
In this chapter, we shall develop some hypothesis tests in situations where the data come
from a probability distribution whose underlying form is not specified. That is, it will not
be assumed that the underlying distribution is normal, or exponential, or any other given
type. Because no particular parametric form for the underlying distribution is assumed,
such tests are called nonparametric.

The strength of a nonparametric test resides in the fact that it can be applied without
any assumption on the form of the underlying distribution. Of course, if there is justifi-
cation for assuming a particular parametric form, such as the normal, then the relevant
parametric test should be employed.

In Section 12.2, we consider hypotheses concerning the median of a contin-
uous distribution and show how the sign test can be used in their study. In
Section 12.3, we consider the signed rank test, which is used to test the hypothe-
sis that a continuous population distribution is symmetric about a specified value.
In Section 12.4, we consider the two-sample problem, where one wants to use
data from two separate continuous distributions to test the hypothesis that the dis-
tributions are equal, and present the rank sum test. Finally, in Section 12.5 we
study the runs test, which can be used to test the hypothesis that a sequence
of 0’s and 1’s constitutes a random sequence that does not follow any specified
pattern.

12.2 THE SIGN TEST
Let X1, . . . , Xn denote a sample from a continuous distribution F and suppose that we
are interested in testing the hypothesis that the median of F , call it m, is equal to a speci-
fied value m0. That is, consider a test of

H0 : m = m0 versus H1 : m != m0

where m is such that F(m) = .5.

521
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This hypothesis can easily be tested by noting that each of the observations will, inde-
pendently, be less than m0 with probability F(m0). Hence, if we let

Ii =
{

1 if Xi < m0
0 if Xi ≥ m0

then I1, . . . , In are independent Bernoulli random variables with parameter p = F(m0);
and so the null hypothesis is equivalent to stating that this Bernoulli parameter is equal to
1
2 . Now, if v is the observed value of

∑n
i=1 Ii — that is, if v is the number of data values

less than m0 — then it follows from the results of Section 8.6 that the p-value of the test
that this Bernoulli parameter is equal to 1

2 is

p-value = 2 min(P{Bin(n, 1/2) ≤ v}, P{Bin(n, 1/2) ≥ v}) (12.2.1)

where Bin(n, p) is a binomial random variable with parameters n and p.
However,

P{Bin(n, p) ≥ v} = P{n − Bin(n, p) ≤ n − v}
= P{Bin(n, 1 − p) ≤ n − v} (why?)

and so we see from Equation 12.2.1 that the p-value is given by

p-value = 2 min(P{Bin(n, 1/2) ≤ v}, P{Bin(n, 1/2) ≤ n − v}) (12.2.2)

=






2P{Bin(n, 1/2) ≤ v} if v ≤ n
2

2P{Bin(n, 1/2) ≤ n − v} if v ≥ n
2

Since the value of v = ∑n
i=1 Ii depends on the signs of the terms Xi − m0, the foregoing

is called the sign test.

EXAMPLE 12.2a If a sample of size 200 contains 120 values that are less than m0 and
80 values that are greater, what is the p-value of the test of the hypothesis that the median
is equal to m0?

SOLUTION From Equation 12.2.2, the p-value is equal to twice the probability that bino-
mial random variable with parameters 200, 1

2 is less than or equal to 80.
The text disk shows that

P{Bin(200, .5) ≤ 80} = .00284

Therefore, the p-value is .00568, and so the null hypothesis would be rejected at even the
1 percent level of significance. !
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The sign test can also be used in situations analogous to ones in which the paired
t-test was previously applied. For instance, let us reconsider Example 8.4c, which is inter-
ested in testing whether or not a recently instituted industrial safety program has had
an effect on the number of man-hours lost to accidents. For each of 10 plants, the data
consisted of the pair Xi, Yi, which represented, respectively, the average weekly loss at
plant i before and after the program. Letting Zi = Xi − Yi , i = 1, . . . , 10, it follows
that if the program had not had any effect, then Zi , i = 1, . . . , 10, would be a sample
from a distribution whose median value is 0. Since the resulting values of Zi, — namely,
7.5, −2.3, 2.6, 3.7, 1.5, −.5, −1, 4.9, 4.8, 1.6 — contain three whose sign is negative and
seven whose sign is positive, it follows that the hypothesis that the median of Z is 0 should
be rejected at significance level α if

3∑

i=0

(
10
i

) (
1
2

)10

≤ α

2

Since
3∑

i=0

(
10
i

) (
1
2

)10

= 176
1,024

= .172

it follows that the hypothesis would be accepted at the 5 percent significance level (indeed,
it would be accepted at all significance levels less than the p-value equal to .344).

Thus, the sign test does not enable us to conclude that the safety program has had
any statistically significant effect, which is in contradiction to the result obtained in
Example 8.4c when it was assumed that the differences were normally distributed. The
reason for this disparity is that the assumption of normality allows us to take into account
not only the number of values greater than 0 (which is all the sign test considers) but also
the magnitude of these values. (The next test to be considered, while still being nonpara-
metric, improves on the sign test by taking into account whether those values that most
differ from the hypothesized median value m0 tend to lie on one side of m0 — that is,
whether they tend to be primarily bigger or smaller than m0.)

We can also use the sign test to test one-sided hypotheses about a population median.
For instance, suppose that we want to test

H0 : m ≤ m0 versus H1 : m > m0

where m is the population median and m0 is some specified value. Let p denote the prob-
ability that a population value is less than m0, and note that if the null hypothesis is true
then p ≥ 1/2, and if the alternative is true then p < 1/2 (see Figure 12.1).

To use the sign test to test the preceding hypothesis, choose a random sample of n
members of the population. If v of them have values that are less than m0, then the
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area 5 1/2

m

area . 1/2

m0

m0 m

m

area , 1/2

FIGURE 12.1

resulting p-value is the probability that a value of v or smaller would have occurred by
chance if each element had probability 1/2 of being less than m0. That is,

p-value = P{Bin(n, 1/2) ≤ v}

EXAMPLE 12.2b A financial institution has decided to open an office in a certain commu-
nity if it can be established that the median annual income of families in the community
is greater than $90,000. To obtain information, a random sample of 80 families was cho-
sen, and the family incomes determined. If 28 of these families had annual incomes below
and 52 had annual incomes above $90,000, is this significant enough to establish, say, at
the 5 percent level of significance, that the median annual income in the community is
greater than $90,000?

SOLUTION We need to see if the data are sufficient to enable us to reject the null hypothesis
when testing

H0 : m ≤ 90 versus H1 : m > 90

The preceding is equivalent to testing

H0 : p ≥ 1/2 versus H1 : p < 1/2
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where p is the probability that a randomly chosen member of the population has an annual
income of less than $90,000. Therefore, the p-value is

p-value = P{Bin(80, 1/2) ≤ 28} = .0048

and so the null hypothesis that the median income is less than or equal to $90,000 is
rejected. !

A test of the one-sided null hypothesis that the median is at least m0 is obtained simi-
larly. If a random sample of size n is chosen, and v of the resulting values are less than m0,
then the resulting p-value is

p-value = P{Bin(n, 1/2) ≥ v}

12.3 THE SIGNED RANK TEST
The sign test can be employed to test the hypothesis that the median of a continuous dis-
tribution F is equal to a specified value m0. However, in many applications one is really
interested in testing not only that the median is equal to m0 but that the distribution is
symmetric about m0. That is, if X has distribution function F , then one is often inter-
ested in testing the hypothesis H0 : P{X < m0 − a} = P{X > m0 + a} for all a > 0 (see
Figure 12.2). Whereas the sign test could still be employed to test the foregoing hypothe-
sis, it suffers in that it compares only the number of data values that are less than m0 with
the number that are greater than m0 and does not take into account whether or not one
of these sets tends to be farther away from m0 than the other. A nonparametric test that
does take this into account is the so-called signed rank test. It is described as follows.

Let Yi = Xi − m0, i = 1, . . . , n and rank (that is, order) the absolute values
|Y1|, |Y2|, . . . , |Yn|. Set, for j = 1, . . . , n,

Ij =






1 if the jth smallest value comes from a data value that is smaller
than m0

0 otherwise

Now, whereas
∑n

j=1 Ij represents the test statistic for the sign test, the signed rank test
uses the statistic T = ∑n

j=1 jIj . That is, like the sign test it considers those data values
that are less than m0, but rather than giving equal weight to each such value it gives larger
weights to those data values that are farthest away from m0.

EXAMPLE 12.3a If n = 4, m0 = 2, and the data values are X1 = 4.2, X2 = 1.8, X3 = 5.3,
X4 = 1.7, then the rankings of |Xi − 2| are .2, .3, 2.2, 3.3. Since the first of these
values — namely, .2 — comes from the data point X2, which is less than 2, it follows that
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FIGURE 12.2 A symmetric density: m = 3.

f (x) =
{

max{0, .4(x − 3) +
√

.4} x ≤ 3

max{0, −.4(x − 3) +
√

.4} x > 3

I1 = 1. Similarly, I2 = 1, and I3 and I4 equal 0. Hence, the value of the test statistic is
T = 1 + 2 = 3. !

When H0 is true, the mean and variance of the test statistic T are easily computed.
This is accomplished by noting that, since the distribution of Yj = Xj − m0 is symmetric
about 0, for any given value of |Yj| — say, |Yj| = y — it is equally likely that either Yj = y
or Yj = −y. From this fact it can be seen that under H0, I1, . . . , In will be independent
random variables such that

P{Ij = 1} = 1
2 = P{Ij = 0}, j = 1, . . . , n

Hence, we can conclude that under H0,

E[T ] = E




n∑

j=1

jIj





=
n∑

j=1

j
2

= n(n + 1)

4
(12.3.1)
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Var(T ) = Var




n∑

j=1

jIj





=
n∑

j=1

j2 Var(Ij)

=
n∑

j=1

j2

4
= n(n + 1)(2n + 1)

24
(12.3.2)

where the fact that the variance of the Bernoulli random variable Ij is 1
2 (1 − 1

2 ) = 1
4

is used.
It can be shown that for moderately large values of n (n > 25 is often quoted as being

sufficient) T will, when H0 is true, have approximately a normal distribution with mean
and variance as given by Equations 12.3.1 and 12.3.2. Although this approximation can
be used to derive an approximate level α test of H0 (which has been the usual approach
until the recent advent of fast and cheap computational power), we shall not pursue this
approach but rather will determine the p-value for given test data by an explicit computa-
tion of the relevant probabilities. This is accomplished as follows.

Suppose we desire a significance level α test of H0. Since the alternative hypothesis is
that the median is not equal to m0, a two-sided test is called for. That is, if the observed
value of T is equal to t, then H0 should be rejected if either

PH0{T ≤ t} ≤ α

2
or PH0{T ≥ t} ≤ α

2
(12.3.3)

The p-value of the test data when T = t is given by

p-value = 2 min(PH0{T ≤ t}, PH0{T ≥ t}) (12.3.4)

That is, if T = t, the signed rank test calls for rejection of the null hypothesis if the
significance level α is at least as large as this p-value. The amount of computation necessary
to compute the p-value can be reduced by utilizing the following equality (whose proof
will be given at the end of the section).

PH0{T ≥ t} = PH0

{
T ≤ n(n + 1)

2
− t

}

Using Equation 12.3.4, the p-value is given by

p-value = 2 min
(

PH0{T ≤ t}, PH0

{
T ≤ n(n + 1)

2
− t

})

= 2PH0{T ≤ t∗}
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where

t∗ = min
(

t,
n(n + 1)

2
− t

)

It remains to compute PH0{T ≤ t∗}. To do so, let Pk(i) denote the probability, under
H0, that the signed rank statistic T will be less than or equal to i when the sample size
is k. We will determine a recursive formula for Pk(i) starting with k = 1. When k = 1,
since there is only a single data value, which, when H0 is true, is equally likely to be either
less than or greater than m0, it follows that T is equally likely to be either 0 or 1. Thus

P1(i) =






0 i < 0
1
2 i = 0
1 i ≥ 1

(12.3.5)

Now suppose the sample size is k. To compute Pk(i), we condition on the value of Ik as
follows:

Pk(i) = PH0






k∑

j=1

jIj ≤ i






= PH0






k∑

j=1

jIj ≤ i|Ik = 1




 PH0{Ik = 1}

+ PH0






k∑

j=1

jIj ≤ i|Ik = 0




 PH0{Ik = 0}

= PH0






k−1∑

j=1

jIj ≤ i − k|Ik = 1




 PH0{Ik = 1}

+ PH0






k−1∑

j=1

jIj ≤ i|Ik = 0




 PH0{Ik = 0}

= PH0






k−1∑

j=1

jIj ≤ i − k




 PH0{Ik = 1} + PH0






k−1∑

j=1

jIj ≤ i




 PH0{Ik = 0}

where the last equality utilized the independence of I1, . . . , Ik−1 and Ik (when H0 is
true). Now

∑k−1
j=1 jIj has the same distribution as the signed rank statistic of a sample

of size k − 1, and since

PH0{Ik = 1} = PH0{Ik = 0} = 1
2
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we see that

Pk(i) = 1
2 Pk−1(i − k) + 1

2 Pk−1(i) (12.3.6)

Starting with Equation 12.3.5, the recursion given by Equation 12.3.6 can be successfully
employed to compute P2(·), then P3(·), and so on, stopping when the desired value Pn(t∗)
has been obtained.

EXAMPLE 12.3b For the data of Example 12.3a,

t∗ = min
(

3,
4 · 5

2
− 3

)
= 3

Hence the p-value is 2P4(3), which is computed as follows:

P2(0) = 1
2 [P1(−2) + P1(0)] = 1

4

P2(1) = 1
2 [P1(−1) + P1(1)] = 1

2

P2(2) = 1
2 [P1(0) + P1(2)] = 3

4

P2(3) = 1
2 [P1(1) + P1(3)] = 1

P3(0) = 1
2 [P2(−3) + P2(0)] = 1

8 since P2(−3) = 0

P3(1) = 1
2 [P2(−2) + P2(1)] = 1

4

P3(2) = 1
2 [P2(−1) + P2(2)] = 3

8

P3(3) = 1
2 [P2(0) + P2(3)] = 5

8

P4(0) = 1
2 [P3(−4) + P3(0)] = 1

16

P4(1) = 1
2 [P3(−3) + P3(1)] = 1

8

P4(2) = 1
2 [P3(−2) + P3(2)] = 3

16

P4(3) = 1
2 [P3(−1) + P3(3)] = 5

16 !

Program 12.3 will use the recursion in Equations 12.3.5 and 12.3.6 to compute the
p-value of the signed rank test data. The input needed is the sample size n and the value
of test statistic T .

EXAMPLE 12.3c Suppose we are interested in determining whether a certain population
has an underlying probability distribution that is symmetric about 0. If a sample of size 20
from this population results in a signed rank test statistic of value 142, what conclusion
can we draw at the 10 percent level of significance?
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SOLUTION Running Program 12.3 yields that

p-value = .177

Thus the hypothesis that the population distribution is symmetric about 0 is accepted at
the α = .10 level of significance. !

We end this section with a proof of the equality

PH0{T ≥ t} = PH0

{
T ≤ n(n + 1)

2
− t

}

To verify the foregoing, note first that 1 − Ij will equal 1 if the jth smallest value of
|Y1|, . . . , |Yn| comes from a data value larger than m0, and it will equal 0 otherwise.
Hence, if we let

T 1 =
n∑

j=1

j(1 − Ij)

then T 1 will represent the sum of the ranks of the |Yj| that correspond to data values
larger than m0. By symmetry, T 1 will have, under H0, the same distribution as T . Now

T 1 =
n∑

j=1

j −
n∑

j=1

jIj = n(n + 1)

2
− T

and so

P{T ≥ t} = P{T 1 ≥ t} since T and T 1 have the same distribution

= P
{

n(n + 1)

2
− T ≥ t

}

= P
{

T ≤ n(n + 1)

2
− t

}

REMARK ON TIES

Since we have assumed that the population distribution is continuous, there is no possi-
bility of ties — that is, with probability 1, all observations will have different values.
However, since in practice all measurements are quantized, ties are always a distinct
possibility. If ties do occur, then the weights given to the values less than m0 should
be the average of the different weights they could have had if the values had differed
slightly. For instance, if m0 = 0 and the data values are 2, 4, 7, −5, −7, then the ordered
absolute values are 2, 4, 5, 7, 7. Since 7 has rank both 4 and 5, the value of the test statistic
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T is T = 3 + 4.5 = 7.5. The p-value should be computed as when we assumed that all
values were distinct. (Although technically this is not correct, the discrepancy is usually
minor.)

12.4 THE TWO-SAMPLE PROBLEM
Suppose that one is considering two different methods for producing items having mea-
surable characteristics with an interest in determining whether the two methods result in
statistically identical items.

To attack this problem let X1, . . . , Xn denote a sample of the measurable values of n
items produced by method 1, and, similarly, let Y1, . . . , Ym be the corresponding value
of m items produced by method 2. If we let F and G, both assumed to be continuous,
denote the distribution functions of the two samples, respectively, then the hypothesis we
wish to test is H0 : F = G.

One procedure for testing H0 — which is known by such names as the rank sum test,
the Mann-Whitney test, or the Wilcoxon test — calls initially for ranking, or ordering,
the n + m data values X1, . . . , Xn, Y1, . . . , Ym. Since we are assuming that F and G are
continuous, this ranking will be unique — that is, there will be no ties. Give the smallest
data value rank 1, the second smallest rank 2, . . . , and the (n + m)th smallest rank n + m.
Now, for i = 1, . . . , n, let

Ri = rank of the data value Xi

The rank sum test utilizes the test statistic T equal to the sum of the ranks from the first
sample — that is,

T =
n∑

i=1

Ri

EXAMPLE 12.4a An experiment designed to compare two treatments against corrosion
yielded the following data in pieces of wire subjected to the two treatments.

Treatment 1 65.2, 67.1, 69.4, 78.2, 74, 80.3
Treatment 2 59.4, 72.1, 68, 66.2, 58.5

(The data represent the maximum depth of pits in units of one thousandth of an inch.)
The ordered values are 58.5, 59.4, 65.2∗, 66.2, 67.1∗, 68, 69.4∗, 72.1, 74∗, 78.2∗, 80.3∗

with an asterisk noting that the data value was from sample 1. Hence, the value of the test
statistic is T = 3 + 5 + 7 + 9 + 10 + 11 = 45. !
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Suppose that we desire a significance level α test of H0. If the observed value of T is
T = t, then H0 should be rejected if either

PH0{T ≤ t} ≤ α

2
or PH0{T ≥ t} ≤ α

2
(12.4.1)

That is, the hypothesis that the two samples are equivalent should be rejected if the sum of
the ranks from the first sample is either too small or too large to be explained by chance.

Since for integral t,

P{T ≥ t} = 1 − P{T < t}
= 1 − P{T ≤ t − 1}

it follows from Equation 12.4.1 that H0 should be rejected if either

PH0{T ≤ t} ≤ α

2
or PH0{T ≤ t − 1} ≥ 1 − α

2
(12.4.2)

To compute the probabilities in Equation 12.4.2, let P(N , M , K ) denote the prob-
ability that the sum of the ranks of the first sample will be less than or equal to K
when the sample sizes are N and M and H0 is true. We will now determine a recur-
sive formula for P(N , M , K ), which will then allow us to obtain the desired quantities
P(n, m, t) = PH0{T ≤ t} and P(n, m, t − 1).

To compute the probability that the sum of the ranks of the first sample is less than or
equal to K when N and M are the sample sizes and H0 is true, let us condition on whether
the largest of the N + M data values belongs to the first or second sample. If it belongs to
the first sample, then the sum of the ranks of this sample is equal to N + M plus the sum
of the ranks of the other N − 1 values from the first sample. Hence this sum will be less
than or equal to K if the sum of the ranks of the other N − 1 values is less than or equal
to K − (N + M). But since the remaining N − 1 + M — that is, all but the largest —
values all come from the same distribution (when H0 is true), it follows that the sum of
the ranks of N − 1 of them will be less than or equal to K − (N + M) with probability
P(N −1, M , K −N −M). By a similar argument we can show that, given that the largest
value is from the second sample, the sum of the ranks of the first sample will be less than
or equal to K with probability P(N , M − 1, K ). Also, since the largest value is equally
likely to be any of the N + M values X1, . . . , XN , Y1, . . . , YM , it follows that it will come
from the first sample with probability N /(N +M). Putting these together, we thus obtain
that

P(N , M , K ) = N
N + M

P(N − 1, M , K − N − M)

+ M
N + M

P(N , M − 1, K ) (12.4.3)
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Starting with the boundary condition

P(1, 0, K ) =
{

0 K ≤ 0
1 K > 0

, P(0, 1, K ) =
{

0 K < 0
1 K ≥ 0

Equation 12.4.3 can be solved recursively to obtain P(n, m, t − 1) and P(n, m, t).

EXAMPLE 12.4b Suppose we wanted to determine P(2, 1, 3). We use Equation 12.4.3 as
follows:

P(2, 1, 3) = 2
3 P(1, 1, 0) + 1

3 P(2, 0, 3)

and

P(1, 1, 0) = 1
2 P(0, 1, −2) + 1

2 P(1, 0, 0) = 0

P(2, 0, 3) = P(1, 0, 1)

= P(0, 0, 0) = 1

Hence,

P(2, 1, 3) = 1
3

which checks since in order for the sum of the ranks of the two X values to be less than
or equal to 3, the largest of the values X1, X2, Y1, must be Y1, which, when H0 is true, has
probability 1

3 . !

Since the rank sum test calls for rejection when either

2P(n, m, t) ≤ α or α ≥ 2[1 − P(n, m, t − 1)]

it follows that the p-value of the test statistic when T = t is

p-value = 2 min{P(n, m, t), 1 − P(n, m, t − 1)}

Program 12.4 uses the recursion in Equation 12.4.3 to compute the p-value for the
rank sum test. The input needed is the sizes of the first and second samples and the sum
of the ranks of the elements of the first sample. Whereas either sample can be designated
as the first sample, the program will run fastest if the first sample is the one whose sum of
ranks is smallest.

EXAMPLE 12.4c In Example 12.4a, the sizes of the two samples are 5 and 6, respectively,
and the sum of the ranks of the first sample is 21. Running Program 12.4 yields the result:

p-value = .1255 !
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The p-value in the Two-sample Rank Sum Test

Enter the size of sample 1:

Enter the size of sample 2:

Enter the sum of the ranks
of the first sample:

9

13

72

The p-value is 0.03642

Start

Quit

This program computes the p-value for the two-sample rank sum test.

FIGURE 12.3

EXAMPLE 12.4d Suppose that in testing whether 2 production methods yield identical
results, 9 items are produced using the first method and 13 using the second. If, among
all 22 items, the sum of the ranks of the 9 items produced by method 1 is 72, what
conclusions would you draw?

SOLUTION Run Program 12.4 to obtain the result shown in Figure 12.3. Thus, the
hypothesis of identical results would be rejected at the 5 percent level of significance. !

It remains to compute the value of the test statistic T . It is quite efficient to compute
T directly by first using a standard computer science algorithm (such as quicksort) to sort,
or order, the n + m values. Another approach, easily programmed, although efficient for
only small values of n and m, uses the following identity.

PROPOSITION 12.4.1 For i = 1, . . . , n, j = 1, . . . , m, let

Wij =
{

1 if Xi > Yj
0 otherwise

Then

T = n(n + 1)

2
+

n∑

i=1

m∑

j=1

Wij

Proof

Consider the values X1, . . . , Xn of the first sample and order them. Let X(i) denote the
ith smallest, i = 1, . . . , n. Now consider the rank of X(i) among all n + m data values.
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This is given by

rank of X(i) = i + number j : Yj < X(i)

Summing over i gives

n∑

i=1

rank of X(i) =
n∑

i=1

i +
n∑

i=1

(number j : Yj < X(i)) (12.4.4)

But since the order in which we add terms does not change the sum obtained, we see that

n∑

i=1

rank of X(i) =
n∑

i=1

rank of Xi = T (12.4.5)

n∑

i=1

(number j : Yj < X(i)) =
n∑

i=1

(number j : Yj < Xi)

Hence, from Equations 12.4.4 and 12.4.5, we obtain that

T =
n∑

i=1

i +
n∑

i=1

(number j : Yj < Xi)

= n(n + 1)

2
+

n∑

i=1

m∑

j=1

Wij !

*12.4.1 The Classical Approximation and Simulation
The difficulty with employing the recursion in Equation 12.4.3 to compute the p-value
of the two-sample sum of rank test statistic is that the amount of computation grows
enormously as the sample sizes increase. For instance, if n = m = 200, then even if we
choose the test statistic to be the smaller sum of ranks, since the sum of all the ranks is
1+2+· · ·+400 = 80,200, it is possible that the test statistic could have a value as large as
40,100. Hence, there can be as many as 1.604×109 values of P(N , M , K ) that would have
to be computed to determine the p-value. Thus, for large sample sizes the approach based
on the recursion in Equation 12.4.3 is not viable. Two approximate methods that can be
utilized in such cases are (a) a classical method based on approximating the distribution
of the test statistic and (b) simulation.

(a) The Classical Approximation When the null hypothesis is true and so F = G, it
follows that all n + m data values come from the same distribution and thus all
(n + m)! possible rankings of the values X1, . . . , Xn, Y1, . . . , Ym are equally likely.

* Simulation will be covered in Chapter 15.
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From this it follows that choosing the n rankings of the first sample is probabilis-
tically equivalent to randomly choosing n of the (possible rank) values 1, 2, . . . ,
n + m. Using this, it can be shown that T has a mean and variance given by

EH0 [T ] = n(n + m + 1)

2

VarH0(T ) = nm(n + m + 1)

12

In addition, it can be shown that when both n and m are of moderate size (both
being greater than 7 should suffice) T has, under H0, approximately a normal
distribution. Hence, when H0 is true

T − n(n + m + 1)

2√
nm(n + m + 1)

12

∼̇ (0, 1) (12.4.6)

If we let d denote the absolute value of the difference between the observed value
of T and its mean value given above, then based on Equation 12.4.6 the approxi-
mate p-value is

p-value = PH0{|T − EH0 [T ]| > d}

≈ P

{
|Z | > d /

√
nm(n + m + 1)

12

}
where Z ∼ (0, 1)

= 2P

{
Z > d /

√
nm(n + m + 1)

12

}

EXAMPLE 12.4e In Example 12.4a, n = 5, m = 6, and the test statistic’s value is 21. Since

n(n + m + 1)

2
= 30

nm(n + m + 1)

12
= 30

we have that d = 9 and so

p-value ≈ 2P
{

Z >
9√
30

}

= 2P{Z > 1.643108}



12.4 The Two-Sample Problem 537

= 2(1 − .9498)

= .1004

which can be compared with the exact value, as given in Example 12.4c, of .1225.
In Example 12.4d, n = 9, m = 13, and so

n(n + m + 1)

2
= 103.5

nm(n + m + 1)

12
= 224.25

Since T = 72, we have that

d = |72 − 103.5| = 31.5

Thus, the approximate p-value is

p-value ≈ 2P
{

Z >
31.5√
224.25

}

= 2P{Z > 2.103509}
= 2(1 − .9823) = .0354

which is quite close to the exact p-value (as given in Example 12.4d) of .0364.
Thus, in the two examples considered, the normal approximation worked quite well in

the second example — where the guideline that both sample sizes should exceed 7 held —
and not so well in the first example — where the guideline did not hold. !

(b) Simulation If the observed value of the test statistic is T = t, then the p-value is
given by

p-value = 2 min
{
PH0{T ≥ t}, PH0{T ≤ t}

}

We can approximate this value by continually simulating a random selection of n
of the values 1, 2, . . . , n + m — noting on each occasion the sum of the n values.
The value of PH0{T ≥ t} can be approximated by the proportion of time that the
sum obtained is greater than or equal to t, and PH0{T ≤ t} by the proportion of
time that it is less than or equal to t.

A Chapter 12 text disk program approximates the p-value by performing the
preceding simulation. The program will run most efficiently when the sample
of smallest size is designated as the first sample.
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Simulation Approximation to the p-value in Rank Sum Test

Enter the size of sample 1:

Enter the size of sample 2:

Enter the sum of the ranks
of the first sample:
Enter the desired number
of simulation runs:

5

6

21

10000

The p-value is 0.125

Start

Quit

This program approximates the p-value for the two-sample rank sum test
by a simulation study.

FIGURE 12.4

Simulation Approximation to the p-value in Rank Sum Test

Enter the size of sample 1:

Enter the size of sample 2:

Enter the sum of the ranks
of the first sample:
Enter the desired number
of simulation runs:

9

13

72

10000

The p-value is 0.0356

Start

Quit

This program approximates the p-value for the two-sample rank sum test
by a simulation study.

FIGURE 12.5

EXAMPLE 12.4f Running the text disk program on the data of Example 12.4c yields
Figure 12.4, which is quite close to the exact value of .1225. Running the program using
the data of Example 12.4d yields Figure 12.5, which is again quite close to the exact value
of .0364. !

Both of the approximation methods work quite well. The normal approximation, when
n and m both exceed 7, is usually quite accurate and requires almost no computational
time. The simulation approach, on the other hand, can require a great deal of computa-
tional time. However, if an immediate answer is not required and great accuracy is desired,
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then simulation, by running a large number of cases, can be made accurate to an arbitrarily
prescribed precision.

12.4.2 Testing the Equality of Multiple Probability
Distributions

Whereas the preceding sections showed how to test the hypothesis that two population
distributions are identical, we are sometimes faced with the situation where there are more
than two populations. So suppose there are k populations, that Fi is the distribution func-
tion of some measurable value of the elements of population i, and that we are interested
in testing the null hypothesis

H0 : F1 = F2 = · · · = Fk

against the alternative

H1 : not all of the Fi are equal

To test the preceding null hypothesis, suppose that independent samples are drawn from
each of the k populations. Let ni denote the size of the sample chosen from population
i, i = 1, . . . , k. and let N = ∑k

i=1 ni denote the total number of data values obtained.
Now, rank these N data values from the smallest to largest, and let Ri denote the sum of
the ranks of the ni data values from population i, i = 1, . . . , k.

Now, when H0 is true, the rank of any individual data value is equally likely to be
any of the ranks 1, . . . , N , and thus the expected value of its rank is 1+2+···+N

N = N+1
2 .

Consequently, with r̄ = N+1
2 , it follows when H0 is true that the expected sum of the

ranks of the ni data values from population i is nir̄. That is, when H0 is true

E[Ri] = nir̄.

Drawing inspiration from the goodness of fit test, let us consider the test statistic

T =
k∑

i=1

(Ri − nir̄)2

nir̄

and use a test that rejects the null hypothesis when T is large. Now,

T = 1
r̄

k∑

i=1

R2
i − 2Rinir̄ + n2

i r̄2

ni

= 1
r̄

k∑

i=1

R2
i

ni
− 2

k∑

i=1

Ri + r̄
k∑

i=1

ni

= 1
r̄

k∑

i=1

R2
i

ni
− Nr̄
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where the final equality used that
∑k

i=1 Ri is the sum of the ranks of all N = ∑
i ni data

values and so
k∑

i=1

Ri = 1 + 2 + · · · + N = N (N + 1)

2
= Nr̄

Hence, rejecting H0 when T is large is equivalent to rejecting H0 when
∑k

i=1 R2
i /ni is

large. So we might as well let the test statistic be

TS =
k∑

i=1

R2
i

ni

To determine the appropriate α level significance test, we need the distribution of TS
when H0 is true. While its exact distribution is rather complicated, we can use the result
that, when H0 is true and all ni are at least 5, the distribution of

12
N (N + 1)

TS − 3(N + 1)

is approximately that of a chi-squared random variable with k − 1 degrees of freedom.
Using this, we see that an approximate significance level α test of the null hypothesis that
all distributions are identical is to

reject H0 if
12

N (N + 1)
TS − 3(N + 1) ≥ χ2

k−1,α

For even more accuracy, simulation can be used. To implement it, one should first com-
pute the value of TS, say that it is equal to t. The resulting p-value is

p-value = PH0{TS ≥ t}

To determine the preceding by a simulation, one should continually simulate TS =∑
i R2

i /ni under the assumption that H0 is true and then use the fraction of the simulated
values that are at least t as the estimate of the p-value. Because, under H0, all possible
orderings of the N data values are equal likely, one could simulate TS by generating a
permutation of 1, . . . , N that is equally likely to be any of the N ! permutations. (See
Example 15.2b for an efficient way to simulate such a random permutation.) One can then
let the first n1 values of the permutation be the ranks of the first sample, the next n2 values
be the ranks of the second sample, and so on. That is, if p1, . . . , pN is the generated value
of the permutation, then with s0 = 0, sj = n1 + · · · + nj, j ≥ 1, the simulated values of
R1, . . . , Rk would be

Ri =
si∑

j=si−1+1

pj , i = 1, . . . , k

The preceding is known as the Kruskal–Wallis test.
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EXAMPLE 12.4g The following data give the number of visitors to a medium size Los
Angeles library on Tuesdays, Wednesdays, and Thursdays of 10 successive weeks.

Tuesday visitors 721, 660, 622, 738, 820, 707, 672, 589, 902, 688
Wednesday visitors 604, 626, 744, 802, 691, 665, 711, 715, 661, 729
Thursday visitors 642, 480, 705, 584, 713, 654, 704, 522, 683, 708

Are these data consistent with the hypothesis that the distributions of the number of
visitors for the three days are identical?

SOLUTION Ordering the N = 30 data values, gives that the sum of the ranks of the three
samples are

R1 = 176, R2 = 175, R3 = 114

Therefore,

12
N (N + 1)

TS − 3(N + 1) = 12
30 · 31

1762 + 1752 + 1142

10
− 93 = 3.254

Because χ2
2,.05 = 5.99, the null hypothesis that the distributions of the number of visitors

for each of the three weekdays are identical cannot be rejected at the 5 percent level of
significance. Indeed, the resulting p-value is

p-value = P{χ2
2 ≥ 3.254} = .1965 !

12.5 THE RUNS TEST FOR RANDOMNESS
A basic assumption in much of statistics is that a set of data constitutes a random sample
from some population. However, it is sometimes the case that the data are not generated
by a truly random process but by one that may follow a trend or a type of cyclical pattern.
In this section, we will consider a test — called the runs test — of the hypothesis H0 that
a given data set constitutes a random sample.

To begin, let us suppose that each of the data values is either a 0 or a 1. That is, we shall
assume that each data value can be dichotomized as being either a success or a failure. Let
X1, . . . , XN denote the set of data. Any consecutive sequence of either 1’s or 0’s is called
a run. For instance, the data set

1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1

contains 11 runs — 6 runs of 1 and 5 runs of 0. Suppose that the data set X1, . . . , XN
contains n 1’s and m 0’s, where n + m = N , and let R denote the number of runs. Now,
if H0 were true, then X1, . . . , XN would be equally likely to be any of the N !/(n!m!)
permutations of n 1’s and m 0’s, and therefore, given a total of n 1’s and m 0’s, it follows
that, under H0, the probability mass function of R, the number of runs is given by
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PH0{R = k} = number of permutations of n 1’s and m 0’s resulting in k runs
(

n + m
n

)

This number of permutations can be explicitly determined and it can be shown that

PH0{R = 2k} = 2

(
m − 1
k − 1

) (
n − 1
k − 1

)

(
m + n

n

)

(12.5.1)

PH0{R = 2k + 1} =

(
m − 1
k − 1

)(
n − 1

k

)
+

(
m − 1

k

) (
n − 1
k − 1

)

(
n + m

n

)

If the data contain n 1’s and m 0’s, then the runs test calls for rejection of the hypothesis
that the data constitutes a random sample if the observed number of runs is either too large
or too small to be explained by chance. Specifically, if the observed number of runs is r,
then the p-value of the runs test is

p-value = 2 min(PH0{R ≥ r}, PH0{R ≤ r})

Program 12.5 uses Equation 12.5.1 to compute the p-value.

EXAMPLE 12.5a The following is the result of the last 30 games played by an athletic team,
with W signifying a win and L a loss.

W W W L W W L W W L W L W W L W W W W L W L W W W L W L W L

Are these data consistent with pure randomness?

SOLUTION To test the hypothesis of randomness, note that the data, which consist of
20W ’s and 10 L’s, contain 20 runs. To see whether this justifies rejection at, say, the
5 percent level of significance, we run Program 12.5 and observe the results in Figure 12.6.
Therefore, the hypothesis of randomness would be rejected at the 5 percent level of sig-
nificance. (The striking thing about these data is that the team always came back to win
after losing a game, which would be quite unlikely if all outcomes containing 20 wins and
10 losses were equally likely.) !

The above can also be used to test for randomness when the data values are not just
0’s and 1’s. To test whether the data X1, . . . , XN constitute a random sample, let s-med
denote the sample median. Also let n denote the number of data values that are less than
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The p-value for the Runs Test for Randomness

Enter the number of 1's:

Enter the number of 0's: 

Enter the number of runs:

20

10

20

The p-value is 0.01845

Start

Quit

This program computes the p-value for the runs test of the hypothesis
that a data set of n ones and m zeroes is random.

FIGURE 12.6

or equal to s-med and m the number that are greater. (Thus, if N is even and all data
values are distinct, then n = m = N /2.) Define I1, . . . , IN by

Ij =
{

1 if Xj ≤ s-med
0 otherwise

Now, if the original data constituted a random sample, then the number of runs in
I1, . . . , IN would have a probability mass function given by Equation 12.5.1. Thus, it
follows that we can use the preceding runs test on the data values I1, . . . , IN to test that
the original data are random.

EXAMPLE 12.5b The lifetime of 19 successively produced storage batteries is as follows:

145 152 148 155 176 134 184 132 145 162 165

185 174 198 179 194 201 169 182

The sample median is the 10th smallest value — namely, 169. The data indicating
whether the successive values are less than or equal to or greater than 169 are as follows:

1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0

Hence, the number of runs is 8. To determine if this value is statistically significant, we
run Program 12.5 (with n = 10, m = 9) to obtain the result:

p-value = .357

Thus the hypothesis of randomness is accepted. !
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It can be shown that, when n and m are both large and H0 is true, R will have approx-
imately a normal distribution with mean and standard deviation given by

µ = 2nm
n + m

+ 1 and σ =
√

2nm(2nm − n − m)

(n + m)2(n + m − 1)
(12.5.2)

Therefore, when n and m are both large

PH0{R ≤ r} = PH0

{
R − µ

σ
≤ r − µ

σ

}

≈ P
{

Z ≤ r − µ

σ

}
, Z ∼ (0, 1)

= $

(
r − µ

σ

)

and, similarly,

PH0{R ≥ r} ≈ 1 − $

(
r − µ

σ

)

Hence, for large n and m, the p-value of the runs test for randomness is approximately
given by

p-value ≈ 2 min
{
$

(
r − µ

σ

)
, 1 − $

(
r − µ

σ

)}

where µ and σ are given by Equation 12.5.2 and r is the observed number of runs.

EXAMPLE 12.5c Suppose that a sequence of sixty 1’s and sixty 0’s resulted in 75 runs. Since

µ = 61 and σ =
√

3,540
119

= 5.454

we see that the approximate p-value is

p-value ≈ 2 min{$(2.567), 1 − $(2.567)}
= 2 × (1 − .9949)

= .0102

On the other hand, by running Program 12.5 we obtain that the exact p-value is

p-value = .0130
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If the number of runs was equal to 70 rather than 75, then the approximate p-value
would be

p-value ≈ 2[1 − $(1.650)] = .0990

as opposed to the exact value of

p-value = .1189 !

Problems

1. A new medicine against hypertension was tested on 18 patients. After 40 days of
treatment, the following changes of the diastolic blood pressure were observed.

−5, −1, +2, +8, −25, +1, +5, −12, −16
−9, −8, −18, −5, −22, +4, −21, −15, −11

Use the sign test to determine if the medicine has an effect on blood pressure.
What is the p-value?

2. An engineering firm is involved in selecting a computer system, and the choice
has been narrowed to two manufacturers. The firm submits eight problems to the
two computer manufacturers and has each manufacturer measure the number of
seconds required to solve the design problem with the manufacturer’s software.
The times for the eight design problems are given below.

Design problem 1 2 3 4 5 6 7 8

Time with computer A 15 32 17 26 42 29 12 38

Time with computer B 22 29 1 23 46 25 19 47

Determine the p-value of the sign test when testing the hypothesis that there is
no difference in the distribution of the time it takes the two types of software to
solve problems.

3. The published figure for the median systolic blood pressure of middle-aged men
is 128. To determine if there has been any change in this value, a random sample
of 100 men has been selected. Test the hypothesis that the median is equal to
128 if

(a) 60 men have readings above 128;
(b) 70 men have readings above 128;
(c) 80 men have readings above 128.

In each case, determine the p-value.
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4. To test the hypothesis that the median weight of 16-year-old females from
Los Angeles is at least 110 pounds, a random sample of 200 such females was
chosen. If 120 females weighed less than 110 pounds, does this discredit the
hypothesis? Use the 5 percent level of significance. What is the p-value?

5. In 2004, the national median salary of all U.S. financial accountants was
$124,400. A recent random sample of 14 financial accountants showed 2007
incomes of (in units of $1,000)

125.5, 130.3, 133.0, 102.6, 198.0, 232.5, 106.8,

114.5, 122.0, 100.0, 118.8, 108.6, 312.7, 125.5

Use these data to test the hypothesis that the median salary of financial accoun-
tants in 2007 was not greater than in 2004. What is the p-value?

6. An experiment was initiated to study the effect of a newly developed gaso-
line detergent on automobile mileage. The following data, representing mileage
per gallon before and after the detergent was added for each of eight cars,
resulted.

Mileage Mileage
Car without Additive with Additive

1 24.2 23.5
2 30.4 29.6
3 32.7 32.3
4 19.8 17.6
5 25.0 25.3
6 24.9 25.4
7 22.2 20.6
8 21.5 20.7

Find the p-value of the test of the hypothesis that mileage is not affected by the
additive when

(a) the sign test is used;
(b) the signed rank test is used.

7. Determine the p-value when using the signed rank statistic in Problems 1 and 2.

8. Twelve patients having high albumin content in their blood were treated with a
medicine. Their blood content of albumin was measured before and after treat-
ment. The measured values are shown in the table.



Problems 547

Blood Content of Albumina

Patient Before Treatment After Treatment

1 5.02 4.66
2 5.08 5.15
3 4.75 4.30
4 5.25 5.07
5 4.80 5.38
6 5.77 5.10
7 4.85 4.80
8 5.09 4.91
9 6.05 5.22

10 4.77 4.50
11 4.85 4.85
12 5.24 4.56

aValues given in grams per 100 ml.

Is the effect of the medicine significant at the 5 percent level?

(a) Use the sign test.
(b) Use the signed rank test.

9. An engineer claims that painting the exterior of a particular aircraft affects its
cruising speed. To check this, the next 10 aircraft off the assembly line were flown
to determine cruising speed prior to painting, and were then painted and reflown.
The following data resulted.

Cruising Speed (knots)
Aircraft Not Painted Painted

1 426.1 416.7
2 418.4 403.2
3 424.4 420.1
4 438.5 431.0
5 440.6 432.6
6 421.8 404.2
7 412.2 398.3
8 409.8 405.4
9 427.5 422.8

10 441.2 444.8

Do the data uphold the engineer’s claim?
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10. Ten pairs of duplicate spectrochemical determinations for nickel are presented
below. The readings in column 2 were taken with one type of measuring instru-
ment and those in column 3 were taken with another type.

Sample Duplicates

1 1.94 2.00
2 1.99 2.09
3 1.98 1.95
4 2.07 2.03
5 2.03 2.08
6 1.96 1.98
7 1.95 2.03
8 1.96 2.03
9 1.92 2.01

10 2.00 2.12

Test the hypothesis, at the 5 percent level of significance, that the two measuring
instruments give equivalent results.

11. Let X1, . . . , Xn be a sample from the continuous distribution F having median m;
and suppose we are interested in testing the hypothesis H0 : m = m0 against the
one-sided alternative H1 : m > m0. Present the one-sided analog of the signed
rank test. Explain how the p-value would be computed.

12. In a study of bilingual coding, 12 bilingual (French and English) college students
are divided into two groups. Each group reads an article written in French, and
each answers a series of 25 multiple-choice questions covering the content of the
article. For one group the questions are written in French; the other takes the
examination in English. The score (total correct) for the two groups is:

Examination in French 11 12 16 22 25 25

Examination in English 10 13 17 19 21 24

Is this evidence at the 5 percent significance level that there is difficulty in trans-
ferring information from one language to another?

13. Fifteen cities, of roughly equal size, are chosen for a traffic safety study. Eight of
them are randomly chosen, and in these cities a series of newspaper articles dealing
with traffic safety is run over a 1-month period. The number of traffic accidents
reported in the month following this campaign is as follows:
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Treatment group 19 31 39 45 47 66 74 81

Control group 28 36 44 49 52 52 60

Determine the exact p-value when testing the hypothesis that the articles have
not had any effect.

14. Determine the p-value in Problem 13 by

(a) using the normal approximation;
(b) using a simulation study.

15. The following are the weights of random samples of adult males from different
political affiliations.

Republicans: 204, 178, 195, 187, 240, 182, 152, 166
Democrats: 175, 200, 168, 192, 156, 164, 180, 138

We want to use these data to test the null hypothesis that the two distributions
are identical.

(a) Find the exact p-value.
(b) Determine the p-value obtained when using the normal approximation.

16. In a 1943 experiment (Whitlock, H. V., and Bliss, D. H., “A bioassay technique
for antihelminthics,” Journal of Parasitology, 29, pp. 48–58, 10), albino rats were
used to study the effectiveness of carbon tetrachloride as a treatment for worms.
Each rat received an injection of worm larvae. After 8 days, the rats were randomly
divided into 2 groups of 5 each; each rat in the first group received a dose of .032
cc of carbon tetrachloride, whereas the dosage for each rat in the second group
was .063 cc. Two days later the rats were killed, and the number of adult worms
in each rat was determined. The numbers detected in the group receiving the .032
dosage were

421, 462, 400, 378, 413

whereas they were

207, 17, 412, 74, 116

for those receiving the .063 dosage. Do the data prove that the larger dosage is
more effective than the smaller?

17. In a 10-year study of the dispersal patterns of beavers (Sun, L. and Muller-
Schwarze, D., “Statistical resampling methods in biology: A case study of beaver
dispersal patterns,” American Journal of Mathematical and Management Sciences,
16, pp. 463–502, 1996) a total of 332 beavers were trapped in Allegheny State
Park in southwestern New York. The beavers were tagged (so as to be identifiable
when later caught) and released. Over time a total of 32 of them, 9 female and
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23 male, were discovered to have resettled in other sites. The following data give
the dispersal distances (in kilometers) between these beavers’ original and resettled
sites for the females and for the males.

Females: .660, .984, .984, 1.992, 4.368, 6.960, 10.656, 21.600, 31.680

Males: .288, .312, .456, .528, .576, .720, .792, .984, 1.224,

1.584, 2.304, 2.328, 2.496, 2.688, 3.096, 3.408, 4.296, 4.884,

5.928, 6.192, 6.384, 13.224, 27.600

Do the data prove that the dispersal distances are gender related?

18. The following data give the numbers of people who visit a local health clinic in
the day following

(1) a Saturday win by the local university football team;
(2) a Saturday loss by the team;
(3) a Saturday when the team does not play.

Number following a win 71, 66, 62, 79, 80, 70, 66, 59, 89, 68
Number following a loss 64, 62, 75, 81, 69, 67, 73, 71, 69, 74
Number when no game 49, 48, 70, 58, 73, 65, 55, 52, 68, 74

Do these data prove that the resulting number of clinic visits depends on what
happens with the football team? Test at the 5 percent level.

19. A production run of 50 items resulted in 11 defectives, with the defectives occur-
ring on the following items (where the items are numbered by their order of
production): 8, 12, 13, 14, 31, 32, 37, 38, 40, 41, 42. Can we conclude that
the successive items did not constitute a random sample?

20. The following data represent the successive quality levels of 25 articles: 100, 110,
122, 132, 99, 96, 88, 75, 45, 211, 154, 143, 161, 142, 99, 111, 105, 133, 142,
150, 153, 121, 126, 117, 155. Does it appear that these data are a random sam-
ple from some population?

21. Can we use the runs test if we consider whether each data value is less than or
greater than some predetermined value rather than the value s-med?

22. The following table (taken from Quinn, W. H., Neal, T. V., and Antuñez de May-
olo, S. E., 1987, “El Niño occurrences over the past four-and-a-half centuries,”
Journal of Geophysical Research, 92 (C13), pp. 14,449–14,461) gives the years and
magnitude (either moderate or strong) of major El Niño years between 1800 and
1987. Use it to test the hypothesis that the successive El Niño magnitudes consti-
tute a random sample.
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Year and Magnitude (0 = moderate, 1 = strong ) of Major El Niño Events, 1800–1987

Year Magnitude Year Magnitude Year Magnitude

1803 1 1866 0 1918 0
1806 0 1867 0 1923 0
1812 0 1871 1 1925 1
1814 1 1874 0 1930 0
1817 0 1877 1 1932 1
1819 0 1880 0 1939 0
1821 0 1884 1 1940 1
1824 0 1887 0 1943 0
1828 1 1891 1 1951 0
1832 0 1896 0 1953 0
1837 0 1899 1 1957 1
1844 1 1902 0 1965 0
1850 0 1905 0 1972 1
1854 0 1907 0 1976 0
1857 0 1911 1 1982 1
1860 0 1914 0 1987 0
1864 1 1917 1



Chapter 13

QUALITY CONTROL

13.1 INTRODUCTION
Almost every manufacturing process results in some random variation in the items it pro-
duces. That is, no matter how stringently the process is being controlled, there is always
going to be some variation between the items produced. This variation is called chance
variation and is considered to be inherent to the process. However, there is another type
of variation that sometimes appears. This variation, far from being inherent to the process,
is due to some assignable cause and usually results in an adverse effect on the quality of the
items produced. For instance, this latter variation may be caused by a faulty machine set-
ting, or by poor quality of the raw materials presently being used, or by incorrect software,
or human error, or any other of a large number of possibilities. When the only variation
present is due to chance, and not to assignable cause, we say that the process is in control,
and a key problem is to determine whether a process is in or is out of control.

The determination of whether a process is in or out of control is greatly facilitated by
the use of control charts, which are determined by two numbers — the upper and lower
control limits. To employ such a chart, the data generated by the manufacturing process
are divided into subgroups and subgroup statistics — such as the subgroup average and
subgroup standard deviation — are computed. When the subgroup statistic does not fall
within the upper and lower control limit, we conclude that the process is out of control.

In Sections 13.2 and 13.3, we suppose that the successive items produced have mea-
surable characteristics, whose mean and variance are fixed when the process is in control.
We show how to construct control charts based on subgroup averages (in Section 13.2)
and on subgroup standard deviations (in Section 13.3). In Section 13.4, we suppose that
rather than having a measurable characteristic, each item is judged by an attribute —
that is, it is classified as either acceptable or unacceptable. Then we show how to con-
struct control charts that can be used to indicate a change in the quality of the items
produced. In Section 13.5, we consider control charts in situations where each item
produced has a random number of defects. Finally, in Section 13.6 we consider more
sophisticated types of control charts — ones that don’t consider each subgroup value in
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isolation but rather take into account the values of other subgroups. Three different con-
trol charts of this type — known as moving average, exponential weighted moving average,
and cumulative sum control charts — are presented in Section 13.6.

13.2 CONTROL CHARTS FOR AVERAGE VALUES:
THEX CONTROL CHART

Suppose that when the process is in control the successive items produced have measurable
characteristics that are independent, normal random variables with mean µ and variance
σ 2. However, due to special circumstances, suppose that the process may go out of control
and start producing items having a different distribution. We would like to be able to
recognize when this occurs so as to stop the process, find out what is wrong, and fix it.

Let X1, X2, . . . denote the measurable characteristics of the successive items produced.
To determine when the process goes out of control, we start by breaking the data up into
subgroups of some fixed size — call it n. The value of n is chosen so as to yield uniformity
within subgroups. That is, n may be chosen so that all data items within a subgroup were
produced on the same day, or on the same shift, or using the same settings, and so on.
In other words, the value of n is chosen so that it is reasonable that a shift in distribution
would occur between and not within subgroups. Typical values of n are 4, 5, or 6.

Let X i, i = 1, 2, . . . denote the average of the ith subgroup. That is,

X 1 = X1 + · · · + Xn

n

X 2 = Xn+1 + · · · + X2n

n

X 3 = X2n+1 + · · · + X3n

n

and so on. Since, when in control, each of the Xi have mean µ and variance σ 2, it follows
that

E(X i) = µ

Var(X i) = σ 2

n

and so

X i − µ
√

σ 2

n

∼ (0, 1)
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That is, if the process is in control throughout the production of subgroup i, then√
n(X i − µ)/σ has a standard normal distribution. Now it follows that a standard nor-

mal random variable Z will almost always be between −3 and +3. (Indeed, P{−3 <

Z < 3} = .9973.) Hence, if the process is in control throughout the production of the
items in subgroup i, then we would certainly expect that

−3 <
√

n
X i − µ

σ
< 3

or, equivalently, that

µ − 3σ√
n

< X i < µ + 3σ√
n

The values

UCL ≡ µ + 3σ√
n

and

LCL ≡ µ − 3σ√
n

are called, respectively, the upper and lower control limits.
The X control chart, which is designed to detect a change in the average value of an

item produced, is obtained by plotting the successive subgroup averages X i and declaring
that the process is out of control the first time X i does not fall between LCL and UCL
(see Figure 13.1).

EXAMPLE 13.2a A manufacturer produces steel shafts having diameters that should be
normally distributed with mean 3 mm and standard deviation .1 mm. Successive samples
of four shafts have yielded the following sample averages in millimeters.

Sample X Sample X

1 3.01 6 3.02
2 2.97 7 3.10
3 3.12 8 3.14
4 2.99 9 3.09
5 3.03 10 3.20

What conclusion should be drawn?
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0 2 4 6 8 10 12 14

X

Subgroup

Out of control

! 1 3" 5 UCL
n

5 LCL! 2
3"
n

FIGURE 13.1 Control chart for X , n = size of subgroup.

SOLUTION When in control the successive diameters have mean µ = 3 and standard
deviation σ = .1, and so with n = 4 the control limits are

LCL = 3 − 3(.1)√
4

= 2.85, UCL = 3 + 3(.1)√
4

= 3.15

Because sample number 10 falls above the upper control limit, it appears that there is
reason to suspect that the mean diameter of shafts now differs from 3. (Clearly, judging
from the results of Samples 6 through 10 it appears to have increased beyond 3.) !

REMARKS

(a) The foregoing supposes that when the process is in control the underlying distribution
is normal. However, even if this is not the case, by the central limit theorem it follows that
the subgroup averages should have a distribution that is roughly normal and so would be
unlikely to differ from its mean by more than 3 standard deviations.
(b) It is frequently the case that we do not determine the measurable qualities of all the
items produced but only those of a randomly chosen subset of items. If this is so then it
is natural to select, as a subgroup, items that are produced at roughly the same time.

It is important to note that even when the process is in control there is a chance —
namely, .0027 — that a subgroup average will fall outside the control limit and so one
would incorrectly stop the process and hunt for the nonexistent source of trouble.

Let us now suppose that the process has just gone out of control by a change in the
mean value of an item from µ to µ + a where a > 0. How long will it take (assuming
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things do not change again) until the chart will indicate that the process is now out of
control? To answer this, note that a subgroup average will be within the control limits if

−3 <
√

n
X − µ

σ
< 3

or, equivalently, if

−3 − a
√

n
σ

<
√

n
X − µ

σ
− a

√
n

σ
< 3 − a

√
n

σ

or

−3 − a
√

n
σ

<
√

n
X − µ − a

σ
< 3 − a

√
n

σ

Hence, since X is normal with mean µ+a and variance σ 2/n — and so
√

n(X −µ−a)/σ
has a standard normal distribution — the probability that it will fall within the control
limits is

P
{
−3 − a

√
n

σ
< Z < 3 − a

√
n

σ

}
= "

(
3 − a

√
n

σ

)
− "

(
−3 − a

√
n

σ

)

≈ "

(
3 − a

√
n

σ

)

and so the probability that it falls outside is approximately 1 − "(3 − a
√

n/σ ). For
instance, if the subgroup size is n = 4, then an increase in the mean value of 1 standard
deviation — that is, a = σ — will result in the subgroup average falling outside of
the control limits with probability 1 − "(1) = .1587. Because each subgroup average
will independently fall outside the control limits with probability 1 − "(3 − a

√
n/σ ),

it follows that the number of subgroups that will be needed to detect this shift has a
geometric distribution with mean {1 −"(3 − a

√
n/σ )}−1. (In the case mentioned before

with n = 4, the number of subgroups one would have to chart to detect a change in the
mean of 1 standard deviation has a geometric distribution with mean 1/.158 ≈ 6.3.)

13.2.1 Case of Unknown µ and σ
If one is just starting up a control chart and does not have reliable historical data, then µ

and σ would not be known and would have to be estimated. To do so, we employ k of the
subgroups where k should be chosen so that k ≥ 20 and nk ≥ 100. If X i, i = 1, . . . , k is

the average of the ith subgroup, then it is natural to estimate µ by X the average of these
subgroup averages. That is,

X = X 1 + · · · + X k

k



558 Chapter 13: Quality Control

To estimate σ , let Si denote the sample standard deviation of the ith subgroup,
i = 1, . . . , k. That is,

S1 =

√√√√
n∑

i=1

(Xi − X 1)2

n − 1

S2 =

√√√√
n∑

i=1

(Xn+i − X 2)2

n − 1

...

Sk =

√√√√
n∑

i=1

(X(k−1)n+i − X k)2

n − 1

Let

S = (S1 + · · · + Sk)/k

The statistic S will not be an unbiased estimator of σ — that is, E[S] '= σ . To transform
it into an unbiased estimator, we must first compute E[S], which is accomplished as
follows:

E[S] = E[S1] + · · · + E[Sk]
k

(13.2.1)

= E[S1]

where the last equality follows since S1, . . . , Sk are independent and identically distributed
(and thus have the same mean). To compute E[S1], we make use of the following funda-
mental result about normal samples — namely, that

(n − 1)S2
1

σ 2 =
n∑

i=1

(Xi − X 1)
2

σ 2 ∼ χ2
n−1 (13.2.2)

Now it is not difficult to show (see Problem 3) that

E[
√

Y ] =
√

2$(n/2)

$( n−1
2 )

when Y ∼ χ2
n−1 (13.2.3)

Since

E[
√

(n − 1)S2/σ 2] =
√

n − 1E[S1]/σ
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we see from Equations 13.2.2 and 13.2.3 that

E[S1] =
√

2$(n/2)σ√
n − 1$( n−1

2 )

Hence, if we set

c(n) =
√

2$(n/2)√
n − 1$( n−1

2 )

then it follows from Equation 13.2.1 that S/c(n) is an unbiased estimator of σ .
Table 13.1 presents the values of c(n) for n = 2 through n = 10.

TECHNICAL REMARK

In determining the values in Table 13.1, the computation of $(n/2) and $(n − 1
2 ) was

based on the recursive formula

$(a) = (a − 1)$(a − 1)

TABLE 13.1 Values of c(n)

c (2) = .7978849
c (3) = .8862266
c (4) = .9213181
c (5) = .9399851
c (6) = .9515332
c (7) = .9593684
c (8) = .9650309
c (9) = .9693103
c (10) = .9726596

which was established in Section 5.7. This recursion yields that, for integer n,

$(n) = (n − 1)(n − 2) · · · 3 · 2 · 1 · $(1)

= (n − 1)! since $(1) =
∫ ∞

0
e−x dx = 1

The recursion also yields that

$

(
n + 1

2

)
=

(
n − 1

2

)(
n − 3

2

)
· · · 3

2
· 1

2
· $

(
1
2

)
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with

$

(
1
2

)
=

∫ ∞

0
e−xx−1/2 dx

=
∫ ∞

0
e−y2/2

√
2

y
y dy by x = y2

2
dx = y dy

=
√

2
∫ ∞

0
e−y2/2 dy

= 2
√

π
1√
2π

∫ ∞

0
e−y2/2 dy

= 2
√

πP[N (0, 1) > 0]
= √

π

The preceding estimates for µ and σ make use of all k subgroups and thus are reasonable
only if the process has remained in control throughout. To check this, we compute the
control limits based on these estimates of µ and σ , namely,

LCL = X − 3S
c(n)

√
n

(13.2.4)

UCL = X + 3S
c(n)

√
n

We now check that each of the subgroup averages X i falls within these lower and upper
limits. Any subgroup whose average value does not fall within the limits is removed (we
suppose that the process was temporarily out of control) and the estimates are recomputed.
We then again check that all the remaining subgroup averages fall within the control lim-
its. If not, then they are removed, and so on. Of course, if too many of the subgroup aver-
ages fall outside the control limits, then it is clear that no control has yet been established.

EXAMPLE 13.2b Let us reconsider Example 13.2a under the new supposition that the
process is just beginning and so µ and σ are unknown. Also suppose that the sample
standard deviations were as follows:

X S X S

1 3.01 .12 6 3.02 .08
2 2.97 .14 7 3.10 .15
3 3.12 .08 8 3.14 .16
4 2.99 .11 9 3.09 .13
5 3.03 .09 10 3.20 .16
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Since X = 3.067, S = .122, c(4) = .9213, the control limits are

LCL = 3.067 − 3(.122)

2 × .9213
= 2.868

UCL = 3.067 + 3(.122)

2 × .9213
= 3.266

Since all the X i fall within these limits, we suppose that the process is in control with
µ = 3.067 and σ = S/c(4) = .1324.

Suppose now that the values of the items produced are supposed to fall within the
specifications 3 ± .1. Assuming that the process remains in control and that the foregoing
are accurate estimates of the true mean and standard deviation, what proportion of the
items will meet the desired specifications?

SOLUTION To answer the foregoing, we note that when µ = 3.067 and σ = .1324,

P{2.9 ≤ X ≤ 3.1} = P
{

2.9 − 3.067
.1324

≤ X − 3.067
.1324

≤ 3.1 − 3.067
.1324

}

= "(.2492) − "(−1.2613)

= .5984 − (1 − .8964)

= .4948

Hence, 49 percent of the items produced will meet the specifications. !

REMARKS

(a) The estimator X is equal to the average of all nk measurements and is thus the obvi-
ous estimator of µ. However, it may not immediately be clear why the sample standard
deviation of all the nk measurements, namely,

S ≡

√√√√
nk∑

i=1

(Xi − X )2

nk − 1

is not used as the initial estimator of σ . The reason it is not is that the process may not have
been in control throughout the first k subgroups, and thus this latter estimator could be
far away from the true value. Also, it often happens that a process goes out of control by an
occurrence that results in a change of its mean value µ while leaving its standard deviation
unchanged. In such a case, the subgroup sample deviations would still be estimators of σ ,
whereas the entire sample standard deviation would not. Indeed, even in the case where the
process appears to be in control throughout, the estimator of σ presented is preferred over
the sample standard deviation S. The reason for this is that we cannot be certain that the
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mean has not changed throughout this time. That is, even though all the subgroup aver-
ages fall within the control limits, and so we have concluded that the process is in control,
there is no assurance that there are no assignable causes of variation present (which might
have resulted in a change in the mean that has not yet been picked up by the chart). It
merely means that for practical purposes it pays to act as if the process was in control and
let it continue to produce items. However, since we realize that some assignable cause of
variation might be present, it has been argued that S/c(n) is a “safer" estimator than the
sample standard deviation. That is, although it is not quite as good when the process has
really been in control throughout, it could be a lot better if there had been some small
shifts in the mean.
(b) In the past, an estimator of σ based on subgroup ranges — defined as the difference
between the largest and smallest value in the subgroup — has been employed. This was
done to keep the necessary computations simple (it is clearly much easier to compute the
range than it is to compute the subgroup’s sample standard deviation). However, with
modern-day computational power this should no longer be a consideration, and since the
standard deviation estimator both has smaller variance than the range estimator and is
more robust (in the sense that it would still yield a reasonable estimate of the population
standard deviation even when the underlying distribution is not normal), we will not
consider the latter estimator in this text.

13.3 S -CONTROL CHARTS
The X control charts presented in the previous section are designed to pick up changes in
the population mean. In cases where one is also concerned about possible changes in the
population variance, we can utilize an S-control chart.

As before, suppose that, when in control, the items produced have a measurable charac-
teristic that is normally distributed with mean µ and variance σ 2. If Si is the sample stan-
dard deviation for the ith subgroup, that is,

Si =
√√√√

n∑

j=1

(X(i−1)n+j − X i)2

(n − 1)

then, as was shown in Section 13.2.1,

E[Si] = c(n)σ (13.3.1)

In addition,

Var(Si) = E[S2
i ] − (E[Si])2 (13.3.2)

= σ 2 − c2(n)σ 2

= σ 2[1 − c2(n)]
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where the next to last equality follows from Equation 13.2.2 and the fact that the expected
value of a chi-square random variable is equal to its degrees of freedom parameter.

On using the fact that, when in control, Si has the distribution of a constant (equal
to σ /

√
n − 1) times the square root of a chi-square random variable with n − 1 degrees

of freedom, it can be shown that Si will, with probability near to 1, be within 3 standard
deviations of its mean. That is,

P{E[Si] − 3
√

Var(Si) < Si < E[Si] + 3
√

Var(Si)} ≈ .99

Thus, using the formulas 13.3.1 and 13.3.2 for E[Si] and Var(Si), it is natural to set the
upper and lower control limits for the S chart by

UCL = σ [c(n) + 3
√

1 − c2(n)] (13.3.3)

LCL = σ [c(n) − 3
√

1 − c2(n)]

The successive values of Si should be plotted to make certain they fall within the upper
and lower control limits. When a value falls outside, the process should be stopped and
declared to be out of control.

When one is just starting up a control chart and σ is unknown, it can be estimated
from S/c(n). Using the foregoing, the estimated control limits would then be

UCL = S[1 + 3
√

1/c2(n) − 1] (13.3.4)

LCL = S[1 − 3
√

1/c2(n) − 1]

As in the case of starting up an X control chart, it should then be checked that the k
subgroup standard deviations S1, S2, . . . , Sk all fall within these control limits. If any of
them falls outside, then those subgroups should be discarded and S recomputed.

EXAMPLE 13.3a The following are the X and S values for 20 subgroups of size 5 for
a recently started process.

Subgroup X S Subgroup X S Subgroup X S Subgroup X S

1 35.1 4.2 6 36.4 4.5 11 38.1 4.2 16 41.3 8.2
2 33.2 4.4 7 35.9 3.4 12 37.6 3.9 17 35.7 8.1
3 31.7 2.5 8 38.4 5.1 13 38.8 3.2 18 36.3 4.2
4 35.4 3.2 9 35.7 3.8 14 34.3 4.0 19 35.4 4.1
5 34.5 2.6 10 27.2 6.2 15 43.2 3.5 20 34.6 3.7
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Since X = 35.94, S = 4.35, c(5) = .9400, we see from Equations 13.2.4 and 13.3.4 that
the preliminary upper and lower control limits for X and S are

UCL(X ) = 42.149

LCL(X ) = 29.731

UCL(S) = 9.087

LCL(S) = −.386

0 5
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FIGURE 13.2
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The control charts for X and S with the preceding control limits are shown in Figures
13.2a and 13.2b. Since X 10 and X 15 fall outside the X control limits, these subgroups
must be eliminated and the control limits recomputed. We leave the necessary computa-
tions as an exercise. !

13.4 CONTROL CHARTS FOR THE FRACTION DEFECTIVE
The X and S-control charts can be used when the data are measurements whose values
can vary continuously over a region. There are also situations in which the items produced
have quality characteristics that are classified as either being defective or nondefective.
Control charts can also be constructed in this latter situation.

Let us suppose that when the process is in control each item produced will indepen-
dently be defective with probability p. If we let X denote the number of defective items
in a subgroup of n items, then assuming control, X will be a binomial random variable
with parameters (n, p). If F = X /n is the fraction of the subgroup that is defective, then
assuming the process is in control, its mean and standard deviation are given by

E[F ] = E[X ]
n

= np
n

= p

√
Var(F) =

√
Var(X )

n2 =
√

np(1 − p)
n2 =

√
p(1 − p)

n

Hence, when the process is in control the fraction defective in a subgroup of size n should,
with high probability, be between the limits

LCL = p − 3

√
p(1 − p)

n
, UCL = p + 3

√
p(1 − p)

n

The subgroup size n is usually much larger than the typical values of between 4 and 10
used in X and S charts. The main reason for this is that if p is small and n is not of
reasonable size, then most of the subgroups will have zero defects even when the process
goes out of control. Thus, it would take longer than it would if n were chosen so that np
were not close to zero to detect a shift in quality.

To start such a control chart it is, of course, necessary first to estimate p. To do so,
choose k of the subgroups, where again one should try to take k ≥ 20, and let Fi
denote the fraction of the ith subgroup that are defective. The estimate of p is given
by F defined by

F = F1 + · · · + Fk

k
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Since nFi is equal to the number of defectives in subgroup i, we see that Fk can also be
expressed as

F = nF1 + · · · + nFk

nk

= total number of defectives in all the subgroups
number of items in the subgroups

In other words, the estimate of p is just the proportion of items inspected that are defective.
The upper and lower control limits are now given by

LCL = F − 3

√
F (1 − F )

n
, UCL = F + 3

√
F(1 − F )

n

We should now check whether the subgroup fractions F1, F2, . . . , Fk fall within these
control limits. If some of them fall outside, then the corresponding subgroups should be
eliminated and F recomputed.

EXAMPLE 13.4a Successive samples of 50 screws are drawn from the hourly production of
an automatic screw machine, with each screw being rated as either acceptable or defective.
This is done for 20 such samples with the following data resulting.

Subgroup Defectives F Subgroup Defectives F

1 6 .12 11 1 .02
2 5 .10 12 3 .06
3 3 .06 13 2 .04
4 0 .00 14 0 .00
5 1 .02 15 1 .02
6 2 .04 16 1 .02
7 1 .02 17 0 .00
8 0 .00 18 2 .04
9 2 .04 19 1 .02

10 1 .02 20 2 .04

We can compute the trial control limits as follows:

F = total number defectives
total number items

= 34
1,000

= .034
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and so

UCL = .034 + 3

√
(.034)(.968)

50
= .1109

LCL = .034 − 3

√
(.034)(.966)

50
= −.0429

Since the proportion of defectives in the first subgroup falls outside the upper control
limit, we eliminate that subgroup and recompute F as

F = 34 − 6
950

= .0295

The new upper and lower control limits are .0295 ± √
(.0295)(1 − .0295)/50, or

LCL = −.0423, UCL = .1013

Since the remaining subgroups all have fraction defectives that fall within the control
limits, we can accept that, when in control, the fraction of defective items in a subgroup
should be below .1013. !

REMARK

Note that we are attempting to detect any change in quality even when this change results
in improved quality. That is, we regard the process as being “out of control” even when
the probability of a defective item decreases. The reason for this is that it is important to
notice any change in quality, for either better or worse, to be able to evaluate the reason
for the change. In other words, if an improvement in product quality occurs, then it is
important to analyze the production process to determine the reason for the improvement.
(That is, what are we doing right?)

13.5 CONTROL CHARTS FOR NUMBER OF DEFECTS
In this section, we consider situations in which the data are the numbers of defects in units
that consist of an item or group of items. For instance, it could be the number of defective
rivets in an airplane wing, or the number of defective computer chips that are produced
daily by a given company. Because it is often the case that there are a large number of pos-
sible things that can be defective, with each of these having a small probability of actually
being defective, it is probably reasonable to assume that the resulting number of defects
has a Poisson distribution.* So let us suppose that, when the process is in control, the
number of defects per unit has a Poisson distribution with mean λ.

* See Section 5.2 for a theoretical explanation.
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If we let Xi denote the number of defects in the ith unit, then, since the variance of
a Poisson random variable is equal to its mean, when the process is in control

E[Xi] = λ, Var(Xi) = λ

Hence, when in control each Xi should with high probability be within λ ± 3
√

λ, and so
the upper and lower control limits are given by

UCL = λ + 3
√

λ, LCL = λ − 3
√

λ

As before, when the control chart is started and λ is unknown, a sample of k units should
be used to estimate λ by

X = (X1 + · · · + Xk)/k

This results in trial control limits

X + 3
√

X and X − 3
√

X

If all the Xi , i = 1, . . . , k fall within these limits, then we suppose that the process is
in control with λ = X . If some fall outside, then these points are eliminated and we
recompute X , and so on.

In situations where the mean number of defects per item (or per day) is small, one
should combine items (days) and use as data the number of defects in a given number —
say, n — of items (or days). Since the sum of independent Poisson random variables
remains a Poisson random variable, the data values will be Poisson distributed with a
larger mean value λ. Such combining of items is useful when the mean number of defects
per item is less than 25.

To obtain a feel for the advantage in combining items, suppose that the mean number
of defects per item is 4 when the process is under control, and suppose that something
occurs that results in this value changing from 4 to 6, that is, an increase of 1 standard
deviation occurs. Let us see how many items will be produced, on average, until the
process is declared out of control when the successive data consist of the number of defects
in n items.

Since the number of defects in a sample of n items is, when under control, Poisson
distributed with mean and variance equal to 4n, the control limits are 4n ± 3

√
4n or

4n ± 6
√

n. Now if the mean number of defects per item changes to 6, then a data value
will be Poisson with mean 6n and so the probability that it will fall outside the control
limits — call it p(n) — is given by

p(n) = P{Y > 4n + 6
√

n} + P{Y < 4n − 6
√

n}
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when Y is Poisson with mean 6n. Now

p(n) ≈ P{Y > 4n + 6
√

n}

= P
{

Y − 6n√
6n

>
6
√

n − 2n√
6n

}

≈ P
{

Z >
6
√

n − 2n√
6n

}
where Z ∼ N (0, 1)

= 1 − "

(√
6 − 2

√
n
6

)

Because each data value will be outside the control limits with probability p(n), it follows
that the number of data values needed to obtain one outside the limits is a geometric
random variable with parameter p(n), and thus has mean 1/p(n). Finally, since there are n
items for each data value, it follows that the number of items produced before the process
is seen to be out of control has mean value n/p(n):

Average number of items produced while out of control = n/(1 − "(
√

6 −
√

2n
3 ))

We plot this for various n in Table 13.2. Since larger values of n are better when the
process is in control (because the average number of items produced before the process is
incorrectly said to be out of control is approximately n/.0027), it is clear from Table 13.2
that one should combine at least 9 of the items. This would mean that each data value
(equal to the number of defects in the combined set) would have mean at least 9×4 = 36.

TABLE 13.2

n Average Number of Items

1 19.6
2 20.66
3 19.80
4 19.32
5 18.80
6 18.18
7 18.13
8 18.02
9 18

10 18.18
11 18.33
12 18.51

EXAMPLE 13.5a The following data represent the number of defects discovered at a factory
on successive units of 10 cars each.
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Cars Defects Cars Defects Cars Defects Cars Defects

1 141 6 74 11 63 16 68
2 162 7 85 12 74 17 95
3 150 8 95 13 103 18 81
4 111 9 76 14 81 19 102
5 92 10 68 15 94 20 73

Does it appear that the production process was in control throughout?

SOLUTION Since X = 94.4, it follows that the trial control limits are

LCL = 94.4 − 3
√

94.4 = 65.25

UCL = 94.4 + 3
√

94.4 = 123.55

Since the first three data values are larger than UCL, they are removed and the sample
mean recomputed. This yields

X = (94.4)20 − (141 + 162 + 150)

17
= 84.41

and so the new trial control limits are

LCL = 84.41 − 3
√

84.41 = 56.85

UCL = 84.41 + 3
√

84.41 = 111.97

At this point since all remaining 17 data values fall within the limits, we could declare that
the process is now in control with a mean value of 84.41. However, because it seems that
the mean number of defects was initially high before settling into control, it seems quite
plausible that the data value X4 also originated before the process was in control. Thus, it
would seem prudent in this situation to also eliminate X4 and recompute. Based on the
remaining 16 data values, we obtain that

X = 82.56

LCL = 82.56 − 3
√

82.56 = 55.30

UCL = 82.56 + 3
√

82.56 = 109.82

and so it appears that the process is now in control with a mean value of 82.56. !
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13.6 OTHER CONTROL CHARTS FOR DETECTING
CHANGES IN THE POPULATION MEAN

The major weakness of the X control chart presented in Section 13.2 is that it is relatively
insensitive to small changes in the population mean. That is, when such a change occurs,
since each plotted value is based on only a single subgroup and so tends to have a relatively
large variance, it takes, on average, a large number of plotted values to detect the change.
One way to remedy this weakness is to allow each plotted value to depend not only on
the most recent subgroup average but on some of the other subgroup averages as well.
Three approaches for doing this that have been found to be quite effective are based on
(1) moving averages, (2) exponentially weighted moving averages, and (3) cumulative sum
control charts.

13.6.1 Moving-Average Control Charts
The moving-average control chart of span size k is obtained by continually plotting the
average of the k most recent subgroups. That is, the moving average at time t, call it Mt ,
is defined by

Mt = Xt + X t−1 + · · · + X t−k+1

k

where X i is the average of the values of subgroup i. The successive computations can be
easily performed by noting that

kMt = X t + X t−1 + · · · + X t−k+1

and, substituting t + 1 for t,

kMt+1 = X t+1 + X t + · · · + X t−k+2

Subtraction now yields that

kMt+1 − kMt = X t+1 − X t−k+1

or

Mt+1 = Mt + X t+1 − X t−k+1

k

In words, the moving average at time t + 1 is equal to the moving average at time t
plus 1/k times the difference between the newly added and the deleted value in the
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moving average. For values of t less than k, Mt is defined as the average of the first t
subgroups. That is,

Mt = X 1 + · · · + X t

t
if t < k

Suppose now that when the process is in control the successive values come from a
normal population with mean µ and variance σ 2. Therefore, if n is the subgroup size, it
follows that X i is normal with mean µ and variance σ 2/n. From this we see that the average
of m of the X i will be normal with mean µ and variance given by Var(X i)/m = σ 2/nm
and, therefore, when the process is in control

E[Mt ] = µ

Var(Mt) =
{
σ 2/nt if t < k
σ 2/nk otherwise

Because a normal random variable is almost always within 3 standard deviations of its
mean, we have the following upper and lower control limits for Mt :

UCL =
{
µ + 3σ /

√
nt if t < k

µ + 3σ /
√

nk otherwise

LCL =
{
µ − 3σ /

√
nt if t < k

µ − 3σ /
√

nk otherwise

In other words, aside from the first k − 1 moving averages, the process will be declared
out of control whenever a moving average differs from µ by more than 3σ /

√
nk.

EXAMPLE 13.6a When a certain manufacturing process is in control, it produces items
whose values are normally distributed with mean 10 and standard deviation 2. The fol-
lowing simulated data represent the values of 25 subgroup averages of size 5 from a normal
population with mean 11 and standard deviation 2. That is, these data represent the sub-
group averages after the process has gone out of control with its mean value increasing
from 10 to 11. Table 13.3 presents these 25 values along with the moving averages based
on span size k = 8 as well as the upper and lower control limits. The lower and upper
control limits for t > 8 are 9.051318 and 10.94868.

As the reader can see, the first moving average to fall outside its control limits occurred
at time 11, with other such occurrences at times 12, 13, 14, 16, and 25. (It is interest-
ing to note that the usual control chart — that is, the moving average with k = 1 —
would have declared the process out of control at time 7 since X 7 was so large. How-
ever, this is the only point where this chart would have indicated a lack of control (see
Figure 13.3).
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TABLE 13.3

t X t Mt LCL UCL

1 9.617728 9.617728 7.316719 12.68328
2 10.25437 9.936049 8.102634 11.89737
3 9.876195 9.913098 8.450807 11.54919
4 10.79338 10.13317 8.658359 11.34164
5 10.60699 10.22793 8.8 11.2
6 10.48396 10.2706 8.904554 11.09545
7 13.33961 10.70903 8.95815 11.01419
8 9.462969 10.55328 9.051318 10.94868

...
...

9 10.14556 10.61926
10 11.66342 10.79539

∗11 11.55484 11.00634
∗12 11.26203 11.06492
∗13 12.31473 11.27839
∗14 9.220009 11.1204
15 11.25206 10.85945
16 10.48662 10.98741
17 9.025091 10.84735
18 9.693386 10.6011
19 11.45989 10.58923
20 12.44213 10.73674
21 11.18981 10.59613
22 11.56674 10.88947
23 9.869849 10.71669
24 12.11311 10.92

∗25 11.48656 11.22768
∗ = Out of control.

There is an inverse relationship between the size of the change in the mean value that
one wants to guard against and the appropriate moving-average span size k. That is, the
smaller this change is, the larger k ought to be. !

13.6.2 Exponentially Weighted Moving-Average Control Charts
The moving-average control chart of Section 13.6.1 considered at each time t a weighted
average of all subgroup averages up to that time, with the k most recent values being
given weight 1/k and the others given weight 0. Since this appears to be a most effective
procedure for detecting small changes in the population mean, it raises the possibility that
other sets of weights might also be successfully employed. One set of weights that is often
utilized is obtained by decreasing the weight of each earlier subgroup average by a constant
factor.
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Let

Wt = αX t + (1 − α)Wt−1 (13.6.1)

where α is a constant between 0 and 1, and where

W0 = µ

The sequence of values Wt , t = 0, 1, 2, . . . is called an exponentially weighted moving
average. To understand why it has been given that name, note that if we continually
substitute for the W term on the right side of Equation 13.6.1, we obtain that

Wt = αX t + (1 − α)[αX t−1 + (1 − α)Wt−2] (13.6.2)

= αX t + α(1 − α)X t−1 + (1 − α)2Wt−2

= αX t + α(1 − α)X t−1 + (1 − α)2[αX t−2 + (1 − α)Wt−3]
= αX t + α(1 − α)X t−1 + α(1 − α)2X t−2 + (1 − α)3Wt−3

...

= αX t + α(1 − α)X t−1 + α(1 − α)2X t−2 + · · ·
+ α(1 − α)t−1X 1 + (1 − α)tµ



13.6 Other Control Charts for Detecting Changes in the Population Mean 575

where the foregoing used the fact that W0 = µ. Thus we see from Equation 13.6.2 that
Wt is a weighted average of all the subgroup averages up to time t, giving weight α to
the most recent subgroup and then successively decreasing the weight of earlier subgroup
averages by the constant factor 1 − α, and then giving weight (1 − α)t to the in-control
population mean.

The smaller the value of α, the more even the successive weights. For instance, if
α = .1 then the initial weight is .1 and the successive weights decrease by the factor .9;
that is, the weights are .1, .09, .081, .073, .066, .059, and so on. On the other hand, if
one chooses, say, α = .4, then the successive weights are .4, .24, .144, .087, .052, . . . .
Since the successive weights α(1 − α)i−1, i = 1, 2, . . . , can be written as

α(1 − α)i−1 = αe−βi

where

α = α

1 − α
, β = − log(1 − α)

we say that the successively older data values are “exponentially weighted” (see
Figure 13.4).

To compute the mean and variance of the Wt , recall that, when in control, the sub-
group averages X i are independent normal random variables each having mean µ and
variance σ 2/n. Therefore, using Equation 13.6.2, we see that

E[Wt] = µ[α + α(1 − α) + α(1 − α)2 + · · · + α(1 − α)t−1 + (1 − α)t]

= µα[1 − (1 − α)t]
1 − (1 − α)

+ µ(1 − α)t

= µ
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FIGURE 13.4 Plot of α(1 − α)i−1 when α = .4.
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To determine the variance, we again use Equation 13.6.2:

Var(Wt) = σ 2

n

{
α2 + [α(1 − α)]2 + [α(1 − α)2]2 + · · · + [α(1 − α)t−1]2}

= σ 2

n
α2[1 + β + β2 + · · · + β t−1] where β = (1 − α)2

= σ 2α2[1 − (1 − α)2t]
n[1 − (1 − α)2]

= σ 2α[1 − (1 − α)2t ]
n(2 − α)

Hence, when t is large we see that, provided that the process has remained in control
throughout,

E[Wt] = µ

Var(Wt) ≈ σ 2α

n(2 − α)
since (1 − α)2t ≈ 0

Thus, the upper and lower control limits for Wt are given by

UCL = µ + 3σ

√
α

n(2 − α)

LCL = µ − 3σ

√
α

n(2 − α)

Note that the preceding control limits are the same as those in a moving-average control
chart with span k (after the initial k values) when

3σ√
nk

= 3σ

√
α

n(2 − α)

or, equivalently, when

k = 2 − α

α
or α = 2

k + 1

EXAMPLE 13.6b A repair shop will send a worker to a caller’s home to repair electronic
equipment. Upon receiving a request, it dispatches a worker who is instructed to call in
when the job is completed. Historical data indicate that the time from when the server
is dispatched until he or she calls is a normal random variable with mean 62 minutes
and standard deviation 24 minutes. To keep aware of any changes in this distribution,
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the repair shop plots a standard exponentially weighted moving-average (EWMA) control
chart with each data value being the average of 4 successive times, and with a weighting
factor of α = .25. If the present value of the chart is 60 and the following are the next 16
subgroup averages, what can we conclude?

48, 52, 70, 62, 57, 81, 56, 59, 77, 82, 78, 80, 74, 82, 68, 84

SOLUTION Starting with W0 = 60, the successive values of W1, . . . , W16 can be obtained
from the formula

Wt = .25X t + .75Wt−1

This gives

W1 = (.25)(48) + (.75)(60) = 57

W2 = (.25)(52) + (.75)(57) = 55.75

W3 = (.25)(70) + (.75)(55.75) = 59.31

W4 = (.25)(62) + (.75)(59.31) = 59.98

W5 = (.25)(57) + (.75)(59.98) = 59.24

W6 = (.25)(81) + (.75)(59.24) = 64.68

and so on, with the following being the values of W7 through W16:

62.50, 61.61, 65.48, 69.60, 71.70, 73.78, 73.83, 75.87, 73.90, 76.43

Since

3

√
.25

1.75
24√

4
= 13.61

the control limits of the standard EWMA control chart with weighting factor α = .25 are

LCL = 62 − 13.61 = 48.39

UCL = 62 + 13.61 = 75.61

Thus, the EWMA control chart would have declared the system out of control after deter-
mining W14 (and also after W16). On the other hand, since a subgroup standard deviation
is σ /

√
n = 12, it is interesting that no data value differed from µ = 62 by even as much

as 2 subgroup standard deviations, and so the standard X control chart would not have
declared the system out of control. !
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EXAMPLE 13.6c Consider the data of Example 13.6a but now use an exponentially
weighted moving-average control chart with α = 2/9. This gives rise to the following
data set.

t X t Wt t X t Wt

1 9.617728 9.915051 14 9.220009 10.84522
2 10.25437 9.990456 15 11.25206 10.93563
3 9.867195 9.963064 16 10.48662 10.83585
4 10.79338 10.14758 17 9.025091 10.43346
5 10.60699 10.24967 18 9.693386 10.269
6 10.48396 10.30174 19 11.45989 10.53364

∗7 13.33961 10.97682 ∗20 12.44213 10.95775
8 9.462969 10.64041 ∗21 11.18981 11.00932
9 10.14556 10.53044 ∗22 11.56674 11.13319

10 11.66342 10.78221 23 9.869849 10.85245
∗11 11.55484 10.95391 ∗24 12.11311 11.13259
∗12 11.26203 11.02238 ∗25 11.48656 11.21125
∗13 12.31473 11.30957
∗ = Out of control.
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FIGURE 13.5

Since

UCL = 10.94868
LCL = 9.051318

we see that the process could be declared out of control as early as t = 7
(see Figure 13.5). !
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13.6.3 Cumulative Sum Control Charts
The major competitor to the moving-average type of control chart for detecting a small-
to moderate-sized change in the mean is the cumulative sum (often reduced to cu-sum)
control chart.

Suppose, as before, that X 1, X 2, . . . represent successive averages of subgroups of size
n and that when the process is in control these random variables have mean µ and stan-
dard deviation σ /

√
n. Initially, suppose that we are only interested in determining when

an increase in the mean value occurs. The (one-sided) cumulative sum control chart for
detecting an increase in the mean operates as follows: Choose positive constants d and B,
and let

Yj = X j − µ − dσ /
√

n, j ≥ 1

Note that when the process is in control, and so E[X j] = µ,

E[Yj] = −dσ /
√

n < 0

Now, let

S0 = 0

Sj+1 = max{Sj + Yj+1, 0}, j ≥ 0

The cumulative sum control chart having parameters d and B continually plots Sj , and
declares that the mean value has increased at the first j such that

Sj > Bσ /
√

n

To understand the rationale behind this control chart, suppose that we had decided to
continually plot the sum of all the random variables Yi that have been observed so far.
That is, suppose we had decided to plot the successive values of Pj , where

Pj =
j∑

i=1

Yi

which can also be written as

P0 = 0

Pj+1 = Pj + Yj+1, j ≥ 0

Now, when the system has always been in control, all of the Yi have a negative expected
value, and thus we would expect their sum to be negative. Hence, if the value of Pj ever
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became large — say, greater than Bσ /
√

n — then this would be strong evidence that the
process has gone out of control (by having an increase in the mean value of a produced
item). The difficulty, however, is that if the system goes out of control only after some
large time, then the value of Pj at that time will most likely be strongly negative (since up
to then we would have been summing random variables having a negative mean), and thus
it would take a long time for its value to exceed Bσ /

√
n. Therefore, to keep the sum from

becoming very negative while the process is in control, the cumulative sum control chart
employs the simple trick of resetting its value to 0 whenever it becomes negative. That
is, the quantity Sj is the cumulative sum of all of the Yi up to time j, with the exception
that any time this sum becomes negative its value is reset to 0.

EXAMPLE 13.6d Suppose that the mean and standard deviation of a subgroup average are
µ = 30 and σ /

√
n = 8, respectively, and consider the cumulative sum control chart

with d = .5, B = 5. If the first eight subgroup averages are

29, 33, 35, 42, 36, 44, 43, 45

then the successive values of Yj = X j − 30 − 4 = X j − 34 are

Y1 = −5, Y2 = −1, Y3 = 1, Y4 = 8, Y5 = 2, Y6 = 10, Y7 = 9, Y8 = 11

Therefore,

S1 = max{−5, 0} = 0

S2 = max{−1, 0} = 0

S3 = max{1, 0} = 1

S4 = max{9, 0} = 9

S5 = max{11, 0} = 11

S6 = max{21, 0} = 21

S7 = max{30, 0} = 30

S8 = max{41, 0} = 41

Since the control limit is

Bσ /
√

n = 5(8) = 40

the cumulative sum chart would declare that the mean has increased after observing the
eighth subgroup average. !

To detect either a positive or a negative change in the mean, we employ two one-sided
cumulative sum charts simultaneously. We begin by noting that a decrease in E[Xi] is
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equivalent to an increase in E[−Xi]. Hence, we can detect a decrease in the mean value
of an item by running a one-sided cumulative sum chart on the negatives of the subgroup
averages. That is, for specified values d and B, not only do we plot the quantities Sj as
before, but, in addition, we let

Wj = −X j − (−µ) − dσ /
√

n = µ − X j − dσ /
√

n

and then also plot the values Tj , where

T0 = 0

Tj+1 = max{Tj + Wj+1, 0}, j ≥ 0

The first time that either Sj or Tj exceeds Bσ /
√

n, the process is said to be out of control.
Summing up, the following steps result in a cumulative sum control chart for detecting

a change in the mean value of a produced item: Choose positive constants d and B; use
the successive subgroup averages to determine the values of Sj and Tj ; declare the process
out of control the first time that either exceeds Bσ /

√
n. Three common choices of the

pair of values d and B are d = .25, B = 8.00, or d = .50, B = 4.77, or d = 1, B = 2.49.
Any of these choices results in a control rule that has approximately the same false alarm
rate as does the X control chart that declares the process out of control the first time a
subgroup average differs from µ by more than 3σ /

√
n. As a general rule of thumb, the

smaller the change in mean that one wants to guard against, the smaller should be the
chosen value of d .

Problems

1. Assume that items produced are supposed to be normally distributed with mean
35 and standard deviation 3. To monitor this process, subgroups of size 5 are
sampled. If the following represents the averages of the first 20 subgroups, does it
appear that the process was in control?

Subgroup No. X Subgroup No. X

1 34.0 6 32.2
2 31.6 7 33.0
3 30.8 8 32.6
4 33.0 9 33.8
5 35.0 10 35.8

(continued)
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Subgroup No. X Subgroup No. X

11 35.8 16 31.6
12 35.8 17 33.0
13 34.0 18 33.2
14 35.0 19 31.8
15 33.8 20 35.6

2. Suppose that a process is in control with µ = 14 and σ = 2. An X control chart
based on subgroups of size 5 is employed. If a shift in the mean of 2.2 units occurs,
what is the probability that the next subgroup average will fall outside the control
limits? On average, how many subgroups will have to be looked at in order to
detect this shift?

3. If Y has a chi-square distribution with n − 1 degrees of freedom, show that

E[
√

Y ] =
√

2
$(n/2)

$[(n − 1)/2]

(Hint : Write

E[
√

Y ] =
∫ ∞

0

√
yfχ2

n−1
( y) dy

=
∫ ∞

0

√
y

e−y/2y(n−1)/2−1 dy

2(n−1)/2$

[
(n − 1)

2

]

=
∫ ∞

0

e−y/2yn/2−1 dy

2(n−1)/2$

[
(n − 1)

2

]

Now make the transformation x = y/2.)

4. Samples of size 5 are taken at regular intervals from a production process, and
the values of the sample averages and sample standard deviations are calculated.
Suppose that the sum of the X and S values for the first 25 samples are given by

∑
X i = 357.2,

∑
Si = 4.88

(a) Assuming control, determine the control limits for an X control chart.
(b) Suppose that the measurable values of the items produced are supposed to be

within the limits 14.3± .45. Assuming that the process remains in control with
a mean and variance that is approximately equal to the estimates derived,
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approximately what percentage of the items produced will fall within the
specification limits?

5. Determine the revised X and S-control limits for the data in Example 13.3a.

6. In Problem 4, determine the control limits for an S-control chart.

7. The following are X and S values for 20 subgroups of size 5.

Subgroup X S Subgroup X S Subgroup X S

1 33.8 5.1 8 36.1 4.1 15 35.6 4.8
2 37.2 5.4 9 38.2 7.3 16 36.4 4.6
3 40.4 6.1 10 32.4 6.6 17 37.2 6.1
4 39.3 5.5 11 29.7 5.1 18 31.3 5.7
5 41.1 5.2 12 31.6 5.3 19 33.6 5.5
6 40.4 4.8 13 38.4 5.8 20 36.7 4.2
7 35.0 5.0 14 40.2 6.4

(a) Determine trial control limits for an X control chart.
(b) Determine trial control limits for an S-control chart.
(c) Does it appear that the process was in control throughout?
(d) If your answer in part (c) is no, suggest values for upper and lower control

limits to be used with succeeding subgroups.
(e) If each item is supposed to have a value within 35 ± 10, what is your estimate

of the percentage of items that will fall within this specification?

8. Control charts for X and S are maintained on the shear strength of spot welds.
After 30 subgroups of size 4,

∑
X i = 12,660 and

∑
Si = 500. Assume that the

process is in control.

(a) What are the X control limits?
(b) What are the S-control limits?
(c) Estimate the standard deviation for the process.
(d) If the minimum specification for this weld is 400 pounds, what percentage

of the welds will not meet the minimum specification?

9. Control charts for X and S are maintained on resistors (in ohms). The subgroup
size is 4. The values of X and S are computed for each subgroup. After 20 sub-
groups,

∑
X i = 8,620 and

∑
Si = 450.

(a) Compute the values of the limits for the X and S charts.
(b) Estimate the value of σ on the assumption that the process is in statistical

control.
(c) If the specification limits are 430 ± 30, what conclusions can you draw

regarding the abilityof the process toproduce itemswithin these specifications?
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(d) If µ is increased by 60, what is the probability of a subgroup average falling
outside the control limits?

10. The following data refer to the amounts by which the diameters of 1
4 inch ball

bearings differ from 1
4 inch in units of .001 inches. The subgroup size is n = 5.

Subgroup Data Values

1 2.5 .5 2.0 −1.2 1.4
2 .2 .3 .5 1.1 1.5
3 1.5 1.3 1.2 −1.0 .7
4 .2 .5 −2.0 .0 −1.3
5 −.2 .1 .3 −.6 .5
6 1.1 −.5 .6 .5 .2
7 1.1 −1.0 −1.2 1.3 .1
8 .2 −1.5 −.5 1.5 .3
9 −2.0 −1.5 1.6 1.4 .1

10 −.5 3.2 −.1 −1.0 −1.5
11 .1 1.5 −.2 .3 2.1
12 .0 −2.0 −.5 .6 −.5
13 −1.0 −.5 −.5 −1.0 .2
14 .5 1.3 −1.2 −.5 −2.7
15 1.1 .8 1.5 −1.5 1.2

(a) Set up trial control limits for X and S-control charts.
(b) Does the process appear to have been in control throughout the sampling?
(c) If the answer to part (b) is no, construct revised control limits.

11. Samples of n = 6 items are taken from a manufacturing process at regular inter-
vals. A normally distributed quality characteristic is measured, and X and S val-
ues are calculated for each sample. After 50 subgroups have been analyzed, we
have

50∑

i=1

X i = 970 and
50∑

i=1

Si = 85

(a) Compute the control limit for the X and S-control charts. Assume that all
points on both charts plot within the control limits.

(b) If the specification limits are 19 ± 4.0, what are your conclusions regarding
the ability of the process to produce items conforming to specifications?

12. The following data present the number of defective bearing and seal assemblies in
samples of size 100.
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Sample Number of Sample Number of
Number Defectives Number Defectives

1 5 11 4
2 2 12 10
3 1 13 0
4 5 14 8
5 9 15 3
6 4 16 6
7 3 17 2
8 3 18 1
9 2 19 6

10 5 20 10

Does it appear that the process was in control throughout? If not, determine
revised control limits if possible.

13. The following data represent the results of inspecting all personal computers pro-
duced at a given plant during the past 12 days.

Day Number of Units Number Defective

1 80 5
2 110 7
3 90 4
4 80 9
5 100 12
6 90 10
7 80 4
8 70 3
9 80 5

10 90 6
11 90 5
12 110 7

Does the process appear to have been in control? Determine control limits for
future production.

14. Suppose that when a process is in control each item will be defective with prob-
ability .04. Suppose that your control chart calls for taking daily samples of size
500. What is the probability that, if the probability of a defective item should sud-
denly shift to .08, your control chart would detect this shift on the next sample?

15. The following data represent the number of defective chips produced on the last
15 days: 121, 133, 98, 85, 101, 78, 66, 82, 90, 78, 85, 81, 100, 75, 89. Would
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you conclude that the process has been in control throughout these 15 days?
What control limits would you advise using for future production?

16. Surface defects have been counted on 25 rectangular steel plates, and the data
are shown below. Set up a control chart. Does the process producing the plates
appear to be in statistical control?

Number of Number of
Plate Number Defects Plate Number Defects

1 2 14 10
2 3 15 2
3 4 16 2
4 3 17 6
5 1 18 5
6 2 19 4
7 5 20 6
8 0 21 3
9 2 22 7

10 5 23 0
11 1 24 2
12 7 25 4
13 8

17. The following data represent 25 successive subgroup averages and moving
averages of span size 5 of these subgroup averages. The data are generated by a
process that, when in control, produces normally distributed items having mean
30 and variance 40. The subgroups are of size 4. Would you judge that the
process has been in control throughout?

X t Mt X t Mt

35.62938 35.62938 35.80945 32.34106
39.13018 37.37978 30.9136 33.1748
29.45974 34.73976 30.54829 32.47771
32.5872 34.20162 36.39414 33.17019
30.06041 33.37338 27.62703 32.2585
26.54353 31.55621 34.02624 31.90186
37.75199 31.28057 27.81629 31.2824
26.88128 30.76488 26.99926 30.57259
32.4807 30.74358 32.44703 29.78317
26.7449 30.08048 38.53433 31.96463
34.03377 31.57853 28.53698 30.86678
32.93174 30.61448 28.65725 31.03497
32.18547 31.67531
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18. The data shown below give subgroup averages and moving averages of the values
from Problem 17. The span of the moving averages is k = 8. When in control
the subgroup averages are normally distributed with mean 50 and variance 5.
What can you conclude?

X t Mt

50.79806 50.79806
46.21413 48.50609
51.85793 49.62337
50.27771 49.78696
53.81512 50.59259
50.67635 50.60655
51.39083 50.71859
51.65246 50.83533
52.15607 51.00508
54.57523 52.05022
53.08497 52.2036
55.02968 52.79759
54.25338 52.85237
50.48405 52.82834
50.34928 52.69814
50.86896 52.6002
52.03695 52.58531
53.23255 52.41748
48.12588 51.79759
52.23154 51.44783

19. Redo Problem 17 by employing an exponential weighted moving average control
chart with α = 1

3 .

20. Analyze the data of Problem 18 with an exponential weighted moving-average
control chart having α = 2

9 .

21. Explain why a moving-average control chart with span size k must use different
control limits for the first k − 1 moving averages, whereas an exponentially
weighted moving-average control chart can use the same control limits through-
out. [Hint: Argue that Var(Mt ) decreases in t, whereas Var(Wt) increases, and
explain why this is relevant.]

22. Repeat Problem 17, this time using a cumulative sum control chart with

(a) d = .25, B = 8;
(b) d = .5, B = 4.77.

23. Repeat Problem 18, this time using a cumulative sum control chart with d = 1
and B = 2.49.



Chapter 14*

LIFE TESTING

14.1 INTRODUCTION
In this chapter, we consider a population of items having lifetimes that are assumed to
be independent random variables with a common distribution that is specified up to an
unknown parameter. The problem of interest will be to use whatever data are available to
estimate this parameter.

In Section 14.2, we introduce the concept of the hazard (or failure) rate function — a
useful engineering concept that can be utilized to specify lifetime distributions. In
Section 14.3, we suppose that the underlying life distribution is exponential and show
how to obtain estimates (point, interval, and Bayesian) of its mean under a variety of
sampling plans. In Section 14.4, we develop a test of the hypothesis that two exponen-
tially distributed populations have a common mean. In Section 14.5, we consider two
approaches to estimating the parameters of a Weibull distribution.

14.2 HAZARD RATE FUNCTIONS
Consider a positive continuous random variable X, that we interpret as being the lifetime
of some item, having distribution function F and density f. The hazard rate (sometimes
called the failure rate) function λ(t) of F is defined by

λ(t) = f (t)
1 − F(t)

To interpret λ(t), suppose that the item has survived for t hours and we desire
the probability that it will not survive for an additional time dt. That is, consider

* Optional chapter.
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P{X ∈ (t, t + dt) | X > t}. Now

P{X ∈ (t, t + dt)|X > t} = P{X ∈ (t, t + dt), X > t}
P{X > t}

= P{X ∈ (t, t + dt)}
P{X > t}

≈ f (t)
1 − F(t)

dt

That is, λ(t) represents the conditional probability intensity that an item of age t will fail
in the next moment.

Suppose now that the lifetime distribution is exponential. Then, by the memoryless
property of the exponential distribution it follows that the distribution of remaining life
for a t-year-old item is the same as for a new item. Hence λ(t) should be constant, which
is verified as follows:

λ(t) = f (t)
1 − F(t)

= λe−λt

e−λt

= λ

Thus, the failure rate function for the exponential distribution is constant. The parameter
λ is often referred to as the rate of the distribution.

We now show that the failure rate function λ(t), t ≥ 0, uniquely determines the dis-
tribution F. To show this, note that by definition

λ(s) = f (s)
1 − F(s)

=
d
ds F(s)

1 − F(s)

= d
ds

{− log[1 − F(s)]}

Integrating both sides of this equation from 0 to t yields

∫ t

0
λ(s) ds = − log[1 − F(t)] + log[1 − F(0)]

= − log[1 − F(t)] since F(0) = 0
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which implies that

1 − F(t) = exp
{
−
∫ t

0
λ(s) ds

}
(14.2.1)

Hence a distribution function of a positive continuous random variable can be specified
by giving its hazard rate function. For instance, if a random variable has a linear hazard
rate function — that is, if

λ(t) = a + bt

then its distribution function is given by

F(t) = 1 − e−at−bt2/2

and differentiation yields that its density is

f (t) = (a + bt)e−(at+bt2/2), t ≥ 0

When a = 0, the foregoing is known as the Rayleigh density function.

EXAMPLE 14.2a One often hears that the death rate of a person who smokes is, at each
age, twice that of a nonsmoker. What does this mean? Does it mean that a nonsmoker has
twice the probability of surviving a given number of years as does a smoker of the same
age?

SOLUTION If λs(t) denotes the hazard rate of a smoker of age t and λn(t) that of a
nonsmoker of age t, then the foregoing is equivalent to the statement that

λs(t) = 2λn(t)

The probability that an A-year-old nonsmoker will survive until age B, A < B, is

P{A-year-old nonsmoker reaches age B}
= P{nonsmoker’s lifetime > B|nonsmoker’s lifetime > A}

= 1 − Fnon(B)

1 − Fnon(A)

=
exp

{
−
∫ B

0 λn(t)dt
}

exp
{
−
∫ A

0 λn(t)dt
} from Equation 14.2.1

= exp
{
−
∫ B

A
λn(t)dt

}
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whereas the corresponding probability for a smoker is, by the same reasoning,

P{A-year-old smoker reaches age B} = exp
{
−
∫ B

A
λs(t) dt

}

= exp
{
−2

∫ B

A
λn(t) dt

}

=
[

exp
{
−
∫ B

A
λn(t) dt

}]2

In other words, of two individuals of the same age, one of whom is a smoker and the
other a nonsmoker, the probability that the smoker survives to any given age is the square
(not one-half ) of the corresponding probability for a nonsmoker. For instance, if λn(t) =
1/20, 50 ≤ t ≤ 60, then the probability that a 50-year-old nonsmoker reaches age 60 is
e−1/2 = .607, whereas the corresponding probability for a smoker is e−1 = .368. !

REMARK ON TERMINOLOGY

We will say that X has failure rate function λ(t) when more precisely we mean that the
distribution function of X has failure rate function λ(t).

14.3 THE EXPONENTIAL DISTRIBUTION IN LIFE TESTING

14.3.1 Simultaneous Testing — Stopping at the r th Failure
Suppose that we are testing items whose life distribution is exponential with unknown
mean θ . We put n independent items simultaneously on test and stop the experiment
when there have been a total of r, r ≤ n, failures. The problem is to then use the observed
data to estimate the mean θ .

The observed data will be the following:

Data: x1 ≤ x2 ≤ · · · ≤ xr, i1, i2, . . . , ir (14.3.1)

with the interpretation that the jth item to fail was item ij and it failed at time xj. Thus, if
we let Xi , i = 1, . . . , n denote the lifetime of component i, then the data will be as given
in Equation 14.3.1 if

Xi1 = x1, Xi2 = x2, . . . , Xir = xr

other n − r of the Xj are all greater than xr

Now the probability density of Xij is

fXij
(xj) = 1

θ
e−xj/θ , j = 1, . . . , r
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and so, by independence, the joint probability density of Xij , j = 1, . . . , r is

fXi1 ,..., Xir (x1, . . . , xr) =
r∏

j=1

1
θ

e−xj/θ

Also, the probability that the other n − r of the X’s are all greater than xr is, again using
independence,

P{Xj > xr for j &= i1 or i2 . . . or ir} = (e−xr/θ )n−r

Hence, we see that the likelihood of the observed data — call it L(x1, . . . , xr,
i1, . . . , ir) — is, for x1 ≤ x2 ≤ · · · ≤ xr ,

L(x1, . . . , xr , i1, . . . , ir) (14.3.2)

= fXi1, Xi2 ,..., Xir (x1, . . . , xr)P{Xj > xr , j &= i1, . . . , ir}

= 1
θ

e−x1/θ · · · 1
θ

e−xr/θ (e−xr/θ )n−r

= 1
θ r exp





−

r∑
i=1

xi

θ
− (n − r)xr

θ






REMARK

The likelihood in Equation 14.3.2 not only specifies that the first r failures occur at
times x1 ≤ x2 ≤ · · · ≤ xr but also that the r items to fail were, in order, i1, i2, . . . , ir .
If we only desired the density function of the first r failure times, then since there are
n(n − 1) · · · (n − (r − 1)) = n!/(n − r)! possible (ordered) choices of the first r items to
fail, it follows that the joint density is, for x1 ≤ x2 ≤ · · · ≤ xr,

f (x1, x2, . . . , xr) = n!
(n − r)!

1
θ r exp





−

r∑
i=1

xi

θ
− (n − r)

θ
xr






To obtain the maximum likelihood estimator of θ , we take the logarithm of both sides
of Equation 14.3.2. This yields

log L(x1, . . . , xr, i1, . . . , ir) = −r log θ −

r∑
i=1

xi

θ
− (n − r)xr

θ
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and so

∂

∂θ
log L(x1, . . . , xr, i1, . . . , ir) = − r

θ
+

r∑
i=1

xi

θ2 + (n − r)xr

θ2

Equating to 0 and solving yields that θ̂ , the maximum likelihood estimate, is given by

θ̂ =

r∑
i=1

xi + (n − r)xr

r

Hence, if we let X(i) denote the time at which the ith failure occurs (X(i) is called the ith
order statistic), then the maximum likelihood estimator of θ is

θ̂ =

r∑
i=1

X(i) + (n − r)X(r)

r
(14.3.3)

= τ

r

where τ , defined to equal the numerator in Equation 14.3.3, is called the total-time-on-test
statistic. We call it this since the ith item to fail functions for a time X(i) (and then fails),
i = 1, . . . , r, whereas the other n − r items function throughout the test (which lasts for
a time X(r)). Hence the sum of the times that all the items are on test is equal to τ .

To obtain a confidence interval for θ , we will determine the distribution of τ , the total
time on test. Recalling that X(i) is the time of the ith failure, i = 1, . . . , r, we will start
by rewriting the expression for τ . To write an expression for τ , rather than summing the
total time on test of each of the items, let us ask how much additional time on test was
generated between each successive failure. That is, let us denote by Yi , i = 1, . . . , r, the
additional time on test generated between the (i −1)st and ith failure. Now up to the first
X(1) time units (as all n items are functioning throughout this interval), the total time on
test is

Y1 = nX(1)

Between the first and second failures, there are a total of n − 1 functioning items, and so

Y2 = (n − 1)(X(2) − X(1))
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In general, we have

Y1 = nX(1)

Y2 = (n − 1)(X(2) − X(1))

...

Yj = (n − j + 1)(X( j) − X( j−1))

...

Yr = (n − r + 1)(X(r) − X(r−1))

and

τ =
r∑

j=1

Yj

The importance of the foregoing representation for τ follows from the fact that the dis-
tributions of the Yj ’s are easily obtained as follows. Since X(1), the time of the first failure,
is the minimum of n independent exponential lifetimes, each having rate 1/θ , it follows
from Proposition 5.6.1 that it is itself exponentially distributed with rate n/θ . That is,
X(1) is exponential with mean θ /n, and so nX(1) is exponential with mean θ . Also, at the
moment when the first failure occurs, the remaining n − 1 functioning items are, by the
memoryless property of the exponential, as good as new and so each will have an addi-
tional life that is exponential with mean θ ; hence, the additional time until one of them
fails is exponential with rate (n − 1)/θ . That is, independent of X(1), X(2) − X(1) is expo-
nential with mean θ /(n−1) and so Y2 = (n−1)(X(2)−X(1)) is exponential with mean θ .
Indeed, continuing this argument leads us to the following conclusion:

Y1, . . . , Yr are independent exponential

random variables each having mean θ (14.3.4)

Hence, since the sum of independent and identically distributed exponential random
variables has a gamma distribution (Corollary 5.7.2), we see that

τ ∼ gamma(r, 1/θ)

That is, τ has a gamma distribution with parameters r and 1/θ . Equivalently, by recall-
ing that a gamma random variable with parameters (r, 1/θ ) is equivalent to θ /2 times a
chi-square random variable with 2r degrees of freedom (see Section 5.8.1), we obtain that

2τ

θ
∼ χ2

2r (14.3.5)
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That is, 2τ /θ has a chi-square distribution with 2r degrees of freedom. Hence,

P
{
χ2

1−α/2,2r < 2τ /θ < χ2
α/2,2r

}
= 1 − α

and so a 100(1 − α) percent confidence interval for θ is

θ ∈
(

2τ

χ2
α/2,2r

,
2τ

χ2
1−α/2,2r

)

(14.3.6)

One-sided confidence intervals can be similarly obtained.

EXAMPLE 14.3a A sample of 50 transistors is simultaneously put on a test that is to be
ended when the 15th failure occurs. If the total time on test of all transistors is equal to
525 hours, determine a 95 percent confidence interval for the mean lifetime of a transistor.
Assume that the underlying distribution is exponential.

SOLUTION From Program 5.8.1b,

χ2
.025,30 = 46.98, χ2

.975,30 = 16.89

and so, using Equation 14.3.6, we can assert with 95 percent confidence that

θ ∈ (22.35, 62.17) !

In testing a hypothesis about θ , we can use Equation 14.3.6 to determine the p-value
of the test data. For instance, suppose we are interested in the one-sided test of

H0 : θ ≥ θ0

versus the alternative

H1 : θ < θ0

This can be tested by first computing the value of the test statistic 2τ /θ0 — call this
value v — and then computing the probability that a chi-square random variable with 2r
degrees of freedom would be as small as v. This probability is the p-value in the sense that
it represents the (maximal) probability that such a small value of 2τ /θ0 would have been
observed if H0 were true. The hypothesis should then be rejected at all significance levels
at least as large as this p-value.

EXAMPLE 14.3b A producer of batteries claims that the lifetimes of the items it manufac-
tures are exponentially distributed with a mean life of at least 150 hours. To test this claim,
100 batteries are simultaneously put on a test that is slated to end when the 20th failure
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occurs. If, at the end of the experiment, the total test time of all the 100 batteries is equal
to 1,800, should the manufacturer’s claim be accepted?

SOLUTION Since 2τ /θ0 = 3,600/150 = 24, the p-value is

p-value = P{χ2
40 ≤ 24}

= .021 from Program 5.8.1a

Hence, the manufacturer’s claim should be rejected at the 5 percent level of significance
(indeed at any significance level at least as large as .021). !

It follows from Equation 14.3.5 that the accuracy of the estimator τ /r depends only
on r and not on n, the number of items put on test. The importance of n resides in the
fact that by choosing it large enough we can ensure that the test is, with high probability,
of short duration. In fact, the moments of X(r), the time at which the test ends, are easily
obtained. Since, with X(0) ≡ 0,

X( j) − X( j−1) = Yj

n − j + 1
, j = 1, . . . , r

it follows upon summing that

X(r) =
r∑

j=1

Yj

n − j + 1

Hence, from Equation 14.3.4, X(r) is the sum of r independent exponentials having
respective means θ /n, θ /(n − 1), . . . , θ /(n − r + 1). Using this, we see that

E[X(r)] =
r∑

j=1

θ

n − j + 1
= θ

n∑

j=n−r+1

1
j

(14.3.7)

Var(X(r)) =
r∑

j=1

(
θ

n − j + 1

)2

= θ2
n∑

j=n−r+1

1
j2

where the second equality uses the fact that the variance of an exponential is equal to the
square of its mean. For large n, we can approximate the preceding sums as follows:

n∑

j=n−r+1

1
j

≈
∫ n

n−r+1

dx
x

= log
(

n
n − r + 1

)

n∑

j=n−r+1

1
j2

≈
∫ n

n−r+1

dx
x2 = 1

n − r + 1
− 1

n
= r − 1

n(n − r + 1)
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Thus, for instance, if in Example 14.3b the true mean life was 120 hours, then the
expectation and variance of the length of the test are approximately given by

E[X(20)] ≈ 120 log
(

100
81

)
= 25.29

Var(X(20)) ≈ (120)2 19
100(81)

= 33.78

14.3.2 Sequential Testing
Suppose now that we have an infinite supply of items, each of whose lifetime is exponential
with an unknown mean θ , which are to be tested sequentially, in that the first item is put
on test and on its failure the second is put on test, and so on. That is, as soon as an item
fails, it is immediately replaced on life test by the next item. We suppose that at some fixed
time T the text ends.

The observed data will consist of the following:

Data: r, x1, x2, . . . , xr

with the interpretation that there has been a total of r failures with the ith item on test
having functioned for a time xi. Now the foregoing will be the observed data if

Xi = xi, i = 1, . . . , r,
r∑

i=1

xi < T (14.3.8)

Xr+1 > T −
r∑

i=1

xi

where Xi is the functional lifetime of the ith item to be put in use. This follows since
in order for there to be r failures, the rth failure must occur before time T — and so∑r

i=1 Xi < T — and the functional life of the (r + 1)st item must exceed T −∑r
i=1 Xi

(see Figure 14.1).

TimeT

Xr11

0 r 1 1r

ΣXi
i 5 1 

ΣXi
i 5 1 

Time of r th failure Time of (r + 1)st failure 

FIGURE 14.1 r failures by time T.
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From Equation 14.3.8, we obtain that the likelihood of the data r, x1, . . . , xr is as
follows:

f (r, x1, . . . , xr|θ)

= fX1,..., Xr (x1, . . . , xr)P

{

Xr+1 > T −
r∑

i=1

xi

}

,
r∑

i=1

xi < T

= 1
θ r e−'r

i=1xi/θ e−(T −'r
i=1xi)/θ

= 1
θ r e−T /θ

Therefore,

log f (r, x1, . . . , xr|θ) = −r log θ − T
θ

and so
∂

∂θ
log f (r, x1, . . . , xr|θ) = − r

θ
+ T

θ2

On equating to 0 and solving, we obtain that the maximum likelihood estimate for θ is

θ̂ = T
r

Since T is the total time on test of all items, it follows once again that the maximum
likelihood estimate of the unknown exponential mean is equal to the total time on test
divided by the number of observed failures in this time.

If we let N(T ) denote the number of failures by time T, then the maximum likelihood
estimator of θ is T /N (T ). Suppose now that the observed value of N (T ) is N (T ) = r. To
determine a 100(1−α) percent confidence interval estimate for θ , we will first determine
the values θL and θU , which are such that

PθU {N (T ) ≥ r} = α

2
, PθL{N (T ) ≤ r} = α

2

where by Pθ (A) we mean that we are computing the probability of the event A under the
supposition that θ is the true mean. The 100(1 − α) percent confidence interval estimate
for θ is

θ ∈ (θL, θU )

To understand why those values of θ for which either θ < θL or θ > θU are not
included in the confidence interval, note that Pθ {N (T ) ≥ r} decreases and Pθ {N (T ) ≤ r}
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increases in θ (why?). Hence,

if θ < θL, then Pθ {N (T ) ≤ r} < PθL{N (T ) ≤ r} = α

2

if θ > θU , then Pθ {N (T ) ≥ r} < PθU {N (T ) ≥ r} = α

2

It remains to determine θL and θU . To do so, note first that the event that N (T ) ≥ r is
equivalent to the statement that the rth failure occurs before or at time T. That is,

N (T ) ≥ r ⇔ X1 + · · · + Xr ≤ T

and so

Pθ {N (T ) ≥ r} = Pθ {X1 + · · · + Xr ≤ T }
= P{((r, 1/θ) ≤ T }

= P
{

θ

2
χ2

2r ≤ T
}

= P
{
χ2

2r ≤ 2T /θ
}

Hence, upon evaluating the foregoing at θ = θU , and using the fact that P{χ2
2r ≤

χ2
1−α/2,2r} = α/2, we obtain that

α

2
= P

{
χ2

2r ≤ 2T
θU

}

and that

2T
θU

= χ2
1−α/2,2r

or

θU = 2T /χ2
1−α/2,2r

Similarly, we can show that

θL = 2T /χ2
α/2,2r

and thus the 100(1 − α) percent confidence interval estimate for θ is

θ ∈ (2T /χ2
α/2,2r, 2T /χ2

1−α/2,2r)
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EXAMPLE 14.3c If a one-at-a-time sequential test yields 10 failures in the fixed time of
T = 500 hours, then the maximum likelihood estimate of θ is 500/10 = 50 hours. A 95
percent confidence interval estimate of θ is

0 ∈ (1,000/χ2
.025,20, 1,000/χ2

.975,20)

Running Program 5.8.1b yields that

χ2
.025,20 = 34.17, χ2

.975,20 = 9.66

and so, with 95 percent confidence,

θ ∈ (29.27, 103.52) !

If we wanted to test the hypothesis

H0 : θ = θ0

versus the alternative

H1 : θ &= θ0

then we would first determine the value of N (T ). If N (T ) = r, then the hypothesis
would be rejected provided either

Pθ0{N (T ) ≤ r} ≤ α

2
or Pθ0{N (T ) ≥ r} ≤ α

2

In other words, H0 would be rejected at all significance levels greater than or equal to the
p-value given by

p-value = 2 min(Pθ0{N (T ) ≥ r}, Pθ0{N (T ) ≤ r})
p-value = 2 min(Pθ0{N (T ) ≥ r}, 1 − Pθ0{N (T ) ≥ r + 1})

= 2 min
(

P
{
χ2

2r ≤ 2T
θ0

}
, 1 − P

{
χ2

2(r+1) ≤ 2T
θ0

})

The p-value for a one-sided test is similarly obtained.
The chi-square probabilities in the foregoing can be computed by making use of

Program 5.8.1a.

EXAMPLE 14.3d A company claims that the mean lifetimes of the semiconductors it
produces is at least 25 hours. To substantiate this claim, an independent testing ser-
vice has decided to sequentially test, one at a time, the company’s semiconductors for
600 hours. If 30 semiconductors failed during this period, what can we say about the
validity of the company’s claim? Test at the 10 percent level.
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SOLUTION This is a one-sided test of

H0 : θ ≥ 25 versus H1 : θ < 25

The relevant probability for determining the p-value is the probability that there would
have been as many as 30 failures if the mean life were 25. That is,

p-value = P25{N (600) ≥ 30}
= P{χ2

60 ≤ 1,200/25}
= .132 from Program 5.8.1a

Thus, H0 would be accepted when the significance level is .10. !

14.3.3 Simultaneous Testing — Stopping by a Fixed Time
Suppose again that we are testing items whose life distributions are independent exponen-
tial random variables with a common unknown mean θ . As in Section 14.3.1, the n items
are simultaneously put on test, but now we suppose that the test is to stop either at some
fixed time T or whenever all n items have failed — whichever occurs first. The problem is
to use the observed data to estimate θ .

The observed data will be as follows:

Data : i1, i2, . . . , ir, x1, x2, . . . , xr

with the interpretation that the preceding results when the r items numbered i1, . . . , ir
are observed to fail at respective times x1, . . . , xr and the other n − r items have not failed
by time T.

Since an item will not have failed by time T if and only if its lifetime is greater than T,
we see that the likelihood of the foregoing data is

f (i1, . . . , ir, x1, . . . , xr) = fXi1,...,Xir (x1, . . . , xr)P{Xj > T , j &= i1, . . . , ir}

= 1
θ

e−x1/θ · · · 1
θ

e−xr/θ (e−T /θ)n−r

= 1
θ r exp





−

r∑
i=1

xi

θ
− (n − r)T

θ






To obtain the maximum likelihood estimates, take logs to obtain

log f (i1, . . . , ir, x1, . . . , xr) = −r log θ −

r∑
1

xi

θ
− (n − r)T

θ
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Hence,

∂

∂θ
log f (i1, . . . , ir, x1, . . . , xr) = − r

θ
+

r∑
1

xi + (n − r)T

θ2

Equating to 0 and solving yields that θ̂ , the maximum likelihood estimate, is given by

θ̂ =

r∑
i=1

xi + (n − r)T

r

Hence, if we let R denote the number of items that fail by time T and let X(i) be the
ith smallest of the failure times, i = 1, . . . , R, then the maximum likelihood estimator
of θ is

θ̂ =

R∑
i=1

X(i) + (n − R)T

R

Let τ denote the sum of the times that all items are on life test. Then, because the R
items that fail are on test for times X(1), . . . , X(R) whereas the n − R nonfailed items are
all on test for time T, it follows that

τ =
R∑

i=1

X(i) + (n − R)T

and thus we can write the maximum likelihood estimator as

θ̂ = τ

R

In words, the maximum likelihood estimator of the mean life is (as in the life testing
procedures of Sections 14.3.1 and 14.3.2) equal to the total time on test divided by the
number of items observed to fail.

REMARK

As the reader may possibly have surmised, it turns out that for all possible life test-
ing schemes for the exponential distribution, the maximum likelihood estimator of the
unknown mean θ will always be equal to the total time on test divided by the number of
observed failures. To see why this is true, consider any testing situation and suppose that
the outcome of the data is that r items are observed to fail after having been on test for
times x1, . . . , xr , respectively, and that s items have not yet failed when the test ends — at
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which time they had been on test for respective times y1, . . . , ys. The likelihood of this
outcome will be

likelihood = K
1
θ

e−x1/θ . . .
1
θ

e−xr/θ e−y1/θ . . . e−ys/θ

= K
θ r exp






−
( r∑

i=1
xi +

s∑
i=1

yi

)

θ





(14.3.9)

where K, which is a function of the testing scheme and the data, does not depend on θ .
(For instance, K may relate to a testing procedure in which the decision as to when to stop
depends not only on the observed data but is allowed to be random.) It follows from the
foregoing that the maximum likelihood estimate of θ will be

θ̂ =

r∑
i=1

xi +
s∑

i=1
yi

r
(14.3.10)

But
∑r

i=1 xi + ∑s
i=1 yi is just the total-time-on-test statistic and so the maximum like-

lihood estimator of θ is indeed the total time on test divided by the number of observed
failures in that time.

The distribution of τ /R is rather complicated for the life testing scheme described in
this section* and thus we will not be able to easily derive a confidence interval estimator
for θ . Indeed, we will not further pursue this problem but rather will consider the Bayesian
approach to estimating θ .

14.3.4 The Bayesian Approach
Suppose that items having independent and identically distributed exponential lifetimes
with an unknown mean θ are put on life test. Then, as noted in the remark given in
Section 14.3.3, the likelihood of the data can be expressed as

f (data|θ) = K
θ r e−t/θ

where t is the total time on test — that is, the sum of the time on test of all items used —
and r is the number of observed failures for the given data.

Let λ = 1/θ denote the rate of the exponential distribution. In the Bayesian approach,
it is more convenient to work with the rate λ rather than its reciprocal. From the

* For instance, for the scheme considered, τ and R are not only both random but are also dependent.
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foregoing we see that

f (data|λ) = K λre−λt

If we suppose prior to testing, that λ is distributed according to the prior density g(λ),
then the posterior density of λ given the observed data is as follows:

f (λ|data) = f (data|λ)g(λ)∫
f (data|λ)g(λ) dλ

= λre−λt g(λ)∫
λre−λt g(λ) dλ

(14.3.11)

The preceding posterior density becomes particularly convenient to work with when g is
a gamma density function with parameters, say, (b, a) — that is, when

g(λ) = ae−aλ(aλ)b−1

((b)
, λ > 0

for some nonnegative constants a and b. Indeed for this choice of g we have from
Equation 14.3.11 that

f (λ|data) = Ce−(a+t)λλr+b−1

= Ke−(a+t)λ[(a + t)λ]b+r−1

where C and K do not depend on λ. Because we recognize the preceding as the gamma
density with parameters (b + r, a + t), we can rewrite it as

f (λ|data) = (a + t)e−(a+t)λ[(a + t)λ]b+r−1

((b + r)
, λ > 0

In other words, if the prior distribution of λ is gamma with parameters (b, a), then no
matter what the testing scheme, the (posterior) conditional distribution of λ given the
data is gamma with parameters (b + R, a + τ ), where τ and R represent respectively the
total-time-on-test statistic and the number of observed failures. Because the mean of a
gamma random variable with parameters (b, a) is equal to b/a (see Section 5.7), we can
conclude that E[λ|data], the Bayes estimator of λ, is

E[λ|data] = b + R
a + τ

EXAMPLE 14.3e Suppose that 20 items having an exponential life distribution with an
unknown rate λ are put on life test at various times. When the test is ended, there have
been 10 observed failures — their lifetimes being (in hours) 5, 7, 6.2, 8.1, 7.9, 15, 18,
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3.9, 4.6, 5.8. The 10 items that did not fail had, at the time the test was terminated,
been on test for times (in hours) 3, 3.2, 4.1, 1.8, 1.6, 2.7, 1.2, 5.4, 10.3, 1.5. If prior
to the testing it was felt that λ could be viewed as being a gamma random variable with
parameters (2, 20), what is the Bayes estimator of λ?

SOLUTION Since

τ = 116.1, R = 10

it follows that the Bayes estimate of λ is

E[λ|data] = 12
136.1

= .088 !

REMARK

As we have seen, the choice of a gamma prior distribution for the rate of an exponential
distribution makes the resulting computations quite simple. Whereas, from an applied
viewpoint, this is not a sufficient rationale, such a choice is often made with one justifi-
cation being that the flexibility in fixing the two parameters of the gamma prior usually
enables one to reasonably approximate their true prior feelings.

14.4 A TWO-SAMPLE PROBLEM
A company has set up two separate plants to produce vacuum tubes. The company sup-
poses that tubes produced at Plant I function for an exponentially distributed time with
an unknown mean θ1 whereas those produced at Plant II function for an exponentially
distributed time with unknown mean θ2. To test the hypothesis that there is no difference
between the two plants (at least in regard to the lifetimes of the tubes they produce), the
company samples n tubes from Plant I and m from Plant II and then utilizes these tubes
to determine their lifetimes. How can they thus determine whether the two plants are
indeed identical?

If we let X1, . . . , Xn denote the lifetimes of the n tubes produced at Plant I and
Y1, . . . , Ym denote the lifetimes of the m tubes produced at Plant II, then the problem
is to test the hypothesis that θ1 = θ2 when the Xi , i = 1, . . . , n are a random sample from
an exponential distribution with mean θ1 and the Yi, i = 1, . . . , m are a random sample
from an exponential distribution with mean θ2. Moreover, the two samples are supposed
to be independent.

To develop a test of the hypothesis that θ1 = θ2, let us begin by noting that
∑n

i=1Xi
and

∑m
i=1Yi (being the sum of independent and identically distributed exponentials) are

independent gamma random variables with respective parameters (n, 1/θ1) and (m, 1/θ2).
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Hence, by the equivalence of the gamma and chi-square distribution it follows that

2
θ1

n∑

i=1

Xi ∼ χ2
2n

2
θ2

m∑

i=1

Yi ∼ χ2
2m

Hence, it follows from the definition of the F -distribution that

2
2nθ1

∑n
i=1 Xi

2
2mθ2

∑m
i=1 Yi

∼ Fn,m

That is, if X and Y are the two sample means, respectively, then

θ2X

θ1Y
has an F -distribution with n and m degrees of freedom

Hence, when the hypothesis θ1 = θ2 is true, we see that X /Y has an F -distribution with
n and m degrees of freedom. This suggests the following test of the hypothesis that
θ1 = θ2.

Test : H0 : θ1 = θ2 vs. alternative H1 : θ1 &= θ2
Step 1: Choose a significance level α.
Step 2: Determine the value of the test statistic X /Y — say its value is v.
Step 3: Compute P{F ≤ v} where F ∼ Fn,m. If this probability is either less

than α/2 (which occurs when X is significantly less than Y ) or greater
than 1−α/2 (which occurs when X is significantly greater than Y ), then
the hypothesis is rejected.

In other words, the p-value of the test data is given by

p-value = 2 min(P{F ≤ v}, 1 − P{F ≤ v})

EXAMPLE 14.4a Test the hypothesis, at the 5 percent level of significance, that the lifetimes
of items produced at two given plants have the same exponential life distribution if a
sample of size 10 from the first plant has a total lifetime of 420 hours whereas a sample of
15 from the second plant has a total lifetime of 510 hours.
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SOLUTION The value of the test statistic X /Y is 42/34 = 1.2353. To compute the prob-
ability that an F -random variable with parameters 10, 15 is less than this value, we run
Program 5.8.3a to obtain that

P{F10,15 < 1.2353} = .6554

Because the p-value is equal to 2(1 − .6554) = .6892, we cannot reject H0. !

14.5 THE WEIBULL DISTRIBUTION IN LIFE TESTING
Whereas the exponential distribution arises as the life distribution when the hazard rate
function λ(t) is assumed to be constant over time, there are many situations in which it
is more realistic to suppose that λ(t) either increases or decreases over time. One example
of such a hazard rate function is given by

λ(t) = αβtβ−1, t > 0 (14.5.1)

where α and β are positive constants. The distribution whose hazard rate function is given
by Equation 14.5.1 is called the Weibull distribution with parameters (α, β). Note that
λ(t) increases when β > 1, decreases when β < 1, and is constant (reducing to the
exponential) when β = 1.

The Weibull distribution function is obtained from Equation 14.5.1 as follows:

F(t) = 1 − exp
{
−
∫ t

0
λ(s) ds

}
, t > 0

= 1 − exp{−αtβ}

Differentiating yields its density function:

f (t) = αβtβ−1 exp{−αtβ}, t > 0 (14.5.2)

This density is plotted for a variety of values of α and β in Figure 14.2.
Suppose now that X1, . . . , Xn are independent Weibull random variables each having

parameters (α, β), which are assumed unknown. To estimate α and β, we can employ the
maximum likelihood approach. Equation 14.5.2 yields the likelihood, given by

f (x1, . . . , xn) = αnβnxβ−1
1 · · · xβ−1

n exp

{

−α

n∑

i=1

xβ
i

}

Hence,

log f (x1, . . . , xn) = n log α + n log β + (β − 1)

n∑

i=1

log xi − α

n∑

i=1

xβ
i
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Weibull (1, 0.5)

x
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0.0

FIGURE 14.2 Weibull density functions.

and

∂

∂α
log f (x1, . . . , xn) = n

α
−

n∑

i=1

xβ
i

∂

∂β
log f (x1, . . . , xn) = n

β
+

n∑

i=1

log xi − α

n∑

i=1

xβ
i log xi

Equating to zero shows that the maximum likelihood estimates α̂ and β̂ are the solu-
tions of

n
α̂

=
n∑

i=1

xβ̂
i

n

β̂
+

n∑

i=1

log xi = α̂

n∑

i=1

xβ̂
i log xi
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or, equivalently,

α̂ = n
n∑

i=1
xβ̂

i

n + β̂ log

( n∏

i=1

xi

)

=
nβ̂

n∑
i=1

xβ̂
i log xi

n∑
i=1

xβ̂
i

This latter equation can then be solved numerically for β̂ , which will then also deter-
mine α̂. However, rather than pursuing this approach any further, let us consider a second
approach, which is not only computationally easier but appears, as indicated by a simula-
tion study, to yield more accurate estimates.

14.5.1 Parameter Estimation by Least Squares
Let X1, . . . , Xn be a sample from the distribution

F(x) = 1 − e−αxβ
, x ≥ 0

Note that

log(1 − F(x)) = −αxβ

or

log
(

1
1 − F(x)

)
= αxβ

and so

log log
(

1
1 − F(x)

)
= β log x + log α (14.5.3)

Now let X(1) < X(2) < · · · < X(n) denote the ordered sample values — that is, for
i = 1, . . . , n,

X(i) = ith smallest of X1, . . . , Xn

and suppose that the data results in X(i) = x(i). If we were able to approximate the quanti-
ties log log(1/[1−F(x(i))]) — say, by the values y1, . . . , yn — then from Equation 14.5.3,
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we could conclude that

yi ≈ β log x(i) + log α, i = 1, . . . , n (14.5.4)

We could then choose α and β to minimize the sum of the squared errors — that is, α

and β are chosen to

minimize
α,β

n∑

i=1

( yi − β log x(i) − log α)2

Indeed, using Proposition 9.2.1 we obtain that the preceding minimum is attained when
α = α̂, β = β̂ where

β̂ =

n∑

i=1

yi log x(i) − n log xȳ

n∑

i=1

(log x(i))
2 − n(log x)2

log α̂ = ȳ − β log x

where

log x =
n∑

i=1

(log x(i))
/

n, ȳ =
n∑

i=1

yi

/
n

To utilize the foregoing, we need to be able to determine values yi that approximate
log log(1/[1 − F(x(i))]) = log[− log(1 − F(x(i)))], i = 1, . . . , n. We now present two
different methods for doing this.

Method 1: This method uses the fact that

E[F(X(i))] = i
(n + 1)

(14.5.5)

and then approximates F(x(i)) by E[F(X(i))]. Thus, this method calls for using

yi = log{− log(1 − E[F(X(i))])} (14.5.6)

= log
{
− log

(
1 − i

(n + 1)

)}

= log
{
− log

(
n + 1 − i

n + 1

)}
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Method 2: This method uses the fact that

E[− log(1 − F(X(i)))] = 1
n

+ 1
n − 1

+ 1
n − 2

+ · · · + 1
n − i + 1

(14.5.7)

and then approximates − log(1 − F(x(i))) by the foregoing. Thus, this second method
calls for setting

yi = log
[

1
n

+ 1
(n − 1)

+ · · · + 1
(n − i + 1)

]
(14.5.8)

REMARKS

(a) It is not, at present, clear which method provides superior estimates of the param-
eters of the Weibull distribution, and extensive simulation studies will be necessary
to determine this.

(b) Proofs of equalities 14.5.5 and 14.5.7 [which hold whenever X(i) is the ith small-
est of a sample of size n from any continuous distribution F ] are outlined in
Problems 28–30.

Problems

1. A random variable whose distribution function is given by

F(t) = 1 − exp{−αtβ}, t ≥ 0

is said to have a Weibull distribution with parameters α, β. Compute its failure
rate function.

2. If X and Y are independent random variables having failure rate functions λx(t)
and λy(t), show that the failure rate function of Z = min(X , Y ) is

λz(t) = λx(t) + λy(t)

3. The lung cancer rate of a t-year-old male smoker, λ(t), is such that

λ(t) = .027 + .025
(

t − 40
10

)4

, t ≥ 40

Assuming that a 40-year-old male smoker survives all other hazards, what is
the probability that he survives to (a) age 50, (b) age 60, without contract-
ing lung cancer? In the foregoing we are assuming that he remains a smoker
throughout his life.
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4. Suppose the life distribution of an item has failure rate function λ(t) = t3, 0 <

t < ∞.

(a) What is the probability that the item survives to age 2?
(b) What is the probability that the item’s life is between .4 and 1.4?
(c) What is the mean life of the item?
(d) What is the probability a 1-year-old item will survive to age 2?

5. A continuous life distribution is said to be an IFR (increasing failure rate) distri-
bution if its failure rate function λ(t) is nondecreasing in t.

(a) Show that the gamma distribution with density

f (t) = λ2te−λt , t > 0

is IFR.
(b) Show, more generally, that the gamma distribution with parameters α, λ is

IFR whenever α ≥ 1.
Hint : Write

λ(t) =
[∫∞

t λe−λs(λs)α−1 ds
λe−λt(λt)α−1

]−1

6. Show that the uniform distribution on (a, b) is an IFR distribution.

7. For the model of Section 14.3.1, explain how the following figure can be used to
show that

τ =
r∑

j=1

Yj

where

Yj = (n − j + 1)(X( j) − X( j−1))

0

X(r )

1 2 3 nrr − 3 r − 2 r − 1

X(r − 1)
X(r − 2)

X(3)

X(2)

X(1)

(Hint : Argue that both τ and
∑r

j=1 Yj equal the total area of the figure shown.)
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8. When 30 transistors were simultaneously put on a life test that was to be termi-
nated when the 10th failure occurred, the observed failure times were (in hours)
4.1, 7.3, 13.2, 18.8, 24.5, 30.8, 38.1, 45.5, 53, 62.2. Assume an exponential life
distribution.

(a) What is the maximum likelihood estimate of the mean life of a transistor?
(b) Compute a 95 percent two-sided confidence interval for the mean life of a

transistor.
(c) Determine a value c that we can assert, with 95 percent confidence, is less

than the mean transistor life.
(d) Test at the α = .10 level of significance the hypothesis that the mean lifetime

is 7.5 hours versus the alternative that it is not 7.5 hours.

9. Consider a test of H0 : θ = θ0 versus H1 : θ &= θ0 for the model of Sec-
tion 14.3.1. Suppose that the observed value of 2τ /θ0 is v. Show that the
hypothesis should be rejected at significance level α whenever α is less than the
p-value given by

p-value = 2 min(P{χ2
2r < v}, 1 − P{χ2

2r < v})

where χ2
2r is a chi-square random variable with 2r degrees of freedom.

10. Suppose 30 items are put on test that is scheduled to stop when the 8th failure
occurs. If the failure times are, in hours, .35, .73, .99, 1.40, 1.45, 1.83, 2.20,
2.72, test, at the 5 percent level of significance, the hypothesis that the mean life
is equal to 10 hours. Assume that the underlying distribution is exponential.

11. Suppose that 20 items are to be put on test that is to be terminated when the
10th failure occurs. If the lifetime distribution is exponential with mean 10 hours,
compute the following quantities.

(a) The mean length of the testing period.
(b) The variance of the testing period.

12. Vacuum tubes produced at a certain plant are assumed to have an underlying
exponential life distribution having an unknown mean θ . To estimate θ it has
been decided to put a certain number n of tubes on test and to stop the test at
the 10th failure. If the plant officials want the mean length of the testing period
to be 3 hours when the value of θ is θ = 20, approximately how large should
n be?

13. A one-at-a-time sequential life testing scheme is scheduled to run for 300 hours.
A total of 16 items fail within that time. Assuming an exponential life distribution
with unknown mean θ (measured in hours):

(a) Determine the maximum likelihood estimate of θ .
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(b) Test at the 5 percent level of significance the hypothesis that θ = 20 versus
the alternative that θ &= 20.

(c) Determine a 95 percent confidence interval for θ .

14. Using the fact that a Poisson process results when the times between successive
events are independent and identically distributed exponential random variables,
show that

P{X ≥ n} = Fχ2
2n

(x)

when X is a Poisson random variable with mean x/2 and Fχ2
2n

is the chi-square
distribution function with 2n degrees of freedom. (Hint : Use the results of
Section 14.3.2.)

15. From a sample of items having an exponential life distribution with unknown
mean θ , items are tested in sequence. The testing continues until either the rth
failure occurs or after a time T elapses.

(a) Determine the likelihood function.
(b) Verify that the maximum likelihood estimator of θ is equal to the total time

on test of all items divided by the number of observed failures.

16. Verify that the maximum likelihood estimate corresponding to Equation 14.3.9
is given by Equation 14.3.10.

17. A testing laboratory has facilities to simultaneously life test 5 components. The
lab tested a sample of 10 components from a common exponential distribution
by initially putting 5 on test and then replacing any failed component by one still
waiting to be tested. The test was designed to end either at 200 hours or when all
10 components had failed. If there were a total of 9 failures occurring at times 15,
28.2, 46, 62.2, 76, 86, 128, 153, 197, what is the maximum likelihood estimate
of the mean life of a component?

18. Suppose that the remission time, in weeks, of leukemia patients that have under-
gone a certain type of chemotherapy treatment is an exponential random variable
having an unknown mean θ . A group of 20 such patients is being monitored and,
at present, their remission times are (in weeks) 1.2, 1.8∗, 2.2, 4.1, 5.6, 8.4, 11.8∗,
13.4∗, 16.2, 21.7, 29∗, 41, 42∗, 42.4∗, 49.3, 60.5, 61∗, 94, 98, 99.2∗ where an
asterisk next to the data means that the patient’s remission is continuing, whereas
a data point without an asterisk means that the remission ended at that time.
What is the maximum likelihood estimate of θ ?

19. In Problem 17, suppose that prior to the testing phase and based on past experi-
ence one felt that the value of λ = 1/θ could be thought of as the outcome of a
gamma random variable with parameters 1, 100. What is the Bayes estimate of λ?
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20. What is the Bayes estimate of λ = 1/θ in Problem 18 if the prior distribution on
λ is exponential with mean 1/30?

21. The following data represent failure times, in minutes, for two types of electrical
insulation subject to a certain voltage stress.

Type I 212, 88.5, 122.3, 116.4, 125, 132, 66

Type II 34.6, 54, 162, 49, 78, 121, 128

Test the hypothesis that the two sets of data come from the same exponential
distribution.

22. Suppose that the life distributions of two types of transistors are both exponential.
To test the equality of means of these two distributions, n1 type 1 transistors are
simultaneously put on a life test that is scheduled to end when there have been
a total of r1 failures. Similarly, n2 type 2 transistors are simultaneously put on
a life test that is to end when there have been r2 failures.

(a) Using results from Section 14.3.1, show how the hypothesis that the means
are equal can be tested by using a test statistic that, when the means are equal,
has an F -distribution with 2r1 and 2r2 degrees of freedom.

(b) Suppose n1 = 20, r1 = 10 and n2 = 10, r2 = 7 with the following data
resulting.

Type 1 failures at times:

10.4, 23.2, 31.4, 45, 61.1, 69.6, 81.3, 95.2, 112, 129.4

Type 2 failures at times:

6.1, 13.8, 21.2, 31.6, 46.4, 66.7, 92.4

What is the smallest significance level α for which the hypothesis of equal
means would be rejected? (That is, what is the p-value of the test data?)

23. If X is a Weibull random variable with parameters (α, β), show that

E[X ] = α−1/β((1 + 1/β)

where (( y) is the gamma function defined by

(( y) =
∫ ∞

0
e−xxy−1 dx

Hint : Write

E[X ] =
∫ ∞

0
tαβtβ−1 exp{−αtβ} dt
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and make the change of variables

x = αtβ , dx = αβtβ−1 dt

24. Show that if X is a Weibull random variable with parameters (α, β), then

Var(X ) = α−2/β

[
(

(
1 + 2

β

)
−
(
(

(
1 + 1

β

))2
]

25. If the following are the sample data from a Weibull population having unknown
parameters α and β, determine the least square estimates of these quantities, using
either of the methods presented.

Data: 15.4, 16.8, 6.2, 10.6, 21.4, 18.2, 1.6, 12.5, 19.4, 17

26. Show that if X is a Weibull random variable with parameters (α, β), then αX β is
an exponential random variable with mean 1.

27. If U is uniformly distributed on (0, 1) — that is, U is a random number —
show that [−(1/α) log U ]1/β is a Weibull random variable with parameters
(α, β).

The next three problems are concerned with verifying Equations 14.5.5 and
14.5.7.

28. If X is a continuous random variable having distribution function F , show that

(a) F(X ) is uniformly distributed on (0, 1);
(b) 1 − F(X ) is uniformly distributed on (0, 1).

29. Let X(i) denote ith smallest of a sample of size n from a continuous distribution
function F . Also, let U(i) denote the ith smallest from a sample of size n from a
uniform (0, 1) distribution.

(a) Argue that the density function of U(i) is given by

fU(i)(t) = n!
(n − i)!(i − 1)! t

i−1(1 − t)n−i, 0 < t < 1

[Hint : In order for the ith smallest of n uniform (0, 1) random variables to
equal t, how many must be less than t and how many must be greater? Also,
in how many ways can a set of n elements be broken into three subsets of
respective sizes i − 1, 1, and n − i?]
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(b) Use part (a) to show that E[U (i)] = i/(n + 1). [Hint : To evaluate the result-
ing integral, use the fact that the density in part (a) must integrate to 1.]

(c) Use part (b) and Problem 28a to conclude that E[F(X(i))]= i/(n + 1).

30. If U is uniformly distributed on (0, 1), show that − log U has an exponential
distribution with mean 1. Now use Equation 14.3.7 and the results of the previ-
ous problems to establish Equation 14.5.7.



Chapter 15

SIMULATION, BOOTSTRAP
STATISTICAL METHODS, AND

PERMUTATION TESTS

15.1 INTRODUCTION
In this chapter we introduce two powerful modern statistical techniques: bootstrap statis-
tical methods and permutation tests. Both are nonparametric procedures in the sense that
they make no specific assumptions about the form of any underlying probability distribu-
tions. Bootstrap methods enable us to measure the efficacy of an estimator of a parameter,
while permutation tests yield new ways to test certain statistical hypotheses. Both, however,
require a large amount of computation in their implementation. The most efficient and
effective way of doing the needed computation uses simulation, the third topic of this
chapter.

In Section 15.2 we introduce random numbers, which are the keys to a simulation. We
show how random numbers can be used to generate random permutations and random
subsets. In Section 15.2.1 we present the Monte Carlo simulation method for approximat-
ing expectations. In Section 15.3 we introduce the method of bootstrap statistics and show
how the needed analysis can be done by applying the Monte Carlos simulation method. In
Section 15.4 we discuss permutation tests, which are nonparametric tests for determining
whether a sequence of data comes from a single population distribution. In the remaining
sections we return to the study of simulation. In Sections 15.5 and 15.6 we show how
random numbers can be used to generate the values of arbitrarily distributed discrete and
continuous random variables, and in Section 15.7 we consider the question of when to
end a Monte Carlo simulation study.

619
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15.2 RANDOM NUMBERS
The value of a uniform (0, 1) random variable is called a random number. Whereas in the
past, mechanical devices have often been used to generate random numbers, today we
commonly use random number generators to generate a sequence of pseudo random
numbers. Such random number generators start with an initial value x0, called the seed,
and then recursively determine values by first specifying positive integers a, c, and m and
then letting

xn+1 = (axn + c) modulo m, n ≥ 0

where the preceding means that xn+1 is the remainder obtained when axn + c is divided
by m. Thus each xn is one of the values 0, 1, . . . , m − 1, and the quantity xn/m is taken as
the random number. It can be shown that for suitable choices of a, c, and m, the preceding
gives rise to a sequence of numbers that looks as if it was generated by observing the values
of independent uniform (0, 1) random variables. For this reason we call the numbers
xn/m, n ≥ 1, pseudo random numbers.

EXAMPLE 15.2a If a = 3, c = 7, m = 23, then with x0 = 2

x1 = 3(2) + 7 modulo 23 = 13
x2 = 3(13) + 7 modulo 23 = 0
x3 = 3(0) + 7 modulo 23 = 7
x4 = 3(7) + 7 modulo 23 = 5
x5 = 3(5) + 7 modulo 23 = 22

and so on. Consequently, using the seed x0 = 2, the pseudo random numbers obtained
are 13/23, 0, 7/23, 5/23, 22/23, . . . . !

Most computers have built-in random number generators, and we shall take as our
starting point in simulation that we can generate the values of pseudo random numbers;
moreover, we will act as if these pseudo random numbers were actually true random
numbers. That is, we will act as if the sequence of random numbers were actually a sequence
of values of a sample from the uniform (0, 1) distribution.

Random numbers are the key to any simulation study. This is illustrated in our next
example, which is concerned with generating a random permutation.

EXAMPLE 15.2b Suppose we want to generate a permutation of the numbers 1, 2, . . . , n in
such a manner that all n! possible permutations are equally likely. To accomplish this we
can first randomly choose one of the numbers 1, 2, . . . , n and put that number in position
n. We can then randomly choose one of the remaining n−1 numbers and put that number
in position n−1, and then randomly choose one of the remaining n−2 numbers and put
that number in position n−2, and so on (where “randomly choose” means that each of the
possible choices is equally likely to be made). However, so that we do not have to directly



15.2 Random Numbers 621

consider exactly which elements remain to be placed, it is convenient and effective to keep
the numbers in an ordered list and then randomly choose the position of the number
rather than the number itself. That is, starting with any permutation r1, r2, . . . , rn of the
numbers 1, 2, . . . , n, randomly choose one of the positions 1, . . . , n and then interchange
the number in that position with the number in position n. Then randomly choose one of
the positions 1, . . . , n − 1, and interchange the number in that position with the number
in position n−1. Then randomly choose one of the positions 1, . . . , n−2, and interchange
the number in that position with the number in position n − 2, and so on.

To implement the preceding we need to be able to generate a random variable that is
equally likely to take on any of the values 1, . . . , k. To accomplish this, let U denote a
random number — that is, U is uniformly distributed over (0, 1) — and let Int(kU ) be
the integer part of kU — that is, it is the largest integer less than or equal to kU . Then,
for i = 1, . . . , k

P[Int(kU ) + 1 = i] = P[Int(kU ) = i − 1]
= P(i − 1 ≤ kU < i)
= P( i−1

k ≤ U < i
k )

= 1/k

Thus, Int(kU ) + 1 is equally likely to take on any of the values 1, . . . , k.

The algorithm for generating a random permutation of the numbers 1, 2, . . . , n can
now be written as follows:

1. Let r1, r2, . . . , rn be any permutation of the numbers 1, 2, . . . , n. (For instance, we
could have rj = j, j = 1, . . . , n.)

2. Set k = n. (The number to be put in position k is to be determined.)
3. Generate a random number U and let I = Int(kU ) + 1.
4. Interchange the values of rI and rk.
5. Let k = k − 1.
6. If k > 1, go to Step 3; if k = 1, go to step 7.
7. r1, . . . , rn is the desired permutation.

For instance, suppose n = 4 and the initial permutation is 1, 2, 3, 4. If the first value of
I — which is equally likely to be any of the numbers 1, 2, 3, 4 — is 2, then the number
in position 2 is interchanged with the number in position 4 to give the new permutation
1, 4, 3, 2. If the next value of I — which is equally likely to be any of the numbers 1, 2, 3
— is 3, then the number in position 3 is interchanged with the one in position 3, so the
permutation remains 1, 4, 3, 2. If the final value of I — which is equally likely to be any
of the numbers 1, 2 — is 1, then the number in position 1 is interchanged with the one
in position 2 to give the final permutation 4, 1, 3, 2.

An important property of the preceding algorithm is that it can be used to generate a
random subset of size r from the set {1, 2, . . . , n}. For r ≤ n/2, just follow the preceding
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algorithm until the elements in the final r positions (that is, in positions n, n − 1, . . . , n −
r + 1) are specified, and then take the numbers in these positions as the random subset of
size r. For r > n/2, rather than directly choosing the r numbers to be in the subset, it is
quicker to choose the n − r numbers that are not in the subset. So in this case, follow the
preceding algorithm until the final n − r positions are filled, and then take the numbers
that remain as the random subset of size r. !

15.2.1 The Monte Carlo Simulation Approach
Suppose we want to compute the expected value of a statistic h(X1, X2, . . . , Xn) when
X1, X2, . . . , Xn are independent and identically distributed random variables having density
function f (x). Using that the joint density function of X1, X2, . . . , Xn is

f (x1, . . . , xn) = f (x1)f (x2) · · · f (xn)

we can write that

E[h(X1, X2, . . . , Xn)] =
∫ ∫

· · ·
∫

h(x1, . . . , xn)f (x1)f (x2) · · · f (xn) dx1 dx2 · · · dxn

The difficulty, however, with the preceding formula is that it is often impossible to ana-
lytically compute the preceding multiple integral and also difficult to numerically eval-
uate it to within a specified accuracy. One approach that remains is to approximate
E[h(X1, X2, . . . , Xn)] by a simulation.

To accomplish this approximation, start by generating the values of n independent
random variables X 1

1 , X 1
2 , . . . , X 1

n , each having density function f , and then compute

Y1 = h(X 1
1 , X 1

2 , . . . , X 1
n )

Now generate the values of a second set of n independent random variables having density
function f that are also independent of the first set. Calling this second set of random
variables X 2

1 , X 2
2 , . . . , X 2

n , compute

Y2 = h(X 2
1 , X 2

2 , . . . , X 2
n )

Continue doing this until you have generated r sets of n independent random variables
having density function f , and have computed the corresponding values of Y . In this
way, we would have generated values of r independent and identically random variables
Yi = h(X i

1, X i
2, . . . , X i

n), i = 1, . . . , r. Now, by the strong law of large numbers

lim
r→∞

Y1 + · · · + Yr

r
= E[Yi] = E[h(X1, X2, . . . , Xn)]

and so we can use the average of the generated values of the Yi’s as an estimate of
E[h(X1, X2, . . . , Xn)]. This approximation method is called the Monte Carlo simulation
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approach. Each time we generate a new value of Y we say that a new simulation run has
been completed.

Of course in order to make use of the preceding approach we need to be able to generate
random variables having a specified density function. Although at present we only know
how to do this for a uniform random variable — by using a random number generator —
this will suffice for the needed computations both in the bootstrap method and in running
permutation tests. As a result, the next two sections will present these topics. We will then
return to the simulation question of how to generate random variables having arbitrary
distributions, as well as how to determine when to end a simulation study, in the final
sections of this chapter.

15.3 THE BOOTSTRAP METHOD
Let X1, . . . , Xn be a sample from a population having distribution F , and suppose we want
to use this sample to estimate a parameter θ of F . For instance, θ could be the common
mean or variance of the Xi. Suppose we have an estimator d = d(X1, . . . , Xn) of θ and
we would like to evaluate how good an estimator of θ it is. One measure of the worth of
d(X1, . . . , Xn) as an estimator of θ is its mean square error, defined as

MSEF (d) = EF [(d(X1, . . . , Xn) − θ)2]

That is, MSEF (d) is the expected square of the distance between the estimator
d(X1, . . . , Xn) and the parameter θ , where we use the notation MSEF and EF to indi-
cate that the expected value is to be computed under the assumption that X1, . . . , Xn are
independent random variables having distribution function F . How can this quantity be
estimated?

EXAMPLE 15.3a If θ = E[Xi] is the mean of the distribution F , and d(X1, . . . , Xn) =
X̄n = ∑n

i=1Xi/n is the sample mean of the data values X1, . . . , Xn, then because

EF [d(X1, . . . , Xn)] = EF [X̄n] = EF [Xi] = θ

it follows that

MSEF (X̄n) = EF [(X̄n − θ)2] = VarF (X̄n) = σ 2/n

where σ 2 = VarF (Xi). Thus, in this case, MSEF (X̄n) can be estimated by the quantity
S2

n /n, where

S2
n = 1

n − 1

n∑

i=1

(Xi − X̄n)
2

is the sample variance of the data values X1, . . . , Xn, and can be used to estimate the
population variance σ 2. !
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Whereas in the preceding example it was easy to estimate the mean square error of
the sample mean as an estimator of a population mean, what if we initially wanted to
estimate the population variance? That is, what if θ = VarF (Xi). In this case we can use
the sample variance as the estimator. However, while it was easy to come up with this
estimator d(X1, . . . , Xn) = S2

n , it is not easy to see how to estimate its mean square error.
One way is to use the approach of bootstrap statistics, which we now present.

To estimate the mean square error of the estimator d(X1, . . . , Xn) of the parameter θ ,
suppose that the data values are Xi = xi, i = 1, . . . , n. For any x, let Fe(x) denote the
proportion of the data values that are less than or equal to x. That is,

Fe(x) = number of i ≤ n : xi ≤ x
n

For instance, if n = 5 and X1 = 5, X2 = 3, X3 = 9, X4 = 2, and X5 = 6, then

Fe(x) =






0 if x < 2
1/5 if 2 ≤ x < 3
2/5 if 3 ≤ x < 5
3/5 if 5 ≤ x < 6
4/5 if 6 ≤ x < 9
1 if x ≥ 9

The function Fe(x) is called the empirical distribution function. When the values x1, . . . , xn
are all distinct, Fe is the distribution function of a random variable Xe that is equally likely
to be any of the values x1, . . . , xn. That is, if the data values are all distinct, then Fe is the
distribution function of the random variable Xe such that

P(Xe = xi) = 1/n, i = 1, . . . , n

When the data values are not all distinct, then Fe is the distribution function of the
random variable Xe whose probability of being equal to any specified data value is the
number of times that value appears in the data set divided by n. For instance, if n = 3
and x1 = x2 = 1, x3 = 2 then Xe is a random variable that takes on the value 1 with
probability 2/3 and 2 with probability 1/3. With this understanding about the weight put
on a distinct value, we will still say that Fe is the distribution function of a random variable
that is equally likely to be any of the values x1, x2, . . . , xn.

Now, for any value of x, each of the data values Xi, i = 1, . . . , n, will be less than or
equal to x with probability F(x). Hence, by the strong law of large numbers it follows that
the proportion of them that are less than or equal to x will, with probability 1, converge
to F(x) as n goes to infinity. Thus, for n large, Fe(x) should be close to F(x), indicating
that the empirical distribution function Fe can be used as an estimator of the population
distribution function F .
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Now let θe have the same relationship to the distribution Fe as θ has to the distribution
F . For instance, if θ is the variance of a random variable X having distribution F , then θe
is the variance of a random variable Xe having distribution Fe. Now, if Fe is close to F ,
then it almost always follows that θe will be close to θ . (Technically speaking, this will be
true provided that θ is a continuous function of the distribution F .) For these reasons we
can approximate the mean square error of the estimator d(X1, . . . , Xn) of θ as follows:

MSEF (d) = EF [(d(X1, . . . , Xn) − θ)2] ≈ EFe [(d(X1, . . . , Xn) − θe)
2]

where by EFe we mean that the expectation is to be taken under the assumption that
X1, . . . , Xn are independent random variables, each having distribution function Fe . That
is, each of X1, . . . , Xn is equally likely to be any of the values x1, . . . , xn.

The quantity

MSEFe (d) = EFe [(d(X1, . . . , Xn) − θe)
2]

is called the bootstrap estimate of the mean square error of d(X1, . . . , Xn) as an estimator
of θ .

Let us now see how well MSE(Fe) estimates MSE(F) in the one case where its use as
an estimator is not needed—namely, when estimating the mean of a distribution by the
sample mean.

EXAMPLE 15.3b Consider Example 15.3a, where X̄n = ∑n
i=1 Xi/n is used as an estimator

of the mean of the distribution F . Because Xe puts equal weight on each of the data values
x1, . . . , xn, it follows, when θe is the mean of this distribution, that

θe = E[Xe] =
n∑

i=1

xiP(Xe = xi) = 1
n

n∑

i=1

xi = x̄n

Because

EFe [
n∑

i=1

Xi/n] = EFe [X ] = θe = x̄n

it follows that

MSEFe (X̄n) = EFe [(
n∑

i=1
Xi/n − x̄n)

2]

= VarFe (
n∑

i=1
Xi/n)

= 1
n VarFe (X )
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Now,

VarFe (X ) = EFe [(X − x̄n)
2]

=
n∑

i=1
(xi − x̄n)

2PFe (X = xi)

= 1
n

n∑
i=1

(xi − x̄n)
2

Thus, we have shown that

MSEFe (X̄n) = 1
n2

n∑

i=1

(xi − x̄n)
2

As the usual estimator of MSEF (X̄n) = 1
n VarF (X ) is S2

n /n, whose observed value is
1

n(n−1)

∑n
i=1(xi − x̄n)

2, we see that the bootstrap estimate is almost identical to the usual
estimate in this case. !

As previously noted, if the data values are Xi = xi, i = 1, . . . , n, then the empirical
distribution function Fe puts equal weight 1/n on each of the points xi; consequently, it
is usually easy to compute the value of θe. To compute the bootstrap estimate of the mean
square error of the estimator d(X1, . . . , Xn) of θ , we then have to compute

MSEFe (d) = EFe [(d(X1, . . . , Xn) − θe)
2]

However, since the preceding expectation is to be computed under the assumption that
X1, . . . , Xn are all distributed according to Fe , it follows that the vector (X1, . . . , Xn) is
equally likely to be any of the nn possible values (xi1 , xi2, . . . , xin), where each ij is one of
the values 1, . . . , n. Consequently an exact computation of MSEFe (d) is prohibitive unless
n is small.

It is, however, easy to approximate MSEFe (d) by a simulation. To do so, we generate n
independent random variables X 1

1 , . . . , X 1
n having distribution Fe and use them to compute

the value of

Y1 = (d(X 1
1 , . . . , X 1

n ) − θe)
2

We then repeat this process and generate a second set of n independent random variables
X 2

1 , . . . , X 2
n having distribution Fe and use them to compute the value of

Y2 = (d(X 2
1 , . . . , X 2

n ) − θe)
2

This is then repeated a large number of times, say r, to obtain the values Y1, . . . , Yr.
The average of these values,

∑r
i=1 Yi/r, would be the approximation of MSEFe (d), which

would then be used as the estimate of MSEF (d).
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REMARK

It is easy to generate a random variable X having distribution Fe. Just generate a random
number U ; let I = Int(nU )+1, so that I is equally likely to be any of the values 1, . . . , n;
and then set

X = xI

EXAMPLE 15.3c Suppose we use the sample variance S2
n = ∑n

i=1(Xi − X̄n)
2/(n − 1)

of a sample of size n from the distribution F as an estimator of σ 2, the variance of the
distribution F . To estimate the mean square error of the sample variance, let the observed
data be Xi = xi, i = 1, . . . , n.

Because the distribution Fe puts equal weight on all of the values xi, i = 1, . . . , n, it
follows that

EFe [X ] =
n∑

i=1

xiPFe (X = xi) =
n∑

i=1

xi/n = x̄n

showing that θe , the variance of the distribution Fe, is given by

θe = VarFe (X ) = EFe [(X − x̄n)
2] =

n∑

i=1

(xi − x̄n)
2/n

Consequently,

MSEFe (S
2
n) = EFe [(S2

n − θe)
2] = EFe

[(∑n
i=1(Xi − X̄n)

2

n − 1
− θe

)2]

To approximate MSEFe (S
2
n), we use simulation.

For instance, suppose n = 8 and the data values were x1 = 5, x2 = 9, x3 = 12, x4 = 8,
x5 = 7, x6 = 15, x7 = 3, x8 = 6. Then

x̄8 = 8.125, θe =
8∑

i=1

(xi − x̄8)
2/8 ≈ 13.11

In the following approach for the simulation-based approximation of MSEFe (S
2
n), the

xi, i = 1, . . . , 8 are as given in the preceding. There are to be a total of r simulation runs,
with the variable N representing the number of the current simulation run. In each run
we generate the values of 8 random variables XM , M = 1, . . . , 8, distributed according
to Fe. The quantities S and SS represent running totals of, respectively, the sum of the
XM and the sum of the squares of the XM so far generated in the run. When the run is
completed, the sample variance SV is computed by using the identity
∑8

i=1(Xi − X̄8)
2

7
=
∑8

i=1 X 2
i − 8X̄ 2

8

7
=
∑8

i=1 X 2
i − (

∑8
i=1 Xi)

2/8
7

= SS − S2/8
7

The squared difference between SV and θe = 13.11 is computed and then added to T ,
the sum of the N − 1 previous squared differences. When r runs have been completed the
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simulation is ended; the average of the squared differences between the sample variances
and θe is the simulation-based approximation to MSEFe (S

2
n).

1. Let T = 0, N = 1
2. Let M = 1
3. S = 0, SS = 0
4. Generate a random number U
5. Set I = Int(8U ) + 1
6. S = S + xI
7. SS = SS + x2

I
8. If M < 8, set M = M + 1 and go to 4
9. SV = (SS − S2/8)/7

10. Let T = T + (SV − 13.11)2

11. If N < r, set N = N + 1 and go to 2
12. If N = r, return T /r as the approximation to MSEFe (S

2
n) !

Now suppose we wanted to estimate not the mean square error of the estimator but
rather the probability that the estimator of θ will be within h of the actual value of θ . That
is, suppose we want to estimate

ph ≡ PF (|d(X1, . . . , Xn) − θ | ≤ h)

To obtain an estimator of the preceding, we use that

PF (|d(X1, . . . , Xn) − θ | ≤ h) ≈ PFe (|d(X1, . . . , Xn) − θe| ≤ h)

and then employ simulation to estimate the right side of the preceding. That is, after the
data X1, . . . , Xn are observed to take on the values Xi = xi, i = 1, . . . , n, we let Fe be the
empirical distribution. That is, Fe is the distribution function of a random variable that is
equally likely to take on any of the values x1, . . . , xn. We next compute the value of θe. We
then continually generate sets of n independent random variables from the distribution
Fe . For each set of values obtained, we compute d evaluated at these values, and check
whether this quantity is within h of θe . The fraction of times that it is within h is our
simulation-based estimate of

PFe (|d(X1, . . . , Xn) − θe| ≤ h)

and is also what we use to estimate ph.
More specifically, we use the original data to obtain Fe and the resulting value of θe. We

then decide on the number of simulation runs (typically between 104 and 105 will suffice,
but see Section 15.7 for specifics on how to determine the number of runs that should be
performed). With r runs, we need to generate r sets of n independent random variables from
the distribution Fe. With xi,1, . . . , xi,n being the ith set of values generated, we compute
the value of di = d(xi,1, . . . , xi,n). The proportion of the values of i, i = 1, . . . , r, for
which |di − θe| ≤ h is our estimate of ph ≡ PF (|d(X1, . . . , Xn) − θ | ≤ h).
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EXAMPLE 15.3d The following are the PSAT math scores of a random sample of 16 students
from a certain school district.

522, 474, 644, 708, 466, 534, 422, 480, 502, 655, 418, 464, 600, 412, 530, 564

Use them to estimate

(a) the average score of all students in the district;
(b) the probability that the estimator of the district average will be within 5 of the

actual district average;
(c) the probability that the estimator of the district average will be within 10 of the

actual district average.

SOLUTION We suppose that the data constitute a random sample from a distribution F
with mean θ(F) = µ. The natural estimator of µ is the sample average X̄ , yielding the
estimate

θe = x̄ = 524.7

The probability ph, that the sample mean of a sample of size 16 will be within h of the
population mean, is estimated by

PFe (|X̄16 − θe| ≤ h) = PFe (|X̄16 − 524.7| ≤ h)

where X̄16 is the average of a sample of size 16 from the distribution that puts probability
1/16 on each of the original 16 data values. A simulation based on 105 simulation runs —
with each run generating a sample of size 16 from Fe — yielded the estimates .1801 and
.3542 for h = 5 and h = 10, respectively.

Because we are estimating the mean of the distribution by the sample average, we could
also approximate the probability ph by making use of the central limit theorem. With µ

and σ being the mean and standard deviation of F , the probability that the sample mean
of a sample of size 16 is within h of µ can be approximated by using the fact that X̄16
approximately has a normal distribution with mean µ and variance σ 2/16. Consequently,
with Z being a standard normal random variable

P(−h ≤ X̄16 − µ ≤ h) = P(
−h
σ /4

≤ X̄16 − µ

σ /4
≤ d

σ /4
)

≈ P(−4h/σ ≤ Z ≤ 4h/σ )

= 2 #(4h/σ ) − 1

An easy calculation gives that the sample standard deviation of the 16 data values is
s = 89.1. Taking this value as an approximation of σ yields that

2 #(4h/σ ) − 1 ≈ 2 #(4h/89.1) − 1
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Thus, the estimate of the probability that the sample mean is within 5 of the population
mean is 2#(.2245) − 1 = .1776, whereas the estimate that it is within 10 of the popu-
lation mean is 2#(.4490) − 1 = .3466, which are quite close to the ones obtained by
the nonparametric bootstrap approach. However, it should be noted that the central limit
theorem approximation would not be available to us if we were estimating some other
parameter of the distribution aside from its mean.

For instance, suppose we wanted to use the 16 data values to estimate σ , the standard
deviation of the scores of all the student in the district. Using the sample standard deviation
as the estimator yields the estimate s = 89.1. Now suppose we wanted to estimate the
probability that our estimator will be within 10 of σ . That is, suppose we wanted to
estimate the probability that the sample standard deviation of a sample of size 16 from
the distribution F will be within 10 of the actual standard deviation of F . To do so, we
estimate this by the probability that the sample standard deviation of a sample of size
16 from the empirical distribution Fe is within 10 of the standard deviation of Fe. Now,
because the distribution Fe puts equal weight on each of the 16 values x1, . . . , x16, its mean
is x̄ and its standard deviation is

σe =
√

EFe [(X − x̄)2] =

√√√√ 1
16

16∑

i=1

(xi − x̄)2 = 89.1
√

15/16 = 86.27

Consequently the estimate of the probability that the sample standard deviation differs
from σ by at most 10 is

PFe (|S16 − σe| ≤ 10) = PFe (|S16 − 86.27| ≤ 10)

where S16 is the sample standard deviation of a sample of size 16 from the distribution
Fe . This probability can be approximated by a simulation. Indeed, a simulation performed
with 105 runs yielded the result

PFe (|S16 − 86.27| ≤ 10) ≈ .5424

so there is roughly a 54 percent chance that the actual standard deviation of all student
scores is within 79.1 and 99.1. !

15.4 PERMUTATION TESTS
Suppose we want to test the null hypothesis H0 that the data X1, . . . , XN is a sample from
some unspecified distribution. Permutation tests are tests of this hypothesis in which the
p-value is computed conditional on knowing the setS of data values observed but without
knowing which data value corresponds to X1, which corresponds to X2 and so on. For
instance, if N = 3 and X1 = 5, X2 = 7, X3 = 2, then the p-value is computed conditional
on the information that the set of data values is S = {2, 5, 7}. The computation of the
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p-value makes use of the fact that, conditional on the set of data values S, each of the
N ! possible ways of assigning these N values to the original data is equally likely when
the null hypothesis is true. That is, suppose that N = 3 and the set of data values is,
as in the preceding, S = {2, 5, 7}. Now the null hypothesis H0 states that X1, X2, X3
are independent and identically distributed. Consequently, if H0 is true then, given the
data set S, it follows that the vector (X1, X2, X3) is equally likely to equal any of the 3!
permutations of the values 2, 5, 7.

The implementation of a permutation test is as follows. Depending on the alternative
hypothesis, a test statistic T (X1, . . . , XN ) is chosen. Suppose, for the moment, that large
values of the test statistic are evidence for the alternative hypothesis. The data values are then
observed, say that Xi = xi, i = 1, . . . , N , and the value of T (x1, . . . , xN ) is calculated.
Now letS ={x1, . . . , xN } be the unordered set consisting of the N observed values. Then,
if the value of the test statistic is T (x1, . . . , xN ) = t, the resulting p-value of the null
hypothesis that results from these data is

p-value = PH0(T (X1, . . . , XN ) ≥ t|S = {x1, . . . , xN })

Now, under H0, X1, . . . , XN is equally likely to equal any of the N ! permutations of
x1, . . . , xN . Consequently, letting I1, . . . , IN be a random vector that is equally likely to
be any of the N ! permutations of 1, . . . , N , we can write the preceding p-value as

p-value = P{T (xI1, xI2, . . . , xIN ) ≥ t}

= number of permutations (i1, . . . , iN ) : T (xi1 , xi2 , . . . , xiN ) ≥ t
N !

For an illustration, suppose we are to observe data over N weeks, with Xi being the data
value observed in week i, i = 1, . . . , N , and that we want to use these data to test the null
hypothesis

H0 : X1, . . . , XN are independent and identically distributed

against

H1 : Xi tends to increase as i increases

Now if the null hypothesis is true and the data are independent and identically distributed,
then, conditional on knowing the set of values X1, . . . , XN , but not knowing which value
corresponds to X1 or which corresponds to X2 and so on, the statistic

∑N
j=1 jXj would be

distributed as if we randomly paired up the two data sets {1, . . . , N } and {X1, . . . , XN } and
then summed the products of the N paired values. On the other hand, if the alternative
hypothesis were true, then

∑N
j=1 jXj would tend to be larger than if we just randomly

paired the values 1, . . . , N with the values X1, . . . , XN and then summed the products
of the N pairs. This is because the sum of the paired values of two sets of equal size is
largest when the largest values are paired with each other, the second largest are paired
with each other, and so on. (In statistical terms the correlation coefficient of data pairs
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( j, Xj), j = 1, . . . , N is large when the Xj tend to increase as j increases.) Consequently,
one possible permutation test of H0 versus H1 is to

1. Observe the data values—say that Xj = xj , j = 1, . . . , N
2. Let t = ∑N

j=1 jxj
3. Determine the p-value given by

p-value = P(

N∑

j=1

Ijxj ≥ t)

where I1, . . . , IN is equally likely to be any of the N ! permutations of 1, . . . , N .

The p-value in the preceding can be approximated by a simulation that uses the method
of Example 15.2b to generate random permutations.

EXAMPLE 15.4a To determine if the weekly sales of DVD players is on a downward trend,
the manager of a large electronics store has been tracking such sales for the past 12 weeks,
with the following sales figures from week 1 to week 12 (the current week) resulting:

22, 24, 20, 18, 16, 14, 15, 15, 13, 17, 12, 14
Are the data strong enough to reject the null hypothesis that the distribution of sales is
unchanging in time, and so enable the manager to conclude that there is a downward trend
in sales?

SOLUTION Let the null hypothesis be that the distribution of sales is unchanged over time,
and let the alternative hypothesis be that there is a downward trend in sales. Thus, if the
alternative hypothesis is true then there would be a negative correlation between Xj , the
sales during week j, and j. So a relatively small value of

∑12
j=1 jXj would be evidence in

favor of the alternative hypothesis. Now, with xj equal to the observed value of Xj , the sales
data give that

12∑

j=1

jxj = 1,178

Hence, the p-value of the permutation test of the null hypothesis that the data come from
the same distribution versus the alternative that the data tend to be decreasing in time is
given by

p-value = P(

12∑

j=1

Ijxj ≤ 1,178)

where I1, . . . , I12 is equally likely to be any of the 12! permutations of 1, . . . , 12. A simu-
lation, using 105 runs, yielded that

p-value ≈ .00039
leading us to reject the null hypothesis that the distribution is unchanging over time. !
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Although
∑N

j=1 jXj is the test statistic most commonly used to test the null hypothesis
that X1, . . . , Xn are independent and identically distributed against the alternative that Xj
tends to increase as j increases, it is not the only possibility. Indeed, we could have chosen
any test statistic of the form

∑N
j=1 ajXj , where a1 < a2 < . . . < an. (For instance, we

could have chosen aj = j2.) Analogous to the preceding, the value of the statistic would first
be determined, say it is t. Because the alternative hypothesis will tend to make

∑N
j=1 ajXj

larger than it would be under the null hypothesis— since large values of the aj would tend to
be paired with large data values when the alternative hypothesis is true — we would again
want to reject the null hypothesis when t is large. Consequently, the resulting p-value
would be

p-value = P
( N∑

j=1

aIj xj ≥ t
)

where I1, . . . , IN is equally likely to be any of the N ! permutations of 1, . . . , N .
Depending on the alternative hypothesis, we could choose other constants aj , j =

1, . . . , N to test the null hypothesis that the data values are independent and identically
distributed. For instance, if the alternative was that the data tended to be higher in the
middle values and lower in the extremes, then we could let the test statistic be of the form
T = ∑N

j=1 ajXj , where a1, . . . , aN is such that its middle values tend to be larger than its
earlier or later values. For instance, we could use aj = j(N − j), j = 1, . . . , N . As this
would again make it more likely that larger data values are paired with larger constants
when the alternative hypothesis is true, we would again want to reject the null hypothesis
when T is large.

15.4.1 Normal Approximations in Permutation Tests
Although not as accurate as doing a simulation, the p-value of a permutation test can be
approximated by assuming that the test statistic is approximately normally distributed.
Now, under the null hypothesis that the data values are independent and identically dis-
tributed, it follows that, given the data set S = {x1, . . . , xN }, the random variable Xi
is equally likely to be any of these N values and the random vector (Xi, Xj), i )= j is
equally likely to take on any of the N (N − 1) values xk xr , r )= k. Consequently, given
S = {x1, . . . , xN },

E[Xi] = 1
N

N∑

i=1

xi = x̄

E[X 2
i ] = 1

N

N∑

i=1

x2
i

E[XiXj] = 1
N (N − 1)

∑

k

∑

r )=k

xk xr
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= 1
N (N − 1)

(∑

k

∑

r

xk xr −
∑

k

∑

r=k

xk xr

)

= 1
N (N − 1)

(∑

k

xk
∑

r

xr −
∑

k

x2
k

)

= 1
N (N − 1)

(
N 2 x̄2 −

N∑

k=1

x2
k

)

So, with v = Var(Xi) and c = Cov(Xi, Xj), i )= j, the preceding yields

E[Xi] = x̄

v = Var(Xi) = 1
N

N∑

i=1

x2
i − x̄2

c = Cov(Xi , Xj) = 1
N (N − 1)

(N 2 x̄2 −
N∑

k=1

x2
k ) − x̄2

= x̄2

N − 1
− 1

N (N − 1)

N∑

k=1

x2
k

= 1
N − 1

(x̄2 −
N∑

k=1

x2
k /N )

which also shows that

v − c =
∑N

i=1 x2
i − Nx̄2

N − 1

Therefore, when H0 is true, the test statistic T = ∑N
j=1 jXj has mean

E[T ] = N (N + 1)

2
x̄

and variance

Var(T ) = Var
( N∑

j=1

jXj

)

=
N∑

j=1

Var( jXj) +
∑

i

∑

j )=i

Cov(iXi , jXj)

= v
N∑

j=1

j2 + c
∑

i

∑

j )=i

ij
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= v
N∑

j=1

j2 + c




∑

i

∑

j

ij −
∑

i

∑

j=i

ij





= v
N∑

j=1

j2 + c




N∑

i=1

i
N∑

j=1

j −
N∑

i=1

i2





= (v − c)
N∑

j=1

j2 + cN 2(N + 1)2

4

= (v − c)
N (N + 1)(2N + 1)

6
+ cN 2(N + 1)2

4
Using the preceding we can approximate the p-value of a permutation test by assuming
that the distribution of T , when H0 is true, is approximately normal.

EXAMPLE 15.4b Again consider Example 15.4a. A calculation yields that, under H0,

E[T ] = 1,300 Var(T ) = 1,958.81

Thus, the normal approximation yields that

p-value = PH0(T ≤ 1,178)

= PH0(
T − 1,300√

1,958.81
≤ 1,178 − 1,300√

1,958.81
)

≈ #(−2.757)

= .0029

which is quite close to the value given by the simulation.
Let us now suppose that whereas the set of 12 data values was as before, they now

appeared in the order

22, 14, 14, 16, 24, 20, 18, 15, 17, 15, 12, 13

With these data, the value of the test statistic is
∑12

j=1 j Xj = 1,233, and the normal
approximation yields that

p-value = PH0(T ≤ 1,233)

= PH0(
T − 1, 300√

1,958.81
≤ 1,233 − 1, 300√

1,958.81
)

≈ #(−1.514)

= .065

Finally, suppose again that the set of 12 data values was as before, but suppose that they
now appeared in the order

22, 14, 14, 16, 24, 13, 18, 15, 17, 15, 12, 20



636 Chapter 15: Simulation, Bootstrap Statistical Methods, and Permutation Tests

In this case, the value of the test statistic is
∑12

j=1 jXj = 1275. Thus, the normal
approximation yields that

p-value = PH0(T ≤ 1,275)

= PH0

(T − 1,300√
1,958.81

≤ 1,275 − 1,300√
1,958.81

)

≈ #(−.565)

≈ .286

A simulation of 105 runs yielded values quite similar to the preceding. The simulation
gave

PH0(T ≤ 1,233) ≈ .068

and

PH0(T ≤ 1,275) ≈ .299

which are quite close to the values given by the normal approximation. !

EXAMPLE 15.4c For another indication as to the validity of a normal approximation,
suppose that N = 4, with the data appearing in the following order:

13, 7, 5, 3

Suppose that we want to use these data to test the null hypothesis that the data are a
sample from some distribution against the alternative hypothesis that the data tend to be
decreasing. The value of the test statistic is T = ∑r

j=1 jXj = 54. An easy computation
yields

c = −4.667, v = 14

showing that, under H0,

E[T ] = 70, Var(T ) = 93.33

Consequently, with Z being a standard normal random, the normal approximation
yields that

p-value = PH0(T ≤ 54)

= PH0

(T − 70√
93.33

≤ 54 − 70√
93.33

)

≈ P(Z ≤ −1.656)

= .049
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whereas the exact value is

p-value = PH0(T ≤ 54) = 1/4! ≈ .042 !

15.4.2 Two-Sample Permutation Tests
Permutation tests are also useful in the two-sample problems where we test whether samples
from two populations have the same underlying distribution. Specifically, let X1, . . . , Xn
be a sample from an unknown population distribution F , and let Xn+1, . . . , Xn+m be an
independent sample from an unknown population distribution G, and suppose we want
to use these data to test the hypothesis that the two population distributions are identical
against the alternative hypothesis that data from the second distribution tend to be larger
than those from the first. That is, we want to use these data to test the null hypothesis

H0 : F = G

against the alternative

H1 : data from G tend to be larger than data from F

If the data values are Xi = xi, i = 1, . . . , n+m, then a permutation test of the preceding
null hypothesis is done conditional on knowing S = {x1, . . . , xn+m}, the set of these
n + m numbers in no particular order. Then if H0 is true, and so all n + m random
variables X1, . . . , Xn+m are independent and identically distributed, then given the set of
values S, each subset of size n of this set is equally likely to be the set of the data values of
X1, . . . , Xn. Because the alternative hypothesis is that data from the population distribution
F tend to be smaller than data from the population distribution G, a reasonable test would
be to reject the null hypothesis if the sum of the data values from the population distribution
F is smaller than might be expected by chance when n values are randomly chosen from
the data set S. More specifically, we can test H0 by computing

∑n
i=1 xi; say its value is

t. Then the p-value of this permutation test of H0 versus H1 would equal the probability
that a random selection of n of the values x1, . . . , xn+m would be less than or equal to t.
That is,

p-value = P

(
∑

i∈R

xi ≤ t

)

where R is equally likely to be any of the
(n+m

n

)
subsets of size n from the set {1, 2, . . . , n+m}.

Whereas an exact computation of the preceding is possible only when
(n+m

n

)
is small, a

precise approximation is easily obtained by simulation. In each simulation run we use the
method of Example 15.2a to randomly generate a subset of n of the values 1, . . . , n + m.
If R is the subset obtained, then we check whether

∑
i∈R xi is less than or equal to t.

The fraction of simulation runs for which this is the case is our estimate of the preceding
p-value.
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REMARK

We can again use a normal approximation, rather than a simulation, to estimate the
p-value. Starting with the random subset R, equally likely to be any of the

(n+m
n

)
subsets

of size n from the set {1, 2, . . . , n + m}, let, for i = 1, . . . , n + m,

Ii =
{

1, if i ∈ R
0, if i /∈ R

Then,

∑

i∈R

xi =
n+m∑

i=1

xiIi

By a similar analysis as in Section 15.4.1, we can now show that

E
[∑

i∈R

xi

]
= E

[ n+m∑

i=1

xiIi

]
= nx̄

and

Var
(∑

i∈R

xi

)
= Var

( n+m∑

i=1

xiIi

)
= nm

n + m − 1

(∑n+m
i=1 x2

i
n + m

− x̄2
)

where x̄ = ∑n+m
i=1 xi/(n + m).

15.5 GENERATING DISCRETE RANDOM VARIABLES
Suppose we want to generate the value of a random variable X having probability mass
function

P(X = xi) = pi , i = 1, . . . ,
∑

i

pi = 1

To generate the value of X , generate a random number U and set

X = xi if p1 + . . . pi−1 < U ≤ p1 + . . . pi−1 + pi

That is,

X =






x1, if U ≤ p1
x2, if p1 < U ≤ p1 + p2
x3, if p1 + p2 < U ≤ p1 + p2 + p3
.
.
.
xi, if p1 + . . . + pi−1 < U ≤ p1 + . . . + pi−1 + pi
.
.
.
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Because U is uniformly distributed on (0, 1), it follows that for 0 < a < b < 1

P(a < U ≤ b) = b − a

Consequently,

P




i−1∑

j=1

pj < U ≤
i∑

j=1

pj



 = pi

which shows that X has the desired probability mass function. This method of generating
X is called the discrete inverse transform method.

EXAMPLE 15.5a To generate a Bernoulli random variable X such that

P(X = 1) = p = 1 − P(X = 0)

generate a random number U , and set

X =
{

1, if U ≤ p
0, if U > p.

!

EXAMPLE 15.5b Suppose now that we wanted to generate a binomial random variable
X with parameters n and p. Recalling that X represents the number of successes in n
independent trials when each trial is a success with probability p, we can generate X
by generating the results of the n trials. That is, we can generate n random numbers
U1, . . . , Un, say that trial i is a success if Ui ≤ p, and then set

X = number of i : Ui ≤ p

Another possibility is to use the inverse transform method.
To efficiently use the inverse transform method we need an efficient method to recur-

sively compute the values

pi = P(X = i) =
(

n
i

)
pi(1 − p)n−i , i = 0, . . . , n

This is accomplished by first noting that
( n

i+1

)
(n

i

) = n!
(n − i − 1)! (i + 1)!

(n − i)! i!
n!

= n − i
i + 1
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which yields that

pi+1

pi
= n − i

i + 1
pi+1(1 − p)n−i−1

pi(1 − p)n−i

= n − i
i + 1

p
1 − p

Thus,

pi+1 = n − i
i + 1

p
1 − p

pi

Using the preceding, we are now ready to give the inverse transform method for generating
a binomial (n, p) random variable X . In the following, i represents the possible value of
X , the variable P is the probability that X = i, and the variable F is the probability that
X ≤ i. (That is, for given i, P = pi and F = ∑i

j=0 pj .) Also, let α = p0 = (1 − p)n,
and let b = p

1−p .

1. Set i = 0, P = α, F = α

2. Generate a random number U
3. If U ≤ F set X = i and stop
4. P = n−i

i+1 b P
5. F = F + P
6. i = i + 1
7. Go to 3

(In the preceding, when we say that P = n−i
i+1 b P, we don’t mean this literally as an algebraic

identity; rather we mean that the value of P is to be changed. Its new value is its old value
multiplied by n−i

i+1 b. Similarly, when we write F = F + P we mean that the value of F is
to be changed by adding P to its old value.)

Because the algorithm first checks whether X = 0, then whether X = 1, and so on,
it follows that the number of iterations needed (that is, the number of times that it goes
to step 3) is one more than the final value of X . So, on average, this algorithm requires
E[X + 1] = np + 1 iterations to generate the value of X . !

15.6 GENERATING CONTINUOUS RANDOM VARIABLES
Let F be the distribution function of a continuous random variable. For any u between
0 and 1, the quantity F−1(u) is defined to be that value x such that F(x) = u. That is,
F(F−1(u)) = u. Because the distribution function of a continuous random variable is
strictly increasing, it follows that there is a unique value of F−1(u). We call F−1 the inverse
function of F .
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A general method for generating a continuous random variable having distribution
function F , known as the inverse transformation method, is based on the following propo-
sition.

PROPOSITION 15.6.1 Let U be a uniform (0, 1) random variable. For any continuous
distribution function F , if we define

X = F−1(U )

then X has distribution function F .

Proof

Because a distribution function F is nondecreasing, it follows that for any numbers a and
b the inequality a ≤ b is equivalent to the inequality F(a) ≤ F(b). Consequently,

P(F−1(U ) ≤ x) = P(F(F−1(U )) ≤ F(x))

= P(U ≤ F(x))

= F(x)

thus showing that F−1(U ) has distribution F . !

EXAMPLE 15.6a (Generating an Exponential Random Variable) Let

F(x) = 1 − e−λx , x ≥ 0

be the distribution function of an exponential random variable with parameter λ. Then
F−1(u) is that value x such that

u = F(x) = 1 − e−λx

or, equivalently,

e−λx = 1 − u

or

−λx = log(1 − u)

or

x = −1
λ

log(1 − u)

So, by Proposition 15.6.1, we can generate an exponential random variable X with param-
eter λ by generating a uniform (0, 1) random variable U and setting

X = −1
λ

log(1 − U )
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Because 1 − U is also a uniform (0, 1) random variable, it follows that − 1
λ log(1 − U )

and − 1
λ log(U ) have the same distribution, thus showing that

X = −1
λ

log(U )

is also exponential with parameter λ. !

15.6.1 Generating a Normal Random Variable
Because inverting the distribution function of a normal random variable is computationally
involved, special methods are used for generating normal random variables. The following
one is known as the Box-Muller method.

To begin, suppose that X and Y are independent standard normal random variables, so
their joint density function is

f (x, y) = 1√
2π

e−x2/2 1√
2π

e−y2/2 = 1
2π

e−(x2+y2)/2 , −∞ < x, y < ∞

Let R, ' be the polar coordinates of the point (X , Y ). Now R2 = X 2+Y 2 is, by definition,
a chi-square random variable with 2 degrees of freedom, and as shown in Section 5.8.1.1
this distribution is the same as an exponential distribution with parameter 1/2 (that is,
with mean 2). Consequently, the density function of R2 is

fR2(r) = 1
2

e−r/2 , 0 < r < ∞

Consider now the conditional joint density function of X , Y given that R2 = r. Because

f (x, y) = 1
2π

e−r/2 when x2 + y2 = r

is a constant when x2 + y2 = r, it is intuitive (and can be proven) that conditional on
R2 = r, the vector X , Y is uniformly distributed on the circumference of the circle of
radius

√
r. But this implies that, conditional on R2 = r, the polar coordinate ' of the

point (X , Y ) is uniformly distributed over (0, 2π). Because this is true for all r, it follows
that the polar coordinates R and ' are independent, with R distributed as the square root
of an exponential random variable with mean 2, and ' being a uniform random variable
on (0, 2π).

Using the preceding, we can generate independent standard normal random variables X
and Y by first generating their polar coordinates R and '. Because −log(U ) is exponential
with mean 1, we can generate the polar coordinates of (X , Y ) by generating independent
uniform (0, 1) random variables U1 and U2 and then setting

R2 = −2 log(U1)
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and

' = 2πU2

Using the formula for going from the polar coordinates R, ' back to the rectangular
coordinates

X = R cos('), Y = R sin(')

shows that

X =
√

−2 log(U1) cos(2πU2)

Y =
√

−2 log(U1) sin(2πU2)

are independent standard normal random variables.
To generate normal random variables with mean µ and variance σ 2, just generate the

independent standard normals X and Y and then take the variables µ+σX and µ+σY .

15.7 DETERMINING THE NUMBER OF SIMULATION RUNS
IN A MONTE CARLO STUDY

Suppose we are going to generate r independent and identically distributed random vari-
ables Y1, . . . , Yr having mean µ, so as to use

Ȳr =
r∑

i=1

Yi/r

as an estimator of µ. Now, with σ 2 being the variance of the Yi , it follows by the central
limit theorem that Ȳr will approximately have a normal distribution with mean µ and
variance σ 2/r. Consequently, we can be 95 percent certain that µ will lie in the interval

(Ȳr − 1.96 σ /
√

r, Ȳr + 1.96 σ /
√

r).

(More generally, we can be 100(1 − α) percent confident that µ will be between Ȳr ±
zα/2 σ /

√
r.)

Thus, if σ 2 were known we could choose r to give ourselves the desired level of accuracy.
However, it is almost always the case that σ 2, like µ, will be unknown. To get around this
difficulty, we can do a two-stage simulation experiment. In the first stage, we generate k
runs where k is typically much smaller than the number we expect to use in the study.
Doing these runs generates the values of the random variables Y1, . . . , Yk. We then use
the sample variance of these values,

S2
k = 1

k − 1

k∑

i=1

(Yi − Ȳk)
2
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to estimate σ 2. Then, acting as if that were the actual value of σ 2, we determine an
appropriate value for r. Then, in the second stage of the simulation, we generate an
additional r − k runs.

Problems

1. If x0 = 5, and

xn = 3 xn−1 mod 5

find x1, x2, . . . , x10.

2. Another method of generating a random permutation, different from the one
given in Example 15.2b, is to successively generate a random permutation of the
numbers 1, 2, . . . , n starting with n = 1, then n = 2, and so on. (Of course,
the random permutation when n = 1 is 1.) Once we have a random permuta-
tion of the numbers 1, . . . , n − 1 — call it P1, P2, . . . , Pn−1 — the random per-
mutation of the numbers 1, . . . , n is obtained by starting with the permutation
P1, P2, . . . , Pn−1, n, then interchanging the element in position n (namely, n) with
the element in a randomly chosen position that is equally likely to be any of the
positions 1, 2, . . . , n.

(a) Write an algorithm that accomplishes the preceding.
(b) Verify when n = 2 and when n = 3 that all n! possible permutations are

equally likely.

3. Suppose that we are to observe the independent and identically distributed vectors
(X1, Y1), (X2, Y2), . . . , (Xn, Yn), and that we want to use these data to estimate
θ ≡ E[X1]/E[Y1].
(a) Give an estimator of θ .
(b) Explain how you could estimate the mean square error of this estimator.

4. Suppose that X1, . . . , Xn is a sample from a distribution whose variance σ 2 is
unknown. Suppose we are planning to estimate σ 2 by the sample variance S2 =∑n

i=1(Xi − X̄ )2/(n − 1), and we want to use the bootstrap technique to estimate
Var(S2).

(a) If n = 2 and X1 = 1 and X2 = 3, what is the bootstrap estimate of Var(S2)?
(b) If n = 15, and the data values are

5, 4, 9, 6, 21, 17, 11, 20, 7, 10, 21, 15, 13, 8, 6

use simulation to obtain the bootstrap estimate of Var(S2).
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5. Let X1, . . . , X8 be independent and identically distributed random variables with
mean µ. Let

p = P

( 8∑

i=1

Xi/8 < µ

)

Estimate p if the values of the Xi are 5, 2, 8, 6, 24, 6, 9, 4.

6. The following are a student’s weekly exam scores. Do they prove that the student
improved (as far as exam score) as the semester progressed?

68, 64, 72, 80, 72, 84, 76, 86, 94, 92

7. A baseball player has the reputation of starting slowly at the beginning of a season
but then continually improving as the season progresses. Do the following data,
which indicate the number of hits he has in consecutive five-game strings of the
season, strongly validate the player’s reputation?

8, 3, 7, 12, 4, 7, 13, 6, 0, 9, 12, 4, 4, 6, 10

8. A group of 16 mice were exposed to 300 rads of radiation at the age of 5 weeks.
The group was then randomly divided into two subgroups. Mice in the first sub-
group lived in a normal laboratory environment, whereas those from the second
subgroup were raised in a special germ-free environment. The following data give
the lifetimes, in days, of the mice in each group:

Group 1 lifetimes: 133, 145, 156, 159, 164, 202, 208, 222
Group 2 lifetimes: 145, 148, 157, 171, 178, 191, 200, 204

Use a permutation test to test the hypothesis that the lifetime distributions are
identical. Use the normal approximation to approximate the p-value.

9. Do Problem 13 in Chapter 12 by using a permutation test. Use the normal approx-
imation to approximate the p-value.

10. Do Problem 16 in Chapter 12 by using a permutation test. Use the normal approx-
imation to approximate the p-value.

11. Write an algorithm, similar to what was done in the text to generate a binomial
random variable, that uses the discrete inverse transform algorithm to generate a
Poisson random variable with mean λ.

12. Show that the discrete inverse transform algorithm for generating a geometric
random variable with parameter p reduces to the following:

1. Generate a random number U
2. Set X = Int( log(1−U )

log(1−p) ) + 1
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Give a second algorithm for generating a geometric random variable with parameter
p that takes into account the probabilistic interpretation of such a random variable.

13. Give a method for generating a random variable having density function

f (x) = ex/(e − 1) , 0 < x < 1

14. Give a method for generating a random variable having distribution function

F(x) = xn , 0 < x < 1

15. Give a method for generating a random variable having distribution function

F(x) = 1
2
(x + x2) , 0 < x < 1

16. Suppose that the following are the generated values of 20 random variables from
the distribution F , whose mean µ is unknown:

5, 4, 9, 6, 21, 12, 7, 14, 17, 11, 20, 7, 10, 21, 15, 26, 9, 13, 8, 6

How many additional random variables from F will we need to generate if we
want to be 99 percent certain that our estimate of µ is correct to within ±0.1?
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TABLE A1 Standard Normal Distribution Function: !(x) = 1√
2π

∫ x

−∞
e−y2/2 dy

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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TABLE A2 Values of x2
α,n

n α = .995 α = .99 α = .975 α = .95 α = .05 α = .025 α = .01 α = .005

1 .0000393 .000157 .000982 .00393 3.841 5.024 6.635 7.879
2 .0100 .0201 .0506 .103 5.991 7.378 9.210 10.597
3 .0717 .115 .216 .352 7.815 9.348 11.345 12.838
4 .207 .297 .484 .711 9.488 11.143 13.277 14.860
5 .412 .554 .831 1.145 11.070 12.832 13.086 16.750

6 .676 .872 1.237 1.635 12.592 14.449 16.812 18.548
7 .989 1.239 1.690 2.167 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.484 36.415 39.364 42.980 45.558
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 42.557 45.772 49.588 52.336
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672

Other chi-square probabilities:
x2
.9,9 = 4.2 P{x2

16 < 14.3} = .425 P{x2
11 < 17.1875} = .8976.
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TABLE A3 Values of tα,n

n α = .10 α = .05 α = .025 α = .01 α = .005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.474 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756

∞ 1.282 1.645 1.960 2.326 2.576

Other t probabilities:
P{T8 < 2.541} = .9825 P{T8 < 2.7} = .9864 P{T11 < .7635} = .77 P{T11 < .934} = .81 P{T11 <

1.66} = .94 P{T12 < 2.8} = .984.
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TABLE A4 Values of F.05,n,m

m = Degrees n = Degrees of Freedom
for Numeratorof Freedom

for
Denominator 1 2 3 4 5

1 161 200 216 225 230
2 18.50 19.00 19.20 19.20 19.30
3 10.10 9.55 9.28 9.12 9.01
4 7.71 6.94 6.59 6.39 6.26
5 6.61 5.79 5.41 5.19 5.05

6 5.99 5.14 4.76 4.53 4.39
7 5.59 4.74 4.35 4.12 3.97
8 5.32 4.46 4.07 3.84 3.69
9 5.12 4.26 3.86 3.63 3.48

10 4.96 4.10 3.71 3.48 3.33

11 4.84 3.98 3.59 3.36 3.20
12 4.75 3.89 3.49 3.26 3.11
13 4.67 3.81 3.41 3.18 3.03
14 4.60 3.74 3.34 3.11 2.96
15 4.54 3.68 3.29 3.06 2.90

16 4.49 3.63 3.24 3.01 2.85
17 3.45 3.59 3.20 2.96 2.81
18 4.41 3.55 3.16 2.93 2.77
19 4.38 3.52 3.13 2.90 2.74
20 4.35 3.49 3.10 2.87 2.71

21 4.32 3.47 3.07 2.84 2.68
22 4.30 3.44 3.05 2.82 2.66
23 4.28 3.42 3.03 2.80 2.64
24 4.26 3.40 3.01 2.78 2.62
25 4.24 3.39 2.99 2.76 2.60

30 4.17 3.32 2.92 2.69 2.53
40 4.08 3.23 2.84 2.61 2.45
60 4.00 3.15 2.76 2.53 2.37

120 3.92 3.07 2.68 2.45 2.29

∞ 3.84 3.00 2.60 2.37 2.21

Other F probabilities:
F.1,7,5 = .337 P{F7.7 < 1.376} = .316 P{F20,14 < 2.461} = .911 P{F9,4 < .5} = .1782.
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TABLE A5 Values of C(m, d, α)

m

d α 2 3 4 5 6 7 8 9 10 11

5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17
.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48

6 .05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65
.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30

7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30
.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55

8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05
.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03

9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87
.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65

10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72
.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36

11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61
.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13

12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51
.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94

13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43
.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79

14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66

15 .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55

16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46

17 .05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21
.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17
.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31

19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14
.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25

20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19

24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01
.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02

30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92
.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85

40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82
.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69

60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73
.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64
.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37

∞ .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23



Index

A
Acceptance, of hypothesis. See Hypothesis

testing
Additive property, of chi-square random

variables, 264
Algebra of events, 56–57, 56f, 57f
Analysis, of residuals, 384–386, 385–386f
Analysis of variance (ANOVA), 445–476

introduction, 445–446
one-way, 446, 448–459, 452t, 453f, 456t

multiple comparisons of sample means,
456–458

with unequal sample sizes, 458–459
overview, 446–448
two-way, 446

hypothesis testing for, 464–468, 467t, 468f
interaction, 446, 469–476, 475t, 476f
introduction and parameter estimation,

460–463
ANOVA. See Analysis of variance
Approximately normal, 31, 31f
Assessment, of models, 384–386, 385–386f
Assignable cause, 553
Association, causation v., 39
Associative law, 56–57
Averaging notation, in two-way analysis of

variance, 461–462

B
Balanced case, in one-way analysis of variance,

459
Bar graph, 10, 10t, 11f
Bayes estimator, 236, 279–284
Bayes’ formula, 68–75, 69f
Bayesian approach, 236, 604–606
Behrens-Fisher problem, 324–325
Bernoulli density function, 419
Bernoulli, Jacob, 5–6

Bernoulli, James, 141
Bernoulli parameter, maximum likelihood

estimator of, 237–240
Bernoulli populations

hypothesis testing in, 329–336
testing equality of parameters in two of,

333–336
Bernoulli random variables, 141–148, 143f,

148f
confidence interval for mean of, 268–272,

272t
generation of, 639
hypergeometric random variables and,

157–158
sign test and, 522
signed rank test and, 526–527

Beta distribution, 282
Between samples sum of squares, 451–452, 454,

456t, 459
Bias, of estimators, 274
Bimodal data set, 33, 34f
Binary output data, logistic regression models

for, 418–421, 418f
Binomial distribution function, computation of,

147–148, 148f
Binomial distribution, hypothesis testing in,

329–336
Binomial random variables, 141–148, 143f,

148f
binomial distribution function, 147–148,

148f
central limit theorem and, 212, 215–216,

216f
generation of, 639–640
hypergeometric random variables and,

158–160, 225–226

653



654 Index

Binomial random variables (continued)
Poisson random variables and, 150–153
sign test and, 522

Bootstrap method, 623–630
mean square error and, 627–628
population mean and, 623–624, 628–630
population variance and, 623–625
probability and, 629–630
random variable generation, 627

Box plot, 27, 27f
Box-Muller method, 642

C
Categorical data analysis, goodness of fit tests

and, 489–514
critical region determination by simulation,

496–499, 498f
dummy variables for, 416–418
introduction, 489–490
Kolmogorov–Smirnov goodness of fit test for

continuous data, 510–514, 511f
tests of independence in contingency tables,

501–505
tests of independence in contingency tables

having fixed marginal totals, 505–510,
506f

tests when all parameters are specified,
489–497, 493t, 498f

tests when some parameters are unspecified,
499–501

Causation, association v., 39
Central limit theorem, 210–219, 212–216f,

approximate distribution of sample mean,
216–218

binomial random variables and, 212,
215–216, 216f

defined, 210
independent random variables, 226–227
Monte Carlo study and, 643
probability mass function and, 212–215f
sample size needed, 218–219, 219f

Chance variation, 553
Channel noise disturbance, 173
Chebyshev’s inequality, 27–30, 29t

one-sided, 29–30
random variables and, 128–131
weak law of large numbers, 129

Chi-square approximation, 497–498
Chi-square density function, 188–193,

190f, 192f

Chi-square distribution, 188–193, 190f, 192f,
327–328, 607

gamma random variables and, 191–192, 192f
t-distribution and, 193–195, 193f, 194f

Chi-square goodness of fit tests, history of, 6
Chi-square random variables, 189, 190f

additive property of, 264
estimators of variance from, 447–448
F -distribution and, 195–196, 195f
mean and variance of, 192
sample mean and variance distribution with,

222
Choosing, of normal prior, 283–284
Class boundaries, 15, 15f, 15t
Class intervals, 14–15, 15f, 15t
Classical approximation, for rank sum test,

535–537
Classical simulation, for rank sum test,

537–539, 538f
Coefficient of determination, sample correlation

coefficient and, 382–384
Coefficient of multiple determination, 411
Column factors

hypothesis testing for, 464–468, 467t, 468f
in two-way analysis of variance, 460

deviation from grand mean due to, 462
row factor interaction with, 446, 469–476,

475t, 476f
Column sum of squares, 467t
Combinations, permutations and, 63
Combining, of unbiased estimators, 275–277
Common density function, independent

variables and, 102–103
Commutative law, 56–57, 56f
Comparison, of sample means, 456–458
Complement

in sample space, 55
in Venn diagram, 56–57, 56f, 57f

Composite hypothesis, 298
Computational identity, of sum of squares of

residuals, 366
Conditional densities, 106–107
Conditional distributions, 104–107,

337–339
random numbers and, 164–166, 166f

Conditional probability, 65–68, 66f, 106
independent events and, 75–79
Poisson random variables and, 153–154

Conditional probability density function,
280–281
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Conditional probability mass function,
105–106

Confidence, 235
Confidence interval. See also specific intervals,

e.g. 95 Percent confidence interval
for difference in means of two normal

distributions, 260–268, 262–263f,
266–267f, 260t, 268t

for difference in population means, 456–458
for estimating unknown mean, 247–252
for exponential distribution in life testing,

594–596
for mean of Bernoulli random variable,

268–272, 272t
for mean of exponential distribution,

272–273
for normal mean with unknown variance,

252–258, 256f
one-sided lower, 249–250, 255–257, 256f,

260t, 261–265, 261–263f, 268t
one-sided upper, 249–250, 254–255, 260t,

261, 265–268, 266–267f
prediction interval v., 381
for regression parameters

α, 376–377
β, 371–372

in sequential testing for exponential
distribution in life testing, 599–601

two-sided, 248, 251, 255–257, 256f,
261–268, 262–263f, 266–267f

for unknown probability, 268–272, 272t
for variance of normal distribution, 259–260,

260t
Confidence interval estimators

of difference in means of two normal
distributions, 260–265, 262–263f

for mean of exponential distribution, 272
of mean response, 377–379, 411–413

Contingency tables
with fixed marginal totals, tests of

independence in, 505–510, 506f
tests of independence in, 501–505

Continuous data, Kolmogorov–Smirnov
goodness of fit test for, 510–514, 511f

Continuous random variables, 93–94, 640–643
Control charts, 553

fraction defective, 565–567
mean, 554–562, 556f, 564f

case of unknown, 557–562, 559t
number of defect, 567–570, 569t

for population mean, 571–581
moving-average, 571–573, 573t, 574f

variance, 562–565, 564f
Control group, 164
Control limits

for fraction defective, 566–567
for mean control charts, 555–557, 556f
for moving-average, 572–573, 573t, 574f
for variance control charts, 563–564, 564f

Controls, 336
Correlation analysis, history of, 6
Counting

basic principles of, 60–63
notation and terminology, 63–65

Covariance, 121–122
Critical region, 298, 300

for goodness of fit tests when all parameters
are specified, 490–491

one-sided, 307
simulation for determination of, 496–499,

498f
Critical value, for determining independence of

characteristics of population member,
504

Cumulative distribution function, 91–93, 93f,
96

exponential random variables and, 177
probability density function and, 94–95, 94f

Cumulative sum control charts, 579–581

D
Data collection, descriptive statistics and, 1–2
Data sets

describing, 9–17
frequency tables and graphs, 10, 10t, 11f,

12f
grouped data, histograms, ogives, and stem

and leaf plots, 14–17, 14t, 15f, 15t,
16f, 18t

relative frequency tables and graphs,
10–14, 13–14f, 13t

normal and skewed, 31–33, 31f, 32f, 34f
summarizing, 17–27

sample mean, sample median, and sample
mode, 17–22

sample percentiles and box plots, 24–27,
26t, 27f

sample variance and sample standard
deviation, 22–24

Defects, probability of, 329–337
DeMorgan’s laws, 57
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Density function. See also Probability density
function

Bernoulli, 419
chi-square, 188–193, 190f, 192f
common, 102–103
conditional probability, 280–281
F, 195–196, 195f
gamma distribution and, 186–188
joint, 236–237, 242, 244
joint probability, 99–101
of logistics distribution, 197
normal, 168, 168f, 188, 189f
posterior, 280, 284
random variables and, 112
Rayleigh, 591
t, 193, 193f, 252, 253t
Weibull, 608, 609f

Density, mode of, 284
Dependent events, 75–79, 78f
Dependent variable. See Response variable
DES. See Diethylstilbestrol
Descriptive statistics

Chebyshev’s inequality, 27–30, 29t
data collection and, 1–2
describing data sets, 9–17

frequency tables and graphs, 10, 10t, 11f,
12f

grouped data, histograms, ogives, and stem
and leaf plots, 14–17, 14t, 15f, 15t,
16f, 18t

relative frequency tables and graphs,
10–14, 13–14f, 13t

history of, 7
normal data sets, 31–34, 32f, 34f
paired data sets and the sample correlation

coefficient, 34–41, 35t, 36f, 39f
summarizing data sets, 17–27

sample mean, sample median, and sample
mode, 17–22

sample percentiles and box plots, 24–27,
26t, 27f

sample variance and sample standard
deviation, 22–24

Deviation from grand mean due to column j,
462

Deviation from grand mean due to row i, 462
Diethylstilbestrol (DES), 336
Difference, in means of two normal

distributions, 260–268, 262–263f,
266–267f, 268t

Discrete inverse transform method, 639–640

Discrete random variables, 91–92
expectation and, 111, 111f
generation of, 638–640
probability mass function and, 92–93,

638–640
Dispersion parameter, 197
Distribution

binomial, hypothesis testing in, 329–336
chi-square, 188–193, 190f, 192f, 327–328,

607
conditional, 337–339
exponential, confidence interval for mean of,

272–273
F, 328–329
gamma, 595, 604–607
hypothesis testing for determining equality of

m population distributions, 508–509
of least squares estimators, 361–367, 368f,

369f
life, 245–247
multivariate normal, 404
normal

confidence interval for variance of,
259–260, 260t

estimation of difference in means of,
260–268, 262–263f, 266–267f, 268t

Poisson
goodness of fit tests for, 499–501
hypothesis testing concerning mean of,

336–339
variance in, 395–396

prior, 279–284, 604–606
probability, of estimator of mean response,

377–378
rate of, 590
of sample, goodness of fit tests for, 489–499,

493t, 498f
uniform, estimating mean of, 244–245

Distribution function. See also Cumulative
distribution function; Probability
distribution function

binomial, 147–148, 148f
of continuous random variable, 640–641
empirical, 624–625
moment generating function and, 128
of normal random variables, 170–171
Poisson

computation of, 155–156
number of defects and, 567–570, 569t

probability and, 91–92
random variables and, 91–92, 624
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of rank sum test, 531
signed rank test for, 525, 526f
two-sample problem and, 531

Distribution results, summary of, 381–382
Distributive law, 56–57, 57f
Doll, R., 17
Dot notation, in two-way analysis of variance,

461–462
Double-blind test, 164
Dummy variables, for categorical data, 416–418

E
Effect of column j, 470
Effect of row i, 470
Empirical distribution function, 624–625
Empirical rule, 33–34
Entropy, 110
Equal variance, testing equality of means of two

normal populations with, 324–325,
325t

Equality
of m population distributions, hypothesis

testing for, 508–509
of means of two normal populations,

318–326, 319t, 321f, 323f, 325t
case of known variance, 318–320, 319t
case of unknown and equal variance,

324–325, 325t
case of unknown variance, 320–324, 321f,

323f
hypothesis testing of, 318–326, 319t,

321f, 323f, 325t
paired t-test, 325–326

of parameters in two Bernoulli populations,
333–336

of population means, hypothesis testing of,
446, 448–459, 452t, 453f, 456t

of variance, of two normal populations,
328–329

Error
mean square error of point estimators,

273–279
type I, 298, 300
type II, 298, 302–305, 304f

Error sum of squares, 465, 467t
Estimated regression line, 360
Estimates

defined, 236
interval, 235, 247–260

confidence interval for normal mean with
unknown variance, 252–258, 256f

confidence interval for variance of normal
distribution, 259–260, 260t

hypothesis testing v., 310
prediction, 257–258
for unknown mean, 247–252

Estimation
of life distributions, 245–247
of mean of uniform distribution, 244–245
of mean response, 411–413
of parameters, 235–284

approximate confidence interval for mean
of Bernoulli random variable, 268–272,
272t

Bayes estimator, 236, 279–284
confidence interval for mean of

exponential distribution, 272–273
of difference in means of two normal

distributions, 260–268, 262–263f,
266–267f, 268t

interval estimates, 235, 247–260, 310
introduction, 235–236
of life distributions, 245–247
maximum likelihood estimators, 235–247,

260, 284, 500
point estimator evaluation, 273–279
for two-way analysis of variance, 460–463

Estimators
Bayes, 236, 279–284
bias of, 274
confidence interval

of difference in means of two normal
distributions, 260–265, 262–263f

for mean of exponential distribution, 272
of mean response, 377–379, 411–413

defined, 236
of deviance from grand mean, 462–463
of grand mean, 462–463
least squares, 385

distribution of, 361–367, 368f, 369f
in multiple linear regressions, 400–408,

413–414
in polynomial regression, 397–399
of regression parameters, 359–361, 361f,

362f
for Weibull distribution in life testing,

610–612
maximum likelihood, 235–247, 279

of Bernoulli parameter, 237–240
of difference in means of two

normaldistributions, 260
evaluation of, 277–278
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Estimators (continued)
for exponential distribution in life testing,

593–594, 602–604
least squares estimators as, 365–366
for life distributions, 245–247
in logistic regression models, 418
for mean of exponential distribution, 272
of normal population, 242–244
of Poisson parameter, 240–241
in sequential testing for exponential

distribution in life testing, 599, 601
for Weibull distribution in life testing,

608–610
weighted least squares estimators as, 392

point
evaluation of, 273–279
for hypothesis testing, 299–300
of mean response, 377, 411

pooled, 261, 321
unbiased, 274–279
of variance, 447–448

for one-way analysis of variance, 446,
448–459, 452t, 453f, 456t

for two-way analysis of variance, 464–467
for two-way analysis of variance with

interaction, 469–476, 475t, 476f
weighted least squares, 390–396, 395f

Evaluation, of point estimator, 273–279
Events, 54–55

algebra of, 56–57, 56f, 57f
independent, 75–79, 78f
odds of, 59

Expectation, 107–111, 111f
properties of, 111–118
of a random variable function, 113–115
of sums of random variables, 115–118

Expected value. See Expectation
Exponential distribution

confidence interval for mean of, 272–273
gamma distribution and, 188
in life testing, 592–606, 598f

Bayesian approach, 604–606
sequential testing, 598–602, 598f
simulation testing with stopping at rth

failure, 592–598
simulation testing with stopping by fixe

time, 602–604
Poisson process and, 181–182

Exponential random variables, 177–185, 181f
generation of, 641–642
memoryless, 178

moment generating functions and, 177
Poisson process, 181–183, 181f
probability and, 179–180
sample means for, 218–219, 219f

Exponentially weighted moving-average control
charts, 573–578, 575f, 578f

F
Failure rate. See Hazard rate
F -density function, 195–196, 195f
F -distribution, 195–196, 195f, 328–329
Finite populations, sampling distributions from,

223–227
First quartile, 25–27
Fisher, Ronald A., 6–7
Fisher-Irwin test, 335
Fixed margins, contingency tables with, tests of

independence in, 505–510, 506f
Fraction defective control charts, 565–567
Frequency interpretation

of expectations, 108
probability, 53

Frequency tables and graphs, 10, 10t, 11f, 12f
frequency histogram, 16
frequency polygon, 10, 10t, 12f
relative, 10–14, 13–14f, 13t
sample mean and, 19–20, 22
sample median and, 20–22
sample mode and, 22

F -statistic, in two-way analysis of variance with
interaction, 474, 475t

Future response, prediction interval of, 379–381
in multiple linear regression, 411–416, 413t,

414f, 415f

G
Galton, Francis, 6, 372–373
Gamma density, 188, 189f
Gamma distribution, 595, 604–607
Gamma function, 186–187
Gamma random variables, 187–188, 189f

chi-square distribution and, 191–192, 192f
Gauss, Karl Friedrich, 5–6
Generation

of random numbers, 620–622
of random variables, 497, 627, 638–643

Goodness of fit tests, 489–514
critical region determination by simulation,

496–499, 498f
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introduction, 489–490
Kolmogorov–Smirnov goodness of fit test for

continuous data, 510–514, 511f
tests of independence in contingency tables,

501–505
tests of independence in contingency tables

having fixed marginal totals, 505–510,
506f

tests when all parameters are specified,
489–497, 493t, 498f

tests when some parameters are unspecified,
499–501

Gosset, W.S., 6
Grand mean, 462–463, 469
Graunt, John, 4–5, 4t, 5t
Grouped data, 14–17, 14t, 15f, 15t, 16f, 18t

H
Halley, Edmund, 5
Hardy’s lemma, 36
Hazard rate, 245, 589
Hazard rate functions, 589–592
Hill, A.B., 17
Histograms, 14t, 15f, 16–17, 18t

normal, 31–33, 31f, 32f, 34f
Hypergeometric random variables, 156–160

Bernoulli random variables and, 157–158
binomial random variables and, 158–160,

225–226
mean and variance of, 157–158

Hypothesis testing, 297–339
in Bernoulli populations, 329–336
of equality of m population distributions,

508–509
of equality of means of two normal

populations, 318–326, 319t, 321f, 323f,
325t

case of known variance, 318–320, 319t
case of unknown and equal variance,

324–325, 325t
case of unknown variance, 320–324, 321f,

323f
paired t-test, 325–326
of equality of population means, 446,

448–459, 452t, 453f, 456t
of equality of variance of two normal

populations, 328–329
of independence in contingency tables,

501–505
of independence in contingency tables having

fixed marginal totals, 505–510, 506f

of independence of characteristics of
population member, 501–505

interval estimates v., 310
introduction, 297
of mean of normal population, 299–317,

301f, 304f, 311t, 313f, 315f, 317t
case of known variance, 299–311, 301f,

304f, 311t
case of unknown variance, 311–317, 313f,

316f, 317t
for mean of Poisson distribution, 336–339
multiple linear regression and, 409–411, 410t
of multiple population means, 446–447
of probability distribution of sample,

489–499, 493t, 498f
of regression parameters

α, 376–377
β, 370–371

of regression to mean, 373–374
robustness of, 311
of row and column interaction, 469–476,

475t, 476f
significance levels, 298–299
for two-way analysis of variance, 464–468,

467t, 468f
for variance of normal population,

327–329

I
Independence, tests of

in contingency tables, 501–505
in contingency tables having fixed marginal

totals, 505–510, 506f
Independent events, 75–79, 78f
Independent increment assumption, 181
Independent random variables, 101–104

central limit theorem for, 210–219,
226–227

moment generating functions of, 127–128
sample mean and variance distribution with,

222
sample mean distribution with, 2, 15
signed rank test and, 526–527

Independent variable. See Input variable
Indicator random variable, 90–91

covariance of, 125–126
expectation for, 109
variance of, 119–120

Individual moment generating functions,
127–128
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Individual probability mass function, joint and,
96–99, 98t

Inferential statistics
history of, 6–7
probability models and, 2–3

Inheritance, regression to mean and, 372–375,
373f, 374f

Input variable, 357–358
variation in response to, 382–384, 390–396,

395f
Interaction, two-way analysis of variance with,

446, 469–476, 475t, 476f
Intersection

of sample space, 55
in Venn diagram, 56–57, 56f, 57f

Interval estimates, 235, 247–260
confidence interval for normal mean with

unknown variance, 252–258, 256f
confidence interval for variance of normal

distribution, 259–260, 260t
hypothesis testing v., 310
prediction, 257–258
for unknown mean, 247–252

Inverse transformation method, 639–641
ith order statistic, 594

J
Joint cumulative probability distribution

function, 96, 103–104
Joint density

conditional densities and, 107
random numbers and, 166–168

Joint density function, 236–237, 242, 244
Joint probability density function, 99–101
Joint probability mass function

conditional probability mass function and,
106

individual and, 96–99, 98t, 99t
Jointly continuous, 99, 102–103
Jointly distributed random variables, 95–107,

98t, 99t
conditional distributions, 104–107
independent, 101–104

K
Kolmogorov’s law of fragmentation, 243
Kolmogorov–Smirnov goodness of fit test, for

continuous data, 510–514, 511f
Kolmogorov–Smirnov test statistic, 510–514,

511f
Kruskal–Wallis test, 540

L
Laplace, Pierre-Simon, 5–6
Least squares estimators, 385

distribution of, 361–367, 368f, 369f
in multiple linear regression, 400–408,

413–414
in polynomial regression, 397–399
of regression parameters, 359–361, 361f,

362f
for Weibull distribution in life testing,

610–612
weighted, 390–396, 395f

Left-end inclusion convention, 15
Level of significance. See Significance level
Levels, in two-way analysis of variance, 460
Life distributions, estimation of, 245–247
Life testing, 589–612

exponential distribution in, 592–606, 598f
Bayesian approach, 604–606
sequential testing, 598–602, 604f
simulation testing with stopping at rth

failure, 592–598
simulation testing with stopping by fixed

time, 602–604
hazard rate functions, 589–592
introduction, 589
two-sample problem, 606–608
Weibull distribution in, 608–612, 609f

Likelihood function, 236–237
Line graph, 10, 10t, 11f
Linear regression equation, 357–358. See also

Multiple linear regression
assessment of, 384–386, 385–386f

Linearity, transforming to, 387–390, 388f,
389f, 389t, 390t

Logarithms, for transforming to linearity,
387–390, 388f, 389f, 389t, 390t

Logistic regression function, 416, 418f
Logistic regression models, for binary output

data, 416–419, 418f
Logistics distribution, of random variables,

196–197
Logistics random variable, 197
Logit, 419
Lognormal distribution, 243
Lower confidence interval

for difference in means of two normal
distributions, 260–264, 261–262f, 267t

for normal mean with unknown variance,
255–257, 256f

for unknown mean, 249–251
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for unknown probability, 272t
for variance of normal distribution, 260t

Lower control limits
for exponentially weighted moving-average,

576–578, 578f
for fraction defective, 566–567
for mean control charts, 555–557, 556f
for moving-average, 572–573, 573t, 574f
for number of defects, 568–570
for variance control charts, 563–564, 564f

M
Mann-Whitney test. See Rank sum test
Marginal probability mass function, 98
Markov’s inequality, random variables and,

128–131
Mass function. See Probability mass function
Matrix notation

for multiple linear regression, 401–403
for polynomial regression, 400

Maximum likelihood estimators, 235–247, 284,
500

of Bernoulli parameter, 237–240
of difference in means of two normal

distributions, 260
evaluation of, 277–278
for exponential distribution in life testing,

593–594, 602–604
least squares estimators as, 365–366
for life distributions, 245–247
in logistic regression models, 418
for mean of exponential distribution, 272
of normal population, 242–244
of Poisson parameter, 240–241
in sequential testing for exponential

distribution in life testing, 599, 601
for Weibull distribution in life testing,

608–610
weighted least squares estimators as, 392

Mean. See also Population means; Sample mean
of Bernoulli random variable, confidence

interval for, 268–272, 272t
of chi-square random variable, 192
confidence interval estimators of mean

response, 377–379, 411–413
estimation of difference in means of two

normal distributions, 260–268,
262–263f, 266–267f, 268t

of exponential distribution, confidence
interval for, 272–273

for exponentially weighted moving-average,
575

grand, 462–463, 469
of hypergeometric random variables,

157–158
of least squares estimators, 362–364
for moving-average, 572
normal, confidence intervals for, 252–258,

256f
of normal population, hypothesis testing

concerning, 299–317, 301f, 301f, 311t,
313f, 316f, 317t

case of known variance, 299–311, 301f,
304f, 311t

case of unknown variance, 311–317, 313f,
316f, 317t

of normal random variables, 169–170
permutation tests and, 634
of Poisson distribution, hypothesis testing for,

336–339
Poisson distribution with unknown value of,

goodness of fit tests for, 499–501
population, 208–209, 209f
regression to, 372–376, 373f, 374f, 375t,

376f
testing equality of means of two normal

populations, 318–326, 319t, 321f, 323f,
325t

case of known variance, 318–320, 319t
case of unknown and equal variance,

324–325, 325t
case of unknown variance, 320–324, 321f,

323f
paired t-test, 325–326

of uniform distribution, 244–245
of uniform random variables, 162
unknown

confidence intervals for normal mean with
unknown variance, 252–258, 256f

control charts for, 557–562, 559t
estimates of, 247–252

Mean control chart, 554–562, 556f, 564f
case of unknown, 557–562, 559t

Mean life, maximum likelihood estimator of,
603–604

Mean response
estimation of, 411–413
statistical inferences concerning, 377–379

Mean square error
bootstrap method and, 627–628
of point estimators, 273–279



662 Index

Median, sign test for, 523–524, 524f
Memoryless, exponential random variables, 178
Modal values, 22
Mode, of density, 284
Models, assessment of, 384–386, 385–386f
Moment generating functions

chi-square distribution, 188
chi-square random variable, 188–190, 190f
exponential random variables and, 177
gamma distribution and, 186–188
normal random variables and, 175
of Poisson random variables, 149–150
of random variables, 127–126

Monte Carlo simulation, 255–257, 256f,
622–623

determining runs in, 643–644
Moving-average control charts, 571–573, 573t,

574f
exponentially weighted, 573–578, 575f, 578f

Multidimensional integrals, simulation of,
255–257, 256f

Multiple comparisons, of sample means,
456–458

Multiple linear regression, 400–416, 403t, 404f,
405f, 406f, 410t, 413t, 414f, 415f

Multiple probability distributions, equality
testing of, 539–541

Multiple regression equation, 358
Multivariate normal distribution, 404
Mutually exclusive, in sample space, 55

N
Natural and Political Observations Made upon

the Bills of Mortality, 4–5, 4t, 5t
Negatively correlated, 37
Neyman, Jerzy, 7
95 Percent confidence interval

of difference in means of two normal
distributions, 260–268, 252–253f

for estimating unknown mean, 247–252
for mean of exponential distribution,

272–273
of mean response, 378
for normal mean with unknown variance,

253–257, 254f
for regression parameters, 372
for unknown probability, 269–271

95 Percent prediction interval, 416
99 Percent confidence interval

for estimating unknown mean, 250–251
for unknown probability, 271

90 Percent confidence interval
of difference in means of two normal

distributions, 265–268, 266–267f
for variance of normal distribution, 259–260

Nonparametric hypothesis tests, 521–545
introduction to, 521
runs test for randomness, 541–545, 543f
sign test, 521–525, 524f
signed rank test, 525–531, 526f
two-sample problem, 531–535, 534f, 538f

classical approximation and simulation,
535–539

equality of multiple probability
distributions, 539–541

Nonparametric inference, 207–208
Nonrandom sample, 3
Normal approximations, in permutation tests,

633–637
Normal data sets, 34, 31f, 32f, 34f
Normal density function, 168, 168f, 188, 189f
Normal distribution

confidence interval for variance of, 259–260,
260t

estimation of difference in means of,
260–268, 262–263f, 266–267f, 268t

Normal equations
in multiple linear regression, 401–403
in polynomial regression, 397
of regressions, 359–360

Normal histograms, 33, 31f, 32f, 34f
Normal mean, with unknown variance,

confidence intervals for, 252–258, 256f
Normal populations

maximum likelihood estimator of, 242–244
mean of

hypothesis testing concerning, 299–317,
301f, 304f, 311t, 313f, 316f, 317t

testing equality of means of two normal
populations, 318–326, 319t, 321f, 323f,
325t

sampling distributions from, 220–223
joint distribution, 221–223
sample mean distribution, 221

variance of, hypothesis testing for, 327–329
Normal prior, choosing of, 283–284
Normal random variables, 168–177, 172f, 176f

chi-square distribution, 188–193, 190f, 192f
F -distribution, 195–196, 195f
generation of, 642–643
mean and variance of, 169–170
normal density function, 168, 168f
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standard normal distribution and, 171–172,
172f, 175–177, 176f

sums of, 175
t-distribution, 193–195, 193f, 195f

Notation
dot, in two-way analysis of variance, 461–462
for least squares estimators, 366
matrix

in multiple linear regression, 401–403
for polynomial regression, 400

Null hypothesis, 298
permutation tests and, 631–633

Number of defect control charts, 567–570, 569t

O
Observational study, 336
OC curve. See Operating characteristic curve
Odds for success, 419
Odds of event, 59
Ogives, 14t, 16–17, 16f, 18t
100(1 − α) Percent confidence interval of

difference in means of two normal
distributions, 261–265, 268t

for estimating unknown mean, 250–251
for exponential distribution in life testing,

596
for mean of exponential distribution, 272
of mean response, 378
for normal mean with unknown variance,

252–258
for regression parameters

α, 377
β, 371–372

in sequential testing for exponential
distribution in life testing, 599–600

for unknown probability, 269–271
for variance of normal distribution, 260t

100(1 − α) Percent confidence region, 263
100(1 − α) Percent prediction interval, 381,

416
One-sided Chebyshev’s inequality, 29–30
One-sided critical region, 307
One-sided hypothesis tests

for mean of normal population, case of
known variance, 306–310

for testing equality of means of two normal
populations, 321

One-sided lower confidence interval
of difference in means of two normal

distributions, 260–264, 261–262f, 267t

for normal mean with unknown variance,
255–257, 256f

for unknown mean, 249–251
for unknown probability, 272t
for variance of normal distribution, 260t

One-sided null hypothesis, sign test and,
524–525

One-sided t-tests, for mean of normal
population with unknown variance,
314–317, 316f

One-sided upper confidence interval
for difference in means of two normal

distributions, 261, 265–268, 266–267f
for normal mean with unknown variance,

254–255
for unknown mean, 249–251
for unknown probability, 272t
for variance of normal distribution, 260t

One-way analysis of variance, 446, 448–459,
452t, 453f, 456t

multiple comparisons of sample means,
456–458

with unequal sample sizes, 458–459
Operating characteristic (OC) curve, 303–304,

304f
for one-sided hypothesis testing for mean of

normal population, 307–308
Out of control, 553, 555–557, 556f
Overlook probabilities, 74

P
Paired data sets, 34–36, 34t, 35f

sample correlation coefficient and, 37–40,
39f

Paired t-test, 325–326, 523
Parameter estimation, 235–284

approximate confidence interval for mean of
Bernoulli random variable, 268–272,
272t

Bayes estimator, 236, 279–284
confidence interval for mean of exponential

distribution, 272–273
of difference in means of two normal

distributions, 260–268, 262–263f,
266–267f, 268t

interval estimates, 235, 247–260, 310
introduction, 235–236
of life distributions, 245–247
maximum likelihood estimators, 235–247,

260, 284
point estimator evaluation, 273–279
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Parameter estimation (continued)
for two-way analysis of variance, 460–463
for Weibull distribution in life testing,

610–612
Parametric inference, 207–208
Pearson, Egon, 7

The Pareto Distribution, 183–185
Pearson, Karl, 6, 373, 496
Permutation, 61–63
Permutation tests, 630–638

implementation of, 631–632
normal approximations in, 633–637
null hypothesis and, 631–633
two sample, 637–638

Pie chart, 12, 13–14f
Point estimates, 235
Point estimators

evaluation of, 273–279
for hypothesis testing, 299–300
of mean response, 377, 411

Point prediction, 413
Poisson distribution

hypothesis testing concerning mean of,
336–339

with unknown mean, goodness of fit tests for,
499–501

variance in, 395–396
Poisson distribution function

computation of, 155–156
number of defects and, 567–570, 569t

Poisson parameters
maximum likelihood estimator of, 240–241
testing of relationship between, 337–339

Poisson probability mass function, 148–150,
149f, 154–155

Poisson process, exponential random variables
and, 181–183, 181f

Poisson random variables, 148–156, 149f
binomial random variables and, 150–153
conditional probability and, 153–154
moment generating functions of, 149–150
probability mass function and, 148–150,

149f, 154–155
Poisson, S.D., 148
Polynomial regression, 397–400, 398f, 399f
Pooled estimator, 266, 321
Population distributions

empirical distribution and, 624
equality of, hypothesis testing for,

508–509
signed rank test for, 529–531

Population means, 208–209, 209f
bootstrap method and, 623–624, 628–630
confidence interval for difference in, 456–458
control charts for, 571–581

cumulative sum, 579–581
exponentially weighted moving-average,

573–578, 575f, 578f
moving-average, 571–573, 573t, 574f

hypothesis testing of equality of, 446,
448–459, 452t, 453f, 456t

multiple, hypothesis testing of, 446–447
Population median, sign test for, 523–524, 524f
Population variance, 208–209

bootstrap method and, 623–625
Populations

definition of, 207
samples and, 3
sampling distributions from

finite, 223–227
normal, 220–223

Positively correlated, 37
Posterior density function, 280, 284
Power-function, of hypothesis test, 304
Prediction interval

confidence interval v., 381
of future response, 379–381
of response at input level x0, 381
of response in multiple linear regression,

411–416, 413t, 414f, 415f
Prior distributions, 279–284, 604–606
Probability, 53–79

axioms of, 57–59, 59f
Bayes’ formula, 68–75, 69f
Bernoulli random variables, 141–148
binomial random variables, 143–147
bootstrap method and, 629–630
central limit theorem, 210–219, 212–215f,

216f
chi-square distribution and, 187
conditional, 65–68, 66f, 106
continuous random variable and, 94
counting and, 60–65
of defects, 329–337
distribution function and, 91–92
events, 54–55

independent, 75–79, 78f
expectation, 107–111, 111f
exponential random variables and, 179–180
fraction defective, 565–567
introduction to, 53–54
overlook, 74
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Poisson random variables and, 148–156, 149f
of random variables, 89–90
rank sum tests, 532–533
sample space, 54–55

with equally likely outcomes, 59–65
signed rank test and, 527–529
of uniform random variables, 160–161, 161f
unknown, confidence interval for, 268–272,

272t
Venn diagram and algebra of events, 56–57,

56f, 57f
Probability density function, 93–94

cumulative distribution function and, 94–95,
94f

exponential random variables and, 177
joint, 99–101
of uniform random variables, 160–161, 161f
updated, 280

Probability distribution
of estimator of mean response, 377–378
of sample, goodness of fit tests for, 489–499,

493t, 498f
Probability distribution function

joint cumulative, 96, 103–104
Poisson, 148–156
of populations, 207
random variable and expectation, 111–113
signed rank test for, 529–531

Probability mass function, 92–93, 93f, 245–247
Bernoulli random variables, 142–144, 143f
binomial random variables, 142–144, 143f
central limit theorem and, 212–215f
conditional, 105–106
discrete random variables, 92–93, 638–640
expectation of, 107–108
hypergeometric random variables, 156–157
individual and joint, 96–99, 98t
marginal, 98
Poisson, 148–150, 149f, 154–155
Poisson random variables, 148–150, 149f,

154–155
Probability models, inferential statistics and,

2–3
Probability theory, statistics and, 5–6
Probit model, 419
Pseudo random numbers, 257, 620
p-value

for determining independence of
characteristics of population member,
504–505

for goodness of fit tests when all parameters
are specified, 491, 494–499, 498f

for goodness of fit tests when some
parameters are unspecified, 500–501

for hypothesis testing
in Bernoulli populations, 330–333, 335
of equality of population means,

452, 453f
of mean of normal population, 302,

307–310, 311t, 313, 315–317, 316f,
317t

of mean of Poisson distribution, 337–338
with multiple linear regression, 411
of regression parameters, β, 370
of regression to mean, 374
of variance of normal population,

327, 329
for Kolmogorov–Smirnov goodness of fit test,

513
for one-sided hypothesis testing for mean of

normal population, 307–310
permutation tests for, 630–638

normal approximations in, 633–637
two sample, 637–638

rank sum test and, 533–535, 534f
in sequential testing for exponential

distribution in life testing, 601–602
signed rank test for, 527–529
simulation for approximation of, 496–499,

498f
for testing equality of means of two

normal populations, 321–324, 323f,
325t, 326

in two-way analysis of variance, 467, 467t,
468f, 473–474, 475t, 476f

Q
Quality control, 553–581

fraction defective control charts, 565–567
introduction to, 553–554
mean control chart, 554–562,

556f, 564f
number of defect control charts, 567–570,

569t
population mean control charts, 571–581

cumulative sum, 579–581
exponentially weighted moving-average,

573–578, 575f, 578f
moving-average, 571–573, 573t, 574f

variance control chart, 562–565, 564f
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R
Random error, in response to input variable,

357–358, 361
Random numbers, 620–623

definition of, 163, 163t
generation of, 620–622
Monte Carlo simulation approach, 622–623
pseudo, 620
use of, 164–166, 166f

Random sample, 3, 207, 223
runs test for, 541–545, 543f

Random variables, 89–92. See also specific
random variables

Bernoulli and binomial, 141–148, 143f,
148f

central limit theorem, 210–219, 212–215f
Chebyshev’s inequality, 128–131
continuous, 93–94, 640–643
density function and, 112
discrete, 91–92, 638–640
distribution function and, 91–92, 624
entropy of, 110
expectation of function of, corollary of,

114–115
expected value of sums of, 115–118
exponential, 177–182, 181f, 641–642
gamma distribution of, 186–188, 189f
generation of, 497, 627, 638–643
hypergeometric, 156–160
indicator, 90–91
jointly distributed, 95–107, 98t

conditional distributions, 104–107
independent, 101–104

logistics distribution, 196–197
Markov’s inequality, 128–130
moment generating functions, 127–128
normal, 168–177, 172f, 176f, 642–643

chi-square distribution, 188–193, 190f,
192f

F -distribution, 195–196, 195f
t-distribution, 193–195, 193f, 194f

Poisson, 148–156, 149f
probability distribution function and

expectation, 111–113
types of, 92–95, 93f, 94f
uniform, 160–168, 161f, 163t, 166f
variance of, 118–120, 162, 169–170, 192,

222, 447–448
variance of a sum of, 123–126
weak law of large numbers, 130

Rank sum test, 521, 531–541, 534f, 538f
distribution function of, 531

Kruskal–Wallis test, 540
probability and, 532–533
p-value and, 533–535, 534f

classical approximation and simulation,
535–539, 538f

Rate of distribution, 590
Rayleigh density function, 591
Recursive formula, mean control chart and,

559–560, 559t
Referents, 334
Regression, 357–420

analysis of residuals and assessing models,
384–386, 385–386f

coefficient of determination and sample
correlation coefficient, 382–384

distribution of least squares estimators,
361–367, 368f, 369f

history of, 6
introduction, 357–358, 358f
least squares estimators of regression

parameters, 359–361, 361f, 362f
logistic regression models for binary output

data, 416–420, 418f
to mean, 372–376, 373f, 374f, 375t, 376f
multiple linear, 400–416, 402t, 404f, 405f,

406f, 410t, 414f, 415f
predicting future responses, 411–416,

413t, 414f, 415f
polynomial, 397–400, 398f, 399f
statistical inferences about regression

parameters, 367–382, 373f, 374f,
375t, 376f

α, 376–377
β, 368–376, 373f, 374f, 375t, 376f
mean response, 377–379
prediction interval of future response,

379–381
summary of distribution results, 381–382

transforming to linearity, 387–390, 388f,
389f, 389t, 390t

use of dummy variables, 416–418
weighted least squares, 390–396, 395f

Regression coefficients, 358, 397
Regression fallacy, 376
Regression parameters

least squares estimators of, 359–361, 361f,
362f

statistical inferences about, 367–382, 373f,
374f, 375t, 376f

α, 376–377
β, 368–376, 373f, 374f, 375t, 376f
mean response, 377–379
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prediction interval of future response,
379–381

summary of distribution results, 381–382
Rejection, of hypothesis. See Hypothesis testing
Relative frequency tables and graphs, 10–14,

13–14f, 13t, 16
Residuals, 364–366

analysis of, 384–386, 385–386f
in multiple linear regression, 408–409, 411
standardized, 385–386, 385–386f

Response variable, 357–358
prediction interval of future response,

379–381
in multiple linear regression, 411–416,

413t, 414f, 415f
variation in, 382–384

with input variable, 390–396, 395f
Robustness, of hypothesis test, 311
Row factors

hypothesis testing for, 464–468, 467t, 468f
in two-way analysis of variance, 460

column factor interaction with, 446,
469–476, 475t, 476f

deviation from grand mean due to, 462
Row sum of squares, 466, 467t
Run, 541
Runs test for randomness, 521, 541–542, 543f

S
Sample

definition of, 207
populations and, 3

Sample 100p percentile, 24–25
Sample correlation coefficient, 37–41, 39f

association v. causation, 40–41
coefficient of determination and, 382–384
properties of, 37–38, 41

Sample mean, 17–20, 22
central limit theorem for, 216–218
distribution of, with chi-square random

variables, 222
for exponential random variables, 218–219,

219f
for independent random variables, 2, 15
multiple comparisons of, 456–458
of normal data set, 31
for normal population, 220–221
population, 208–209, 209f
sample variance distribution with, 221–223

Sample median, 20–22, 31
Sample mode, 22

Sample percentiles, 24–25
Sample quartiles, 25–27, 27f
Sample size, one-way analysis of variance with

unequal sample sizes, 458–459
Sample spaces, 54–55

having equally likely outcomes, 59–65
Sample standard deviation, 24, 219–220
Sample variance, 22–24, 219–220

for normal population, 220
sample mean distribution with, 221–223

Sampling, 207
Sampling distributions

form finite populations, 223–227
form normal populations, 220–223

joint distribution, 221–223
sample mean distribution, 221

Scatter diagram, 34–36, 36f, 358, 358f, 373,
385–386, 385–386f, 397

Second quartile, 25–27
Selection, of normal prior, 283–284
Sequence of interarrival times, 182
Sequential testing, for exponential distribution

in life testing, 598–602, 598f
Sign test, 521–525, 524f

Bernoulli random variables, 522
binomial random variables, 522
one-sided null hypothesis and, 524–525
paired t-test v., 523
for population median, 523–524, 524f

Signed rank test, 521, 525–531, 526f
for distribution function, 525, 526f
for probability distribution function,

529–531
for p-value, 527–529

Significance level, 298–299
Significance level α test

for determining independence of
characteristics of population member,
503–505

for goodness of fit tests when all parameters
are specified, 496

for hypothesis testing
in Bernoulli populations, 329–333
of equality of population means, 452, 459
of mean of normal population, 300–302,

307–309, 311t, 312, 314–316, 317t
of mean of Poisson distribution, 336–337
of regression to mean, 374
of variance of normal population, 329

for Kolmogorov–Smirnov goodness of fit test,
513–514
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Significance level α test (continued)
for testing equality of means of two normal

populations, 318–321, 324–325, 325t
in two-way analysis of variance, 467, 467t,

472–474, 475t
Simple hypothesis, 298
Simple regression equation, 358, 362f, 369f

assessment of, 384–386, 385–386f
Simulation

for determination of critical region, 496–499,
498f

of single and multidimensional integrals,
251–253, 256f

Simulation run, 623
in Monte Carlo study, 643–644

Simulation testing, for exponential distribution
in life testing, 592–598, 602–604

Single integrals, simulation of, 255–257, 256f
Skewed data set, 31, 32f
Skewed random variables, 142, 143f
Standard deviation

definition of, 121
mean control chart and, 560–561
variance control chart, 562–563

Standard logistic, 197
Standard normal distribution, 171–172, 172f,

175–177, 176f
central limit theorem and, 217
of mean control chart, 555
t-distribution and, 192–195, 193f, 194f

Standard normal random variable, 221
central limit theorem and, 210, 216–217

Standardized residuals, 385–386,
385–386f

Stationary increment assumption, 181–182
Statistical analysis, 1
Statistical inferences, about regression

parameters, 367–382, 373f, 374f, 375t,
376f

α, 376–377
β, 368–376, 373f, 374f, 375t, 376f
mean response, 377–379
prediction interval of future response,

379–381
summary of distribution results, 381–382

Statistical theory, 1
Statistics

application of, 6–7
definition of, 1, 6–7, 6t, 207–208
descriptive, 1–2
history of, 3–7, 4t, 5t, 6t

inferential, 2–3
introduction to, 1–7

Stem and leaf plots, 16–17, 18t
of normal data set, 33
sample mean and, 21
sample median and, 21

Subjective interpretation, probability, 53
Success, odds for, 419
Sum of squares

column, 467t
error, 465, 467t
row, 466, 467t
between samples, 451–452, 454, 456t, 459
within samples, 450, 454, 456t, 459
in two-way analysis of variance with

interaction, 471–474, 475t
Sum of squares identity, 453–454
Sum of squares of residuals, 364–366, 408–409,

411
Survival rate, 245–246

T
t-density function, 193, 193f, 252, 253f
t-distribution, 193–195, 193f, 194f, 223
Test statistic

for determining independence of
characteristics of population member,
503–505

for goodness of fit tests when all parameters
are specified, 490–492, 494–496

for goodness of fit tests when some
parameters are unspecified, 500–501

for hypothesis testing
in Bernoulli populations, 330
of equality of population means, 451–452,

455, 456t
of mean of normal population, 302, 307,

309, 315t, 312–315, 317t
of regression parameters, 370–371
of regression to mean, 374
of variance of normal population, 327, 329

Kolmogorov–Smirnov, 510–514, 511f
for one-sided hypothesis testing for mean of

normal population, 307, 309
for testing equality of means of two normal

populations, 320–322, 324, 325t, 326
for testing independence in contingency

tables, 506–507, 506f
in two-way analysis of variance, 467, 467t

Testing. See Goodness of fit tests; Hypothesis
testing; Life testing
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Tests of independence
in contingency tables, 501–505
in contingency tables having fixed marginal

totals, 505–510, 506f
Third quartile, 25–27
Threshold model, 420
Ties

rank sum test and, 531
signed rank test and, 530–531

T -method, 456–458
Total-time-on-test statistic, 594–595, 604
T -random variable, 264
Transformation, to linearity, 387–390, 388f,

389f, 389t, 390t
Treatment group, 164
Tree diagram, random numbers and, 166, 166f
t-tests, 311–317, 313f, 316f, 317t

one-sided, 314–317, 316f
paired, 325–326
p-value of two-sample, 323f
two-sided, 311–313, 313f

Two sample permutation tests, 637–638
Two-sample problem, 521, 531–539, 534f, 538f

distribution function of, 531
in life testing, 606–608
probability and, 532–533
p-value and, 533–535, 534f

classical approximation and simulation,
535–539, 538f

Two-sided confidence interval, 248, 251
of difference in means of two normal

distributions, 261–268, 262–263f,
266–267f

for normal mean with unknown variance,
255–257, 256f

for unknown probability, 272t
Two-sided t-tests, for mean of normal

population with unknown variance,
311–313, 313f

Two-way analysis of variance, 446
hypothesis testing for, 464–468, 467t, 468f
with interaction, 446, 469–476, 475t, 476f
introduction and parameter estimation,

460–463
Type I errors, 298, 300
Type II errors, 298, 302–305, 304f

U
Unbalanced case, in one-way analysis of

variance, 459
Unbiased estimators, 274–279

Uniform distribution, estimating mean of,
244–245

Uniform random variables, 160–168, 161f,
163t, 166f

mean and variance of, 162
probability density function of,

160–161, 161f
random numbers, 166–168

Union
of sample space, 55
in Venn diagram, 56–57, 56f, 57f

Unit normal distribution. See Standard normal
distribution

Unknown mean
confidence intervals for normal mean with

unknown variance, 252–257, 256f
estimates of, 247–252

Unknown parameters. See Parameter estimation
Unknown probability, confidence interval for,

268–272, 272t
Unknown variance

confidence intervals for normal mean with,
252–257, 256f

hypothesis testing for mean of normal
population with, 311–317, 313f,
316f, 317t

testing equality of means of two normal
populations with, 320–325, 321f, 323f,
325t

Updated probability density function, 280
Upper confidence interval

for difference in means of two normal
distributions, 255, 265–266,
266–267f

for normal mean with unknown variance,
254–255

for unknown mean, 249–251
for unknown probability, 272t
for variance of normal distribution, 260t

Upper control limits
for exponentially weighted moving-average,

576–578, 578f
for fraction defective, 566–567
for mean control charts,

555–557, 556f
for moving-average, 572–573,

573t, 574f
for number of defects, 568–570
for variance control charts,

563–564, 564f
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V
Variance, 118–121. See also Analysis of variance;

Population variance; Sample variance
of chi-square random variable, 192, 222,

447–448
covariance, 121–122
definition of, 119
distribution of, with chi-square random

variables, 222
estimators of, 447–448

for one-way analysis of variance, 446,
448–459, 452t, 453f, 456t

in two-way analysis of variance, 464–467
in two-way analysis of variance with

interaction, 469–476, 475t, 476f
for exponentially weighted moving-average,

575–576
of hypergeometric random variables,

157–158
of independent random variables, 222
of indicator random variable, 119–121
known

equality of means of two normal
populations with, 318–320, 319t

hypothesis testing for mean of normal
population with, 299–311, 301f, 304f,
311t

of least squares estimators, 362–364,
405–407

for moving-average, 572
of normal distribution, confidence interval

for, 259–260, 259t
of normal population, hypothesis testing for,

327–329
of normal random variables, 169–170

permutation tests and, 634–635
population, 208–209
of random variables, 118–121, 123–126,

162, 169–170, 193, 222, 447–448
in response to input variable, 382–384,

390–396, 395f
sample, 22–24, 219–220
of a sum of random variables, 124–126
of uniform random variables, 162
unknown

confidence intervals for normal mean with,
252–257, 256f

equality of means of two normal
populations with, 320–324, 321f, 323f

hypothesis testing for mean of normal
population with, 311–317, 313f, 316f,
317t

unknown and equal, testing equality of
means of two normal populations with,
324–325, 325t

Variance control chart, 562–565, 564f
Venn diagram, 56–57, 56f, 57f

probability axioms and, 58–59, 59f

W
Weak law of large numbers, 130
Weibull density function, 608, 609f
Weibull distribution, in life testing, 608–612,

609f
Weighted average, 19–20
Weighted least squares estimators, 390–396,

395f
Wilcoxon test. See Rank sum test
Within samples sum of squares, 450, 454, 456t,

459


